CN114674589B - 空天飞机热测试试验中瞬时热冲击载荷施加系统及方法 - Google Patents

空天飞机热测试试验中瞬时热冲击载荷施加系统及方法 Download PDF

Info

Publication number
CN114674589B
CN114674589B CN202210586383.XA CN202210586383A CN114674589B CN 114674589 B CN114674589 B CN 114674589B CN 202210586383 A CN202210586383 A CN 202210586383A CN 114674589 B CN114674589 B CN 114674589B
Authority
CN
China
Prior art keywords
heat
test
resistant
heating element
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210586383.XA
Other languages
English (en)
Other versions
CN114674589A (zh
Inventor
王彬文
张仡
秦强
丛琳华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC Aircraft Strength Research Institute
Original Assignee
AVIC Aircraft Strength Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC Aircraft Strength Research Institute filed Critical AVIC Aircraft Strength Research Institute
Priority to CN202210586383.XA priority Critical patent/CN114674589B/zh
Publication of CN114674589A publication Critical patent/CN114674589A/zh
Application granted granted Critical
Publication of CN114674589B publication Critical patent/CN114674589B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/002Thermal testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Abstract

本发明提供了空天飞机热测试试验中瞬时热冲击载荷施加系统及方法,涉及飞机测试技术领域。系统包括:辐射式超高温加热元件、阻热结构、热流测量装置、试验控制装置,方法包括以下步骤:S1、阻热结构设计;S2、施加瞬时热冲击载荷,进行空天飞机热测试试验。本发明解决了辐射式超高温加热元件需要预热,影响空天飞机热测试试验效果的问题,具有能够根据测试飞机试验部位及试验距离设计阻热结构、隔绝辐射式超高温加热元件预热干扰的优点。

