CN114672513A - 一种基因编辑系统及其应用 - Google Patents

一种基因编辑系统及其应用 Download PDF

Info

Publication number
CN114672513A
CN114672513A CN202210380909.9A CN202210380909A CN114672513A CN 114672513 A CN114672513 A CN 114672513A CN 202210380909 A CN202210380909 A CN 202210380909A CN 114672513 A CN114672513 A CN 114672513A
Authority
CN
China
Prior art keywords
intron
gene editing
gene
atgrf5
trna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210380909.9A
Other languages
English (en)
Other versions
CN114672513B (zh
Inventor
张华伟
潘文波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute Of Modern Agriculture Peking University
Original Assignee
Institute Of Modern Agriculture Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Modern Agriculture Peking University filed Critical Institute Of Modern Agriculture Peking University
Priority to CN202210380909.9A priority Critical patent/CN114672513B/zh
Publication of CN114672513A publication Critical patent/CN114672513A/zh
Application granted granted Critical
Publication of CN114672513B publication Critical patent/CN114672513B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了一种基因编辑系统及其应用。其中,基因编辑系统包括基因编辑元件和改造内含子,改造内含子为包含多顺反子tRNA‑gRNA的内含子;利用改造内含子增强基因编辑元件的表达;基因编辑元件包括Cas效应蛋白和CRISPR重复序列;CRISPR重复序列由多顺反子tRNA‑gRNA加工而成。解决了现有技术中在植物中缺少高效率的基因编辑系统的问题,适用于植物基因编辑领域。

Description

一种基因编辑系统及其应用
技术领域
本发明涉及植物基因编辑领域,具体而言,涉及一种基因编辑系统及其应用。
背景技术
基因编辑技术是可以在基因组目的区域高效而且精确的进行修饰,对于农作物的遗传改良和功能基因研究具有重要应用价值。近年来,以CRISPR/Cas9(clusteredregularly interspaced short palindromic repeats/CRISPR associated 9)为代表的基因组编辑系统已成功在多种动物、植物和细菌中得到应用。然而,在很多植物中,基因编辑效率仍然比较低,严重限制了其应用范围。
提高基因编辑元件表达量是一种重要的提高基因编辑效率的方法。CRISPR/Cas9由tracrRNA/crRNA异源RNA二聚体和Cas9蛋白组成,其中tracrRNA和crRNA可以工程化改造为单一的sgRNA,便于其应用(Jinek et al.,2012)。在双子叶植物中,通常使用烟草花叶病毒35S启动子表达Cas9基因,使用U6启动子表达sgRNA。通过改变Cas9基因和sgRNA的启动子提高其表达量,可以提高基因编辑系统的效率。例如使用UBQ10启动子或者RPS5A启动子表达Cas9蛋白,使用植物内源的U6启动子、夜香树黄叶卷曲病毒CmYLCV启动子表达sgRNA,都可以提高基因编辑效率(Li et al.,2021;Ren et al.,2021;Tsutsui and Higashiyama,2017;Wolabu et al.,2020)。这些系统大多单独改变Cas9基因或者sgRNA的表达量,无法同时提高其表达量。