Description

空天飞机热测试试验中瞬时热冲击载荷施加系统及方法
技术领域
本发明涉及飞机测试技术领域,具体是涉及空天飞机热测试试验中瞬时热冲击载荷施加系统及方法。
背景技术
在空天飞机热测试试验中,常需在测试飞机试验部位表面施加瞬时热冲击载荷,以实现测试飞机试验部位表面在极短时间内从常温到极端高温的超快速升温。
目前,在空天飞机热测试试验中通常采用以石墨为代表的辐射式超高温加热元件对测试飞机试验部位表面施加热冲击载荷,以实现测试飞机试验部位表面从常温到极端高温的快速升温过程。辐射式超高温加热元件的工作原理是:通电后首先对辐射式超高温加热元件自身进行加热,利用辐射式超高温加热元件与测试飞机试验部位表面之间的温差,通过辐射的方式将热量施加到测试飞机试验部位表面。
虽然石墨等辐射式超高温加热元件具有热惯性低、响应快等特点,但是在实际工作过程中,需要先将加热元件自身加热至极高温度后,才能对测试飞机试验部位表面施加较大的热载荷。而受制于辐射式超高温加热元件自身的电热特性与热沉特性,辐射式超高温加热元件在通电后加热自身需要一定的时间。在这段时间内,测试飞机试验部位表面与辐射式超高温加热元件之间的温差较小,实际加热热流较低,使得测试飞机试验部位表面的升温速率也较低(<100℃/s),无法满足空天飞机热测试试验中瞬时超快速升温需求。
发明内容
本发明提出了空天飞机热测试试验中瞬时热冲击载荷施加系统及方法,以满足空天飞机热测试试验中试验件表面瞬时超快速升温需求。
为解决上述问题,本发明的技术方案如下:
空天飞机热测试试验中瞬时热冲击载荷施加系统,包括:
用于给测试飞机试验部位提供瞬时热冲击载荷的辐射式超高温加热元件,
用于在辐射式超高温加热元件预热期间隔绝辐射式超高温加热元件与测试飞机试验部位热辐射且可开闭的阻热结构,
用于测量瞬时热冲击载荷产生热流密度的热流测量装置,热流测量装置包括布设在阻热结构表面与测试飞机试验部位表面的数个热流传感器,
用于控制空天飞机热测试试验及阻热结构工作的试验控制装置,试验控制装置与辐射式超高温加热元件、阻热结构、热流传感器电性连接。
其中,辐射式超高温加热元件的超高温加热范围为1200-2000℃。
进一步地,阻热结构包括:
用于起固定作用的两个纵向固定板,
用于切换阻热结构开启状态和闭合状态的移动装置,移动装置包括:
分别固定在两个纵向固定板内侧的电机,电机输出端横向连接有丝杠,丝杠上固定有滑动块,滑动块上固定有固定块,固定块通过连接杆连接有阻热平板,电机与试验控制装置电性连接,
两个纵向固定板之间连接有两根分别穿过阻热平板上下两端的限位杆,阻热平板与限位杆滑动连接。
阻热结构的设计能够最大程度隔绝辐射式超高温加热元件在预热过程中产生热流,降低热流对飞机热测试试验的影响,使得试验数据可靠性更高。
本发明还提供空天飞机热测试试验中瞬时热冲击载荷施加方法,基于上述空天飞机热测试试验中瞬时热冲击载荷施加系统,包括以下步骤:
S1、阻热结构设计
S1-1、阻热平板安装位置与尺寸确定
将辐射式超高温加热元件与测试飞机试验部位平行放置,设定辐射式超高温加热元件与测试飞机试验部位之间的距离为
Figure 100002_DEST_PATH_IMAGE002
,再将阻热结构平行放置于辐射式超高温加热元件与测试飞机试验部位之间,设定阻热平板与测试飞机试验部位的距离为
Figure 100002_DEST_PATH_IMAGE004
,从而得到的阻热平板整体尺寸计算公式如下:
Figure 100002_DEST_PATH_IMAGE006
式中,
Figure 100002_DEST_PATH_IMAGE008
为辐射式超高温加热元件的特征尺寸,
Figure 100002_DEST_PATH_IMAGE010
为测试飞机试验部位的特征尺寸,
Figure 100002_DEST_PATH_IMAGE012
为阻热结构闭合状态下两个阻热平板的总体特征尺寸,
Figure 100002_DEST_PATH_IMAGE014
为考虑到阻热结构安装定位而产生的尺寸修正系数,
Figure 100002_DEST_PATH_IMAGE015
为辐射式超高温加热元件与测试飞机试验部位之间的距离,
Figure 559536DEST_PATH_IMAGE004
为阻热平板与测试飞机试验部位的距离;
S1-2、通过有限元仿真分析设计耐高温、阻热的阻热平板的结构及阻热平板中隔热碳毡的厚度;
S1-3、确定阻热结构的移动部件参数;
S1-4、阻热结构加工与装配
根据步骤S1-1、步骤S1-2、步骤S1-3中确定的相关参数,对阻热结构进行加工与装配;
S2、施加瞬时热冲击载荷,进行空天飞机热测试试验
S2-1、准备空天飞机热测试试验,布置安装辐射式超高温加热元件、阻热结构和测试飞机试验部位,并在阻热结构表面、测试飞机试验部位表面设置热流传感器;
S2-2、在空天飞机热测试试验开始前,根据超声速飞机热试验目标热流密度,计算施加在辐射式超高温加热元件上的电压值,计算公式为:
Figure 100002_DEST_PATH_IMAGE017
式中,
Figure 100002_DEST_PATH_IMAGE019
为电压,
Figure 100002_DEST_PATH_IMAGE021
为到达测试飞机试验部位表面的热流密度,
Figure 100002_DEST_PATH_IMAGE023
为辐射式超高温加热元件电阻,
Figure 100002_DEST_PATH_IMAGE025
为辐射式超高温加热元件理论发热面积,对于石墨加热元件而言,
Figure 148780DEST_PATH_IMAGE025
为加热元件正对着测试飞机试验部位一侧表面的面积,
Figure 100002_DEST_PATH_IMAGE027
为输出功率修正系数,根据辐射式超高温加热元件自身的电热特性、表面黑度系数、反射情况确定,
Figure 100002_DEST_PATH_IMAGE029
为位置修正系数,根据辐射式超高温加热元件与测试飞机试验部位的尺寸、距离、相对位置、相对角度确定;
S2-3、热流测量装置测量到达阻热结构的实时热流密度,并判断加热热流是否达到稳定输出状态;
S2-4、加热热流达到稳定输出状态后,试验控制装置控制阻热结构切换至开启状态,测试飞机试验部位表面开始受到瞬时热冲击载荷作用;
S2-5、瞬时热冲击载荷作用结束后,试验控制装置控制阻热结构切换至闭合状态,准备再次施加瞬时热冲击载荷;
S2-6、循环步骤S2-2、步骤S2-3、步骤S2-4、步骤S2-5,直至空天飞机热测试试验结束。
优选地,步骤S1-1中,尺寸修正系数
Figure 335042DEST_PATH_IMAGE014
的取值范围为:50mm~200mm。
优选地,步骤S1-1中,特征尺寸为结构的包络矩形长边长度,因此,根据步骤S1-1得出的阻热结构能够在体积最小的情况下,保证最佳的隔热效果。
优选地,步骤S1-2具体包括以下内容:
以钨板、隔热碳毡、钨板为层次对阻热平板进行夹层式设计,并在阻热平板的基础上设计阻热结构,阻热结构设计完成后,通过绘图软件构建阻热结构三维几何模型,并采用有限元仿真软件对阻热平板的耐高温性能与阻热性能进行仿真分析,根据仿真分析存在的问题修改调整阻热平板中隔热碳毡的厚度。仿真分析能够在保持阻热平板高性能的情况下,最大程度节约人力物力。
优选地,步骤S1-3具体包括以下内容:
将阻热结构中丝杠、电机、限位杆作为改变阻热结构开启、闭合状态的移动部件,丝杠上阻热平板的运动长度为丝杠行程,丝杠行程
Figure 100002_DEST_PATH_IMAGE031
应满足:
Figure 100002_DEST_PATH_IMAGE033
式中,
Figure 261410DEST_PATH_IMAGE031
为丝杠行程,
Figure 100002_DEST_PATH_IMAGE034
为阻热结构闭合状态下的两个阻热平板的总体特征尺寸,
两个限位杆轴线之间的距离
Figure 100002_DEST_PATH_IMAGE036
应满足:
Figure 100002_DEST_PATH_IMAGE038
式中,
Figure 512001DEST_PATH_IMAGE036
为两个限位杆轴线之间的距离,
Figure 100002_DEST_PATH_IMAGE040
为限位杆直径,
Figure 6567DEST_PATH_IMAGE008
为辐射式超高温加热元件的特征尺寸,
Figure 8021DEST_PATH_IMAGE010
为测试飞机试验部位的特征尺寸,
Figure 100002_DEST_PATH_IMAGE041
为辐射式超高温加热元件与测试飞机试验部位之间的距离,
Figure 100002_DEST_PATH_IMAGE042
为阻热平板与测试飞机试验部位的距离,
考虑阻热平板的耐热与传热特性,限位杆的直径
Figure 100002_DEST_PATH_IMAGE043
应满足:
Figure 100002_DEST_PATH_IMAGE045
式中,
Figure 100002_DEST_PATH_IMAGE047
为阻热平板的厚度,
Figure 941342DEST_PATH_IMAGE040
为限位杆直径,由此得到的限位杆直径能够尽可能降低限位杆带来的热传导效应。
优选地,步骤S2-1具体包括以下内容:
根据步骤S1计算得出的辐射式超高温加热元件与测试飞机试验部位之间的距离
Figure 610221DEST_PATH_IMAGE002
、阻热平板与测试飞机试验部位的距离
Figure 338005DEST_PATH_IMAGE042
,对辐射式超高温加热元件、测试飞机试验部位、闭合状态的阻热结构进行布置安装,确保辐射式超高温加热元件、闭合状态的阻热结构和测试飞机试验部位的几何中心点处于一条直线上,并在阻热结构表面、测试飞机试验部位表面设置热流传感器。
优选地,步骤S2-3具体包括以下内容:
对于空天飞机热测试试验的瞬时热冲击载荷而言,当阻热结构表面上的热流传感器测得的实时热流密度变化速率小于每秒百分之一,则认为辐射式超高温加热元件发出的加热热流达到稳定输出状态。
优选地,步骤S2-4中,试验控制装置控制阻热结构切换至开启状态具体包括以下内容:
试验控制装置启动阻热结构的两个电机,两个电机分别通过丝杠带动阻热平板向靠近纵向固定板的方向横向移动,当两个隔热平板间距离大于等于
Figure 100002_DEST_PATH_IMAGE048
时,试验控制装置关闭阻热结构的两个电机,阻热结构切换至开启状态。
进一步优选地,步骤S2-5中,试验控制装置控制阻热结构切换至闭合状态具体包括以下内容:
试验控制装置启动阻热结构的两个电机,两个电机分别通过丝杠带动阻热平板向远离纵向固定板的方向横向移动,当两个隔热平板紧贴时,试验控制装置关闭阻热结构的两个电机,阻热结构切换至闭合状态。