内含子转录完成后形成初始mRNA后会被剪切掉去除。内含子除了通过可变剪切调节基因表达增加遗传多样性之外,也对转录本的稳定性和转录本的翻译水平发挥着重要的调节作用。内含子介导的表达增强(Intron-mediated enhancement)是一种重要的提高基因表达量的方式。在泛素UBQ和肌动蛋白ACTIN的内含子中,含有增强基因转录和翻译水平的元件,在目的基因上加入这些内含子,可以显著提高目的基因的表达水平(Laxa,2016)。例如,玉米Ubi1的内含子可以将35S启动子的表达效率在玉米和早熟禾中分别提高约71和26倍(Vain et al.,1996)。但是目前还没有利用内含子介导的表达增强原理提高基因编辑效率的研究。
转运RNA(tRNA)是蛋白质合成中重要的元件之一。其编码序列在转录后会被体内的核酸酶RNase P和RNase Z识别分别在5’端和3’端进行切割产生的成熟的tRNA。因此可以利用这种切割成熟机制产生特定长度的RNA序列,如sgRNA。
此外,有报道将sgRNA和转移RNA(tRNA)偶联形成多顺反子tRNA-gRNA(polycistronic tRNA-gRNA,PTG)加入内含子中,当内含子被剪切下来后,利用体内tRNA的加工成熟机制产生sgRNA发挥功能(Xie et al.,2015)。因此,我们推测利用含有PTG的内含子,可以同时增强Cas9和sgRNA的表达量,进而提高其编辑效率。
发明内容
本发明的主要目的在于提供一种基因编辑系统及其应用,以解决现有技术中,在植物中缺少高效率的基因编辑系统的问题。
为了实现上述目的,根据本发明的第一个方面,提供了一种基因编辑系统,该基因编辑系统包括基因编辑元件和改造内含子,改造内含子为包含多顺反子tRNA-gRNA的内含子;利用改造内含子,增强基因编辑元件的表达;基因编辑元件包括Cas效应蛋白和CRISPR重复序列;CRISPR重复序列由多顺反子tRNA-gRNA加工而成。
进一步地,基因编辑系统还包括AtGRF5基因或AtGRF5表达盒;优选地,AtGRF5基因或AtGRF5表达盒,和改造内含子同时表达;优选地,AtGRF5基因的核苷酸序列如SEQ ID NO:2所示;优选地,AtGRF5表达盒包括以5’至3’端顺序排列的第一启动子、AtGRF5基因和第一终止子;优选地,第一启动子包括UBQ10;优选地,第一终止子包括Hsp;优选地,AtGRF5表达盒包括SEQ ID NO:11所示的核苷酸序列,或编码SEQ ID NO:48所示氨基酸序列的核苷酸序列。
进一步地,Cas效应蛋白包括Cas9、Cas12或Cas13;优选地,CRISPR重复序列包括crRNA、tracrRNA或者sgRNA。
进一步地,改造内含子中含有多顺反子结构,多顺反子结构由第一tRNA、sgRNA、第二tRNA从5'至3'端顺次连接组成;优选地,多顺反子结构中还包括酶切位点,酶切位点位于第一tRNA和sgRNA之间,或位于第二tRNA和sgRNA之间;优选地,改造内含子的改造前母本内含子,包括泛素UBQ内含子或肌动蛋白ACTIN内含子;优选地,泛素UBQ内含子包括玉米ubi1内含子;优选地,改造内含子选自SEQ ID NO:1所示的核苷酸序列组成的DNA;优选地,在改造内含子的5'端,具有病毒启动子;优选地,病毒启动子包括花椰菜花叶病毒35S启动子。
为了实现上述目的,根据本发明的第二个方面,提供了一种改造内含子,该改造内含子具有SEQ ID NO:1所示的核苷酸序列。
为了实现上述目的,根据本发明的第三个方面,提供了一种重组载体,该重组载体上含有上述基因编辑系统,或改造内含子。
为了实现上述目的,根据本发明的第四个方面,提供了一种宿主细胞,该宿主细胞转化有上述重组载体。
为了实现上述目的,根据本发明的第五个方面,提供了基因编辑方法,该基因编辑方法利用上述基因编辑系统、或改造内含子、或重组载体、或宿主细胞,在植物中进行基因编辑。
进一步地,基因编辑元件包括植物基因组编辑基因,植物基因组编辑基因包括Cas9基因、Cas12基因或Cas13基因中的一种或多种;优选地,利用农杆菌转化法将基因编辑系统、或重组载体或宿主细胞转化入植物中;优选地,植物包括双子叶植物。
进一步地,双子叶植物包括如下任意一种或多种:烟草、生菜、番茄、大豆或棉花。
为了实现上述目的,根据本发明的第六个方面,提供了一种基因编辑系统、或改造内含子、或重组载体、或宿主细胞、或基因编辑方法在植物基因编辑、植物遗传转化或植物育种中的应用。
应用本发明的技术方案,利用上述基因编辑系统,能够在植物中增加基因编辑元件的转录、表达水平。若基因编辑元件为Cas9等植物基因组编辑基因,则该基因编辑系统能够从而提高植物基因编辑的成功率和效率。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明实施例1的改造内含子结构示意图;
图2示出了根据本发明实施例1的pZKD671、pZKD672、pZKD673载体的区别片段示意图;
图3示出了根据本发明实施例3的不同载体在烟草瞬时表达系统中Cas9基因转录水平示意图;
图4示出了根据本发明实施例3的不同载体在烟草瞬时表达系统中sgRNA转录水平示意图;
图5示出了根据本发明实施例4的不同载体在生菜原生质体中的Cas9基因转录水平示意图;
图6示出了根据本发明实施例4的不同载体在生菜原生质体中的sgRNA转录水平示意图;
图7示出了根据本发明实施例5的不同载体在生菜中的编辑效率示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
如背景技术所提到的,现有植物基因编辑系统大多改变Cas9或者sgRNA其中一个的表达量,无法同时提高其表达量,而且很多系统的标记效率仍然不够,也存在着同一系统在不同物种中编辑效率相差悬殊的问题。因而,在本申请中发明人对现有的植物基因编辑系统进行深入研究,提出了一种多顺反子tRNA-gRNA的结构,不仅可以提高Cas蛋白表达量,也可以同时提高sgRNA的转录水平。因而提出了本申请的一系列保护方案。
在本申请第一种典型的实施方式中,提供了一种基因编辑系统,该基因编辑系统包括基因编辑元件和改造内含子,改造内含子为包含多顺反子tRNA-gRNA的内含子;利用改造内含子,增强基因编辑元件的表达;基因编辑元件包括Cas效应蛋白和CRISPR重复序列;CRISPR重复序列由多顺反子tRNA-gRNA加工而成。
生长调节基因如AtGRF5是一类可以提高作物遗传转化效率的基因,过表达AtGRF5或其同源基因可以通过改变染色质状态、调控下游基因表达以提高多种作物的遗传转化效率,如甘蔗、大豆、向日葵和油菜。但本申请中,AtGRF5的功能不是增加表达量,而是进行富集筛选,在转化过程中有很多细胞都会受到农杆菌侵染并整合T-DNA,这些细胞会随机成为生长中心发育成苗。如果加入AtGRF5基因,那么表达量高的细胞就更容易成为成长中心产生组培苗,这些苗不仅AtGRF5的表达量高,其Cas蛋白的表达量也高,编辑效率就高。
本申请中的改造内含子,指在内含子内部包括多顺反子tRNA-gRNA的结构,多顺反子tRNA-gRNA可以插入改造前母本内含子形成改造内含子;也可以为替换改造前母本内含子中不影响活性的片段,形成改造内含子。改造内含子包含了内含子剪切过程中最重要的5’剪接位点、分支位点和3’剪接位点,因此改造内含子可以同普通内含子一样被体内内含子剪切复合物识别并从mRNA上剪切下来,不影响外显子上面的目的基因,也就是Cas蛋白的表达。剪切下来的内含子上所包含的多顺反子tRNA-gRNA结构,与体内tRNA前体结构类似,会被RNase P和RNase Z识别并在特定位点进行剪切,释放tRNA之间的sgRNA序列,形成功能性的sgRNA发挥基因编辑作用。
现有技术中,公开了能够利用在内含子内部设置多顺反子tRNA-gRNA的结构,以增强sgRNA表达,但并未公开改造后的内含子所具有的其他功能。在本申请中,利用改造内含子,能够同时增强Cas效应蛋白和CRISPR重复序列的表达,从而增强基因编辑效率。
在一种优选的实施例中,基因编辑系统还包括AtGRF5基因或AtGRF5表达盒;优选地,AtGRF5基因或AtGRF5表达盒,和改造内含子同时表达;优选地,AtGRF5基因的核苷酸序列如SEQ ID NO:2所示;优选地,AtGRF5表达盒包括以5’至3’端顺序排列的第一启动子、AtGRF5基因和第一终止子;优选地,第一启动子包括UBQ10;优选地,第一终止子包括Hsp;优选地,AtGRF5表达盒包括SEQ ID NO:11所示的核苷酸序列,或编码SEQ ID NO:48所示氨基酸序列的核苷酸序列。
在改造内含子的上游或下游设置AtGRF5基因或含有AtGRF5基因的AtGRF5表达盒,能够同时增加植物中sgRNA和Cas9蛋白的转录和表达,从而提高在植物中的基因编辑效率。
在植物中能够促进基因转录、表达的元件极多,但对于该元件在植物中是否能够增加基因编辑效率,是否会影响Cas蛋白或sgRNA的转录、表达盒活性,均难以预料。
在一种优选的实施例中,Cas效应蛋白包括但不限于Cas9、Cas12或Cas13;优选地,CRISPR重复序列包括crRNA、tracrRNA或者sgRNA。
在一种优选的实施例中,改造内含子中含有多顺反子结构,多顺反子结构由第一tRNA、sgRNA、第二tRNA从5'至3'端顺次连接组成;优选地,多顺反子结构中还包括酶切位点,酶切位点位于第一tRNA和sgRNA之间,或位于第二tRNA和sgRNA之间;优选地,改造内含子的改造前母本内含子,包括泛素UBQ内含子或肌动蛋白ACTIN内含子;优选地,泛素UBQ内含子包括玉米ubi1内含子;优选地,改造内含子选自SEQ ID NO:1所示的核苷酸序列组成的DNA;优选地,在改造内含子的5'端,具有病毒启动子;优选地,病毒启动子包括花椰菜花叶病毒35S启动子。