本发明的有益效果是:
(1)本发明实现了辐射式超高温加热元件的升温过程与测试飞机表面加热过程解耦,使得测试飞机表面受到的瞬时热冲击载荷最大值突破了辐射式超高温加热元件自身热沉等限制,可实现测试飞机表面极短时间内从常温到极端高温的超快速升温;
(2)本发明提出了阻热结构尺寸设计方法,可通过安装位置确定阻热结构的具体尺寸,确保实现理想的阻热效果;
(3)本发明提出了确定加热热流是否达到最大稳定输出状态的方法,可用于对何时应移开阻热结构进行判断,提出了阻热结构耐温和作动设计方法,可实现阻热结构的重复使用,进而实现瞬时热冲击载荷反复加载。
附图说明
图1是实施例1中阻热结构的立体结构示意图;
图2是实施例1中阻热结构闭合状态的正视图;
图3是实施例1中阻热结构开启状态的正视图;
图4是实施例1中阻热结构在空天飞机热测试试验中的工作状态示意图;
图5是实施例2空天飞机热测试试验中瞬时热冲击载荷施加方法流程图;
图6是实施例2中步骤S1的方法流程图;
图7是实施例2中步骤S2的方法流程图;
图8是实施例2步骤S1-1中阻热平板安装位置示意图;
其中,1-纵向固定板、2-电机、3-丝杠、4-阻热平板、5-限位杆、6-测试飞机试验部位、7-固定块、8-连接杆。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
实施例1
本实施例为空天飞机热测试试验中瞬时热冲击载荷施加系统,包括:
用于给测试飞机试验部位6提供瞬时热冲击载荷的辐射式超高温加热元件,
如图2、图3、图4所示,用于在辐射式超高温加热元件预热期间隔绝辐射式超高温加热元件与测试飞机试验部位6热辐射且可开闭的阻热结构,阻热结构包括:
用于起固定作用的两个纵向固定板1,
用于切换阻热结构开启状态和闭合状态的移动装置,如图1所示,移动装置包括:
分别固定在两个纵向固定板1内侧的电机2,电机2输出端横向连接有丝杠3,丝杠3上固定有滑动块,滑动块上固定有固定块7,固定块7通过连接杆8连接有阻热平板4,电机2与试验控制装置电性连接,
两个纵向固定板1之间连接有两根分别穿过阻热平板4上下两端的限位杆5,阻热平板4与限位杆5滑动连接,
用于测量瞬时热冲击载荷产生热流密度的热流测量装置,热流测量装置包括布设在阻热结构表面与测试飞机试验部位6表面的数个热流传感器,
用于控制空天飞机热测试试验及阻热结构工作的试验控制装置,试验控制装置与辐射式超高温加热元件、阻热结构、热流传感器电性连接。
实施例2
本实施例为空天飞机热测试试验中瞬时热冲击载荷施加方法,基于实施例1的空天飞机热测试试验中瞬时热冲击载荷施加系统,如图5所示,包括以下步骤:
S1、阻热结构设计,如图6所示,包括以下步骤:
S1-1、阻热平板4安装位置与尺寸确定
如图8所示,将辐射式超高温加热元件与测试飞机试验部位6平行放置,设定辐射式超高温加热元件与测试飞机试验部位6之间的距离为
Figure 498859DEST_PATH_IMAGE002
,再将阻热结构平行放置于辐射式超高温加热元件与测试飞机试验部位6之间,设定阻热平板4与测试飞机试验部位6的距离为
Figure 32609DEST_PATH_IMAGE042
,从而得到的阻热平板4整体尺寸计算公式如下:
Figure DEST_PATH_IMAGE049
式中,
Figure 290415DEST_PATH_IMAGE008
为辐射式超高温加热元件的特征尺寸,
Figure 890898DEST_PATH_IMAGE010
为测试飞机试验部位6的特征尺寸,
Figure 866944DEST_PATH_IMAGE012
为阻热结构闭合状态下两个阻热平板4的总体特征尺寸,
Figure 938806DEST_PATH_IMAGE014
为考虑到阻热结构安装定位而产生的尺寸修正系数,
Figure 582277DEST_PATH_IMAGE015
为辐射式超高温加热元件与测试飞机试验部位6之间的距离,
Figure 651864DEST_PATH_IMAGE004
为阻热平板4与测试飞机试验部位6的距离,
本实施例中,
Figure 52889DEST_PATH_IMAGE008
为280mm,
Figure 866124DEST_PATH_IMAGE010
为210mm,
Figure 160839DEST_PATH_IMAGE012
为273.8mm,
Figure 932486DEST_PATH_IMAGE015
为61mm,
Figure 617546DEST_PATH_IMAGE004
为16mm,
Figure 172155DEST_PATH_IMAGE014
为50mm;
S1-2、通过有限元仿真分析设计耐高温、阻热的阻热平板4的结构及阻热平板4中隔热碳毡的厚度
以钨板、隔热碳毡、钨板为层次对阻热平板4进行夹层式设计,并在阻热平板4的基础上设计阻热结构,阻热结构设计完成后,通过绘图软件构建阻热结构三维几何模型,并采用有限元仿真软件对阻热平板4的耐高温性能与阻热性能进行仿真分析,根据仿真分析存在的问题修改调整阻热平板4中隔热碳毡的厚度;
S1-3、确定阻热结构的移动部件参数
将阻热结构中丝杠3、电机2、限位杆5作为改变阻热结构开启、闭合状态的移动部件,丝杠3上阻热平板4的运动长度为丝杠3行程,丝杠3行程
Figure 259060DEST_PATH_IMAGE031
应满足:
Figure 201608DEST_PATH_IMAGE033
式中,
Figure 436280DEST_PATH_IMAGE031
为丝杠3行程,
Figure DEST_PATH_IMAGE050
为阻热结构闭合状态下的两个阻热平板4的总体特征尺寸,
两个限位杆5轴线之间的距离
Figure 263422DEST_PATH_IMAGE036
应满足:
Figure DEST_PATH_IMAGE051
式中,
Figure 470412DEST_PATH_IMAGE036
为两个限位杆5轴线之间的距离,
Figure 380599DEST_PATH_IMAGE040
为限位杆5直径,
Figure 40251DEST_PATH_IMAGE008
为辐射式超高温加热元件的特征尺寸,
Figure 435198DEST_PATH_IMAGE010
为测试飞机试验部位6的特征尺寸,
Figure 496695DEST_PATH_IMAGE041
为辐射式超高温加热元件与测试飞机试验部位6之间的距离,
Figure 515466DEST_PATH_IMAGE042
为阻热平板4与测试飞机试验部位6的距离,
考虑阻热平板4的耐热与传热特性,限位杆5的直径
Figure 724731DEST_PATH_IMAGE043
应满足:
Figure 487150DEST_PATH_IMAGE045
式中,
Figure 668733DEST_PATH_IMAGE047
为阻热平板4的厚度,
Figure 530510DEST_PATH_IMAGE040
为限位杆5直径;
S1-4、阻热结构加工与装配
根据步骤S1-1、步骤S1-2、步骤S1-3中确定的相关参数,对阻热结构进行加工与装配;
S2、施加瞬时热冲击载荷,进行空天飞机热测试试验,如图7所示,包括以下步骤:
S2-1、准备空天飞机热测试试验,布置安装辐射式超高温加热元件、阻热结构和测试飞机试验部位6,并在阻热结构表面、测试飞机试验部位6表面设置热流传感器,具体包括以下内容:
根据步骤S1计算得出的辐射式超高温加热元件与测试飞机试验部位6之间的距离
Figure 164753DEST_PATH_IMAGE002
、阻热平板4与测试飞机试验部位6的距离
Figure 527602DEST_PATH_IMAGE042
,对辐射式超高温加热元件、测试飞机试验部位6、闭合状态的阻热结构进行布置安装,确保辐射式超高温加热元件、闭合状态的阻热结构和测试飞机试验部位6的几何中心点处于一条直线上,并在阻热结构表面、测试飞机试验部位6表面设置热流传感器;
S2-2、在空天飞机热测试试验开始前,根据超声速飞机热试验目标热流密度,计算施加在辐射式超高温加热元件上的电压值,计算公式为:
Figure 563691DEST_PATH_IMAGE017
式中,
Figure 924265DEST_PATH_IMAGE019
为电压,
Figure DEST_PATH_IMAGE052
为到达测试飞机试验部位6表面的热流密度,
Figure DEST_PATH_IMAGE053
为辐射式超高温加热元件电阻,
Figure 514646DEST_PATH_IMAGE025
为辐射式超高温加热元件理论发热面积,对于石墨加热元件而言,
Figure 884448DEST_PATH_IMAGE025
为加热元件正对着测试飞机试验部位6一侧表面的面积,
Figure 509464DEST_PATH_IMAGE027
为输出功率修正系数,根据辐射式超高温加热元件自身的电热特性、表面黑度系数、反射情况确定,
Figure DEST_PATH_IMAGE054
为位置修正系数,根据辐射式超高温加热元件与测试飞机试验部位6的尺寸、距离、相对位置、相对角度确定;
S2-3、热流测量装置测量到达阻热结构的实时热流密度,并判断加热热流是否达到稳定输出状态,具体包括以下内容:
对于空天飞机热测试试验的瞬时热冲击载荷而言,当阻热结构表面上的热流传感器测得的实时热流密度变化速率小于每秒百分之一,则认为辐射式超高温加热元件发出的加热热流达到稳定输出状态;
S2-4、加热热流达到稳定输出状态后,试验控制装置控制阻热结构切换至开启状态,测试飞机试验部位6表面开始受到瞬时热冲击载荷作用,试验控制装置控制阻热结构切换至开启状态具体包括以下内容:
试验控制装置启动阻热结构的两个电机2,两个电机2分别通过丝杠3带动阻热平板4向靠近纵向固定板1的方向横向移动,当两个隔热平板4间距离大于等于
Figure 713044DEST_PATH_IMAGE048
时,试验控制装置关闭阻热结构的两个电机2,阻热结构切换至开启状态;
S2-5、瞬时热冲击载荷作用结束后,试验控制装置控制阻热结构切换至闭合状态,准备再次施加瞬时热冲击载荷,试验控制装置控制阻热结构切换至闭合状态具体包括以下内容:
试验控制装置启动阻热结构的两个电机2,两个电机2分别通过丝杠3带动阻热平板4向远离纵向固定板1的方向横向移动,当两个隔热平板4紧贴时,试验控制装置关闭阻热结构的两个电机2,阻热结构切换至闭合状态;
S2-6、循环步骤S2-2、步骤S2-3、步骤S2-4、步骤S2-5,直至空天飞机热测试试验结束。
实施例3
本实施例与实施例2的区别在于:
步骤S1-1中,
Figure DEST_PATH_IMAGE055
为200mm,
Figure 118617DEST_PATH_IMAGE034
为423.8mm。