将生物的内源转运RNA(tRNA)与sgRNA融合,形成多顺反子tRNA-gRNA(即多顺反子结构,PTG),包括tRNA-gRNA-tRNA,能够在生物体内利用生物体自身的tRNA加工酶,利用tRNA加工系统能够精确切割tRNA两端的性质,切割PTG,从而获得大量序列正确的sgRNA。利用上述PTG或含有PTG的改造内含子,能够在植物中大量转录、加工并形成正确的sgRNA,提高基因编辑的成功率和效率。
在CRISPR基因编辑中,部分sgRNA包括固定序列和靶标序列,其中固定序列的核苷酸序列为固定序列,用于发挥与Cas蛋白结合等作用,不随待编辑的靶点的变化而变化。而靶标序列需要根据不同的待编辑位点进行修改和选择。因此为了便于实际应用,可以在tRNA和sgRNA之间设置酶切位点,便于利用同源重组、或酶切连接等常用手段,将sgRNA上的靶标序列插入PTG中,形成完整的、包含固定序列和靶标序列的sgRNA,从而形成真正能够发挥基因编辑效果的PTG。
部分内含子中含有增强基因转录和翻译水平的元件,能够增强基因的转录和翻译。现有技术中,有报道将sgRNA和tRNA偶联形成PTG加入内含子中,形成改造内含子,当内含子被剪切下来后,利用体内tRNA的加工成熟机制产生sgRNA发挥功能。
对于能够增强基因转录和翻译水平的内含子,都可以在内部进行插入或替换,将上述PTG序列置于内含子中,形成改造内含子,通过灵活调整PTG的位置,能够保证内含子中的增强元件正常发挥作用,从而在植物中大量获得用于基因编辑的sgRNA。
改造内含子,即通过对改造前母本内含子的内部进行碱基删除、替换、插入等操作,在改造前母本内含子的内部增加了PTG等结构,而获得的改造内含子。改造内含子并未影响改造前母本内含子内部的功能元件,因此仍能发挥泛素UBQ内含子或肌动蛋白ACTIN内含子等内含子的,如促进基因表达等原有功能。
在本申请第二种典型的实施方式中,提供了一种改造内含子,该改造内含子具有SEQ ID NO:1所示的核苷酸序列。
在本申请第三种典型的实施方式中,提供了一种重组载体,该重组载体上含有上述基因编辑系统或改造内含子。
在本申请第四种典型的实施方式中,提供了一种宿主细胞,该宿主细胞转化有上述重组载体。
该基因编辑系统,在宿主细胞内,能够增强基因编辑元件的表达。若基因编辑系统为CRISPR/Cas9系统,改造内含子中含有多顺反子结构,则该基因编辑系统能够转录、表达CRISPR/Cas9基因编辑方法所需的Cas9蛋白和sgRNA,从而实现对于宿主细胞的基因编辑。
在本申请第五种典型的实施方式中,提供了一种基因编辑方法,该基因编辑方法利用上述基因编辑系统、或改造内含子、或重组载体、或宿主细胞,在植物中进行基因编辑。
在一种优选的实施例中,基因编辑元件包括植物基因组编辑基因,植物基因组编辑基因包括Cas9基因、Cas12基因或Cas13基因中的一种或多种;优选地,利用农杆菌转化法将基因编辑系统、或重组载体或宿主细胞转化入植物中;优选地,植物包括双子叶植物。
若上述基因编辑系统中,若基因编辑元件为植物基因组编辑基因,即与植物基因组编辑相关的基因,如Cas9或Cas12a等已知能进行植物基因编辑的基因。且基因编辑系统中的改造内含子中含有多顺反子结构,多顺反子结构由第一tRNA、sgRNA、第二tRNA从5'至3'段顺次连接组成。此种基因编辑系统,或含有此基因编辑系统的重组载体、宿主细胞,能够用于植物的基因编辑。利用公知常识中相应的植物基因编辑的方法,大量表达植物基因组编辑基因和sgRNA,从而实现对植物的基因编辑。
且改造内含子位于基因编辑元件的上游或下游,利用能够增强基因转录和翻译水平的启动子和内含子,能够增加sgRNA和Cas9基因的转录、表达。
在一种优选的实施例中,双子叶植物包括如下任意一种或多种:烟草、生菜、番茄、大豆或棉花。
在本申请第六种典型的实施方式中,提供了上述基因编辑系统、或改造内含子、或重组载体、或宿主细胞、或基因编辑方法在植物基因编辑、植物遗传转化或植物育种中的应用。
下面将结合具体的实施例来进一步详细解释本申请的有益效果。
实施例1:载体构建
合成改造内含子序列(SEQ ID NO:1)。改造内含子为玉米UBI的内含子序列中加入tRNA-sgRNA结构(即多顺反子结构,PTG,本申请中采用tRNA-sgRNA-tRNA的结构)。改造内含子的结构示意图参见图1。