Claims (9)

1.空天飞机热测试试验中瞬时热冲击载荷施加系统,其特征在于,包括:
用于给测试飞机试验部位(6)提供瞬时热冲击载荷的辐射式超高温加热元件,
用于在辐射式超高温加热元件预热期间隔绝所述辐射式超高温加热元件与所述测试飞机试验部位(6)热辐射且可开闭的阻热结构,所述阻热结构包括:
用于起固定作用的两个纵向固定板(1),
用于切换阻热结构开启状态和闭合状态的移动装置,所述移动装置包括:
分别固定在两个所述纵向固定板(1)内侧的电机(2),所述电机(2)输出端横向连接有丝杠(3),所述丝杠(3)上固定有滑动块,所述滑动块上固定有固定块(7),所述固定块(7)通过连接杆(8)连接有阻热平板(4),电机(2)与试验控制装置电性连接,
两个纵向固定板(1)之间连接有两根分别穿过所述阻热平板(4)上下两端的限位杆(5),阻热平板(4)与所述限位杆(5)滑动连接,
用于测量瞬时热冲击载荷产生热流密度的热流测量装置,所述热流测量装置包括布设在所述阻热结构表面与所述测试飞机试验部位(6)表面的数个热流传感器,
用于控制空天飞机热测试试验及所述阻热结构工作的试验控制装置,所述试验控制装置与所述超高温加热元件、阻热结构、热流传感器电性连接。
2.空天飞机热测试试验中瞬时热冲击载荷施加方法,基于权利要求1所述空天飞机热测试试验中瞬时热冲击载荷施加系统,其特征在于,包括以下步骤:
S1、阻热结构设计
S1-1、阻热平板(4)安装位置与尺寸确定
将辐射式超高温加热元件与测试飞机试验部位(6)平行放置,设定辐射式超高温加热元件与测试飞机试验部位(6)之间的距离为
Figure DEST_PATH_IMAGE002
,再将阻热结构平行放置于辐射式超高温加热元件与测试飞机试验部位(6)之间,设定阻热平板(4)与测试飞机试验部位(6)的距离为
Figure DEST_PATH_IMAGE004
,从而得到的阻热平板(4)整体尺寸计算公式如下:
Figure DEST_PATH_IMAGE006
式中,
Figure DEST_PATH_IMAGE008
为辐射式超高温加热元件的特征尺寸,
Figure DEST_PATH_IMAGE010
为测试飞机试验部位(6)的特征尺寸,
Figure DEST_PATH_IMAGE012
为阻热结构闭合状态下两个阻热平板(4)的总体特征尺寸,
Figure DEST_PATH_IMAGE014
为考虑到阻热结构安装定位而产生的尺寸修正系数,
Figure DEST_PATH_IMAGE015
为辐射式超高温加热元件与测试飞机试验部位(6)之间的距离,
Figure 396099DEST_PATH_IMAGE004
为阻热平板(4)与测试飞机试验部位(6)的距离;
S1-2、通过有限元仿真分析设计耐高温、阻热的阻热平板(4)的结构及阻热平板(4)中隔热碳毡的厚度;
S1-3、确定阻热结构的移动部件参数;
S1-4、阻热结构加工与装配
根据步骤S1-1、步骤S1-2、步骤S1-3中确定的相关参数,对阻热结构进行加工与装配;
S2、施加瞬时热冲击载荷,进行空天飞机热测试试验
S2-1、准备空天飞机热测试试验,布置安装辐射式超高温加热元件、阻热结构和测试飞机试验部位(6),并在阻热结构表面、测试飞机试验部位(6)表面设置热流传感器;
S2-2、在空天飞机热测试试验开始前,根据超声速飞机热试验目标热流密度,计算施加在辐射式超高温加热元件上的电压值,计算公式为:
Figure DEST_PATH_IMAGE017
式中,
Figure DEST_PATH_IMAGE019
为电压,
Figure DEST_PATH_IMAGE021
为到达测试飞机试验部位(6)表面的热流密度,
Figure DEST_PATH_IMAGE023
为辐射式超高温加热元件电阻,
Figure DEST_PATH_IMAGE025
为辐射式超高温加热元件理论发热面积,对于石墨加热元件而言,
Figure 532814DEST_PATH_IMAGE025
为加热元件正对着测试飞机试验部位(6)一侧表面的面积,
Figure DEST_PATH_IMAGE027
为输出功率修正系数,根据辐射式超高温加热元件自身的电热特性、表面黑度系数、反射情况确定,
Figure DEST_PATH_IMAGE029
为位置修正系数,根据超高温加热元件与测试飞机试验部位(6)的尺寸、距离、相对位置、相对角度确定;
S2-3、热流测量装置测量到达阻热结构的实时热流密度,并判断加热热流是否达到稳定输出状态;
S2-4、加热热流达到稳定输出状态后,试验控制装置控制阻热结构切换至开启状态,测试飞机试验部位(6)表面开始受到瞬时热冲击载荷作用;
S2-5、瞬时热冲击载荷作用结束后,试验控制装置控制阻热结构切换至闭合状态,准备再次施加瞬时热冲击载荷;
S2-6、循环步骤S2-2、步骤S2-3、步骤S2-4、步骤S2-5,直至空天飞机热测试试验结束。
3.如权利要求2所述的空天飞机热测试试验中瞬时热冲击载荷施加方法,其特征在于,所述步骤S1-1中,特征尺寸为结构的包络矩形长边长度。
4.如权利要求2所述的空天飞机热测试试验中瞬时热冲击载荷施加方法,其特征在于,所述步骤S1-2具体包括以下内容:
以钨板、隔热碳毡、钨板为层次对阻热平板(4)进行夹层式设计,并在阻热平板(4)的基础上设计阻热结构,阻热结构设计完成后,通过绘图软件构建阻热结构三维几何模型,并采用有限元仿真软件对阻热平板(4)的耐高温性能与阻热性能进行仿真分析,根据仿真分析存在的问题修改调整阻热平板(4)中隔热碳毡的厚度。
5.如权利要求2所述的空天飞机热测试试验中瞬时热冲击载荷施加方法,其特征在于,所述步骤S1-3具体包括以下内容:
将阻热结构中丝杠(3)、电机(2)、限位杆(5)作为改变阻热结构开启、闭合状态的移动部件,丝杠(3)上阻热平板(4)的运动长度为丝杠(3)行程,丝杠(3)行程
Figure DEST_PATH_IMAGE031
应满足:
Figure DEST_PATH_IMAGE033
式中,
Figure 702764DEST_PATH_IMAGE031
为丝杠(3)行程,
Figure DEST_PATH_IMAGE034
为阻热结构闭合状态下的两个阻热平板(4)的总体特征尺寸,
两限位杆(5)轴线之间的距离
Figure DEST_PATH_IMAGE036
应满足:
Figure DEST_PATH_IMAGE038
式中,
Figure 458493DEST_PATH_IMAGE036
为两限位杆(5)轴线之间的距离,
Figure DEST_PATH_IMAGE040
为限位杆(5)直径,
Figure 335182DEST_PATH_IMAGE008
为辐射式超高温加热元件的特征尺寸,
Figure 626486DEST_PATH_IMAGE010
为测试飞机试验部位(6)的特征尺寸,
Figure DEST_PATH_IMAGE041
为辐射式超高温加热元件与测试飞机试验部位(6)之间的距离,
Figure DEST_PATH_IMAGE042
为阻热平板(4)与测试飞机试验部位(6)的距离,
考虑阻热平板(4)的耐热与传热特性,限位杆(5)的直径
Figure DEST_PATH_IMAGE043
应满足:
Figure DEST_PATH_IMAGE045
式中,
Figure DEST_PATH_IMAGE047
为阻热平板(4)的厚度,
Figure 378672DEST_PATH_IMAGE040
为限位杆(5)直径。
6.如权利要求2所述的空天飞机热测试试验中瞬时热冲击载荷施加方法,其特征在于,所述步骤S2-1具体包括以下内容:
根据步骤S1计算得出的辐射式超高温加热元件与测试飞机试验部位(6)之间的距离
Figure 46414DEST_PATH_IMAGE002
、阻热平板(4)与测试飞机试验部位(6)的距离
Figure 43189DEST_PATH_IMAGE004
,对辐射式超高温加热元件、测试飞机试验部位(6)、闭合状态的阻热结构进行布置安装,确保辐射式超高温加热元件、闭合状态的阻热结构和测试飞机试验部位(6)的几何中心点处于一条直线上,并在阻热结构表面、测试飞机试验部位(6)表面设置热流传感器。
7.如权利要求2所述的空天飞机热测试试验中瞬时热冲击载荷施加方法,其特征在于,所述步骤S2-3具体包括以下内容:
对于空天飞机热测试试验的瞬时热冲击载荷,当阻热结构表面上的热流传感器测得的实时热流密度变化速率小于每秒百分之一,则可认为辐射式超高温加热元件发出的加热热流达到稳定输出状态。
8.如权利要求2所述的空天飞机热测试试验中瞬时热冲击载荷施加方法,其特征在于,所述步骤S2-4中,试验控制装置控制阻热结构切换至开启状态具体包括以下内容:
试验控制装置启动阻热结构的两个电机(2),两个电机(2)分别通过丝杠(3)带动阻热平板(4)向靠近纵向固定板(1)的方向横向移动,当两个隔热平板(4)间距离大于等于
Figure DEST_PATH_IMAGE048
时,试验控制装置关闭阻热结构的两个电机(2),阻热结构切换至开启状态。
9.如权利要求2所述的空天飞机热测试试验中瞬时热冲击载荷施加方法,其特征在于,所述步骤S2-5中,试验控制装置控制阻热结构切换至闭合状态具体包括以下内容:
试验控制装置启动阻热结构的两个电机(2),两个电机(2)分别通过丝杠(3)带动阻热平板(4)向远离纵向固定板(1)的方向横向移动,当两个隔热平板(4)紧贴时,试验控制装置关闭阻热结构的两个电机(2),阻热结构切换至闭合状态。
CN202210586383.XA 2022-05-27 2022-05-27 空天飞机热测试试验中瞬时热冲击载荷施加系统及方法 Active CN114674589B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210586383.XA CN114674589B (zh) 2022-05-27 2022-05-27 空天飞机热测试试验中瞬时热冲击载荷施加系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210586383.XA CN114674589B (zh) 2022-05-27 2022-05-27 空天飞机热测试试验中瞬时热冲击载荷施加系统及方法

Publications (2)

Publication Number Publication Date
CN114674589A CN114674589A (zh) 2022-06-28
CN114674589B true CN114674589B (zh) 2022-08-26

Family

ID=82079438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210586383.XA Active CN114674589B (zh) 2022-05-27 2022-05-27 空天飞机热测试试验中瞬时热冲击载荷施加系统及方法

Country Status (1)

Country Link
CN (1) CN114674589B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114813199A (zh) * 2022-06-29 2022-07-29 中国飞机强度研究所 一种空天飞机结构用封闭式高温试验装置及高温试验方法
CN115022993B (zh) * 2022-08-04 2022-11-04 西安交通大学 一种空天飞机热环境模拟用模块化超高温加热装置及方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1059169A (en) * 1963-06-01 1967-02-15 Bodenseewerk Perkin Elmer Co Thermostatic control system
DE1949714A1 (de) * 1968-11-08 1971-02-25 Monsator Haushaltsgrossgeraete Einrichtung zum Heizen und Kuehlen von Kammern,Zellen und stationaeren oder transportablen Behaeltern,insbesondere Wechseltemperaturschraenken
US5698787A (en) * 1995-04-12 1997-12-16 Mcdonnell Douglas Corporation Portable laser/ultrasonic method for nondestructive inspection of complex structures
CN202478948U (zh) * 2012-02-27 2012-10-10 华中科技大学 多功能环境试验箱
KR101489486B1 (ko) * 2014-09-24 2015-02-23 주식회사 스탠더드시험연구소 열차단챔버를 이용한 펌프 열충격 시험장치 및 열충격 시험방법
CN107271320A (zh) * 2017-06-07 2017-10-20 华中科技大学 一种可实现快速升温的热重分析仪
CN209102650U (zh) * 2018-11-15 2019-07-12 贵州甲鼎科技有限公司 一种适用于空间环境试验的大辐射热流加热装置
CN112208805A (zh) * 2020-09-03 2021-01-12 中国空间技术研究院 一种空间载荷的外热流模拟方法及装置
CN112665864A (zh) * 2020-11-12 2021-04-16 南京航空航天大学 一种航空发动机随机热冲击载荷模拟装置及方法
CN213078489U (zh) * 2020-08-12 2021-04-30 深圳市博远检测技术有限公司 一种热冲击实验箱
CN112903506A (zh) * 2021-05-10 2021-06-04 中国飞机强度研究所 一种热流控制试验方法
CN113155885A (zh) * 2021-03-30 2021-07-23 中国飞机强度研究所 一种石英灯辐射加热试验热损失标定方法及标定装置
CN113280639A (zh) * 2021-05-11 2021-08-20 凤台县天宝建材有限责任公司 一种固定式高效节能隧道窑