SEQ ID NO:1:atcagctccacccccgaaaaatttctccccaatctcgcgaggctctcgtcgtcgaatcgaatcctctcgcgtcctcaaggtacgctgcttctcctctcctcgcttcgtttcgattcgatttcggacggcaaacaaagcaccagtggtctagtggtagaatagtaccctgccacggtacagacccgggttcgattcccggctggtgcatgagacctgaattcaggtctcagttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcaacaaagcaccagtggtctagtggtagaatagtaccctgccacggtacagacccgggttcgattcccggctggtgcagtttgctgtttgatccgttgttgtgtccttaatcttgtgctagttcttaccctatctgtttggtgattatttcttgcagattctag。
AtGRF5基因(SEQ ID NO:2)。
SEQ ID NO:2:atgatgagtctaagtggaagtagcgggagaacaataggaaggcctccatttacaccaacacaatgggaagaactggaacatcaagctctaatctacaagtacatggtttctggtgttcctgtcccacctgaactcatcttctccattagaagatcattggacacttccttggtttctaggctccttcctcaccaatcccttggatgggggtgttaccagatgggatttgggagaaaaccagatccagagccaggaagatgcagaagaacagatggtaagaaatggagatgctcaagagaggcttacccagattctaagtactgtgaaaaacacatgcacagaggaagaaaccgtgctagaaaatctcttgatcagaatcagacaacaacaactcctttaacatcaccatctctctcattcaccaacaacaacaacccaagtcctaccttgtcatcttcttcttcatctaattcatcttctactacttattctgcttcatcttcatctatggatgcttacagtaacagtaataggtttgggcttggtggaagtagtagtaacactagaggttatttcaacagccattctcttgattatccttatccttctacttcacctaaacaacaacaacaaactcttcatcatgcttccgctttgtcacttcatcaaaatactaattctacttctcagttcaatgtcttagcttctgctactgaccacaaagacttcaggtactttcaagggattggggagagagttggaggagttggggagagaacgttctttccagaagcatcaagatcatttcaagattctccataccatcatcaccaacaaccgttagcaacagtgatgaatgatccgtaccaccactgtagtactgatcataataagattgatcatcatcacacatactcttcatcttcatcatctcaacatctccatcacgaccatgatcatagacagcaacagtgttttgttttgggtgctgacatgttcaacaaacctacaagaagtgtccttgcaaactcatcaagacaagatcaaaatcaagaagaagatgagaaagattcatcagagtcttcaaagaagtctctacatcacttctttggtgaggactgggcacagaacaagaacagttcagattcttggcttgacctttcttcccactcaagactcgacactggtagctaa。
以pKSE401载体作为骨架。pKSE401载体从中国农业大学陈其军教授处获得(Xinget al.,2014)。为方便比较,将这个载体命名为pZKD671。
用HindIII酶切pZKD671质粒,回收14.5kb片段。
回收产物用T4 DNA连接酶连接。转化大肠杆菌后挑单克隆,摇菌后提质粒。此载体为中间载体1。
以合成的改造内含子的DNA片段为模板,用引物PTG-F和PTG-R进行PCR,回收500bp的PCR产物。
PTG-F:cgaacgatactcgagtaaatcagctccacccccgaaaa(SEQ ID NO:3)。
PTG-R:tggtccttgtaatccatctagaatctgcaagaaataatcacca(SEQ ID NO:4)。
用XbaI酶切中间载体1,回收14.5kb片段,与上述500bp回收产物进行无缝克隆,得到pZKD672载体。
无缝克隆使用碧云天Seamless Cloning Kit,反应体系参见表1,在50℃反应30分钟。
表1
Figure BDA0003592947420000071
用UBQ10p-F/UBQ10-R和HspT-F/Hsp-R为引物,分别以拟南芥Col-0基因组DNA为模板PCR扩增获得UBQ10启