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1059169A (en) * 1963-06-01 1967-02-15 Bodenseewerk Perkin Elmer Co Thermostatic control system
DE1949714A1 (de) * 1968-11-08 1971-02-25 Monsator Haushaltsgrossgeraete Einrichtung zum Heizen und Kuehlen von Kammern,Zellen und stationaeren oder transportablen Behaeltern,insbesondere Wechseltemperaturschraenken
US5698787A (en) * 1995-04-12 1997-12-16 Mcdonnell Douglas Corporation Portable laser/ultrasonic method for nondestructive inspection of complex structures
CN202478948U (zh) * 2012-02-27 2012-10-10 华中科技大学 多功能环境试验箱
KR101489486B1 (ko) * 2014-09-24 2015-02-23 주식회사 스탠더드시험연구소 열차단챔버를 이용한 펌프 열충격 시험장치 및 열충격 시험방법
CN107271320A (zh) * 2017-06-07 2017-10-20 华中科技大学 一种可实现快速升温的热重分析仪
CN209102650U (zh) * 2018-11-15 2019-07-12 贵州甲鼎科技有限公司 一种适用于空间环境试验的大辐射热流加热装置
CN213078489U (zh) * 2020-08-12 2021-04-30 深圳市博远检测技术有限公司 一种热冲击实验箱
CN112208805A (zh) * 2020-09-03 2021-01-12 中国空间技术研究院 一种空间载荷的外热流模拟方法及装置
CN112665864A (zh) * 2020-11-12 2021-04-16 南京航空航天大学 一种航空发动机随机热冲击载荷模拟装置及方法
CN113155885A (zh) * 2021-03-30 2021-07-23 中国飞机强度研究所 一种石英灯辐射加热试验热损失标定方法及标定装置
CN112903506A (zh) * 2021-05-10 2021-06-04 中国飞机强度研究所 一种热流控制试验方法
CN113280639A (zh) * 2021-05-11 2021-08-20 凤台县天宝建材有限责任公司 一种固定式高效节能隧道窑

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
接触热阻对超声速飞行器结构响应分析的影响;张仡 等;《科学技术与工程》;20201231;第20卷(第12期);第4985-4991页 *
飞机蒙皮与内饰组合结构热阻预测方法研究;张肖肖 等;《航空科学技术》;20210630;第32卷(第6期);第43-49页 *

Also Published As

Publication number Publication date
CN114674589A (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
CN114674589B (zh) 空天飞机热测试试验中瞬时热冲击载荷施加系统及方法
US6172346B1 (en) Method of processing ceramic materials and a microwave furnace therefore
CN111498146A (zh) 用于近地轨道引力波探测验证卫星的热控系统及方法
Babu Thermal contact resistance: experiments and simulation
CN113560381B (zh) 一种大截面钛合金型材高温蠕变成形工装及其使用方法
WO2000073008A9 (en) No wat welding system
Ota et al. Development of thermoelectric power generation system for industrial furnaces
CN112858381B (zh) 高速飞行器发动机用隔热材料的隔热性能试验装置及试验方法
He et al. Mechanical-thermal-electrical coupling modeling and temperature rise characteristic of a parallel groove clamp with improved representation of contact interactions
Smith et al. Transient thermal gradients in barium titanate positive temperature coefficient (PTC) thermistors
Yang et al. Transient temperature fields and thermal stress fields in glazing of different thicknesses exposed to heat radiation
CN110667882B (zh) 用于模拟飞行器发动机主动冷却通道的试验件的设计方法
Saha et al. Electro-thermo-mechanical contact analysis considering temperature dependent material properties and electrical contact resistance determination
Wu et al. Study on the thermal protection performance of superalloy honeycomb panels in high-speed thermal shock environments
Jiang et al. Experimental and numerical investigation of fast preheating of lithium ion pouch cell via low-power inductive heating in cold climate
Daryabeigi et al. Reducing thermal contact resistance for rigid insulation thermal measurements
Powell Thermal-energy transfer from arc to rails in an arc-driven rail gun
Allan et al. Modeling of hybrid (heat radiation and microwave) high temperature processing of limestone
Grewell et al. Semi‐empirical, squeeze flow and intermolecular diffusion model. I. Determination of model parameters
Peng et al. Microwave sintering process model
Meister et al. An alternative geometry for bolometer sensors for use at high operating temperatures
Watanabe et al. Temperature of a heated material in a microwave oven considering change of complex relative permittivity
CN117921122A (zh) 一种基于多物理场耦合仿真的板翅式换热器真空钎焊控温方法
CN113631014B (zh) 大功率伺服控制器热考核装置及系统
Walczyk et al. Design and analysis of composites manufacturing tooling for rapid heating and cooling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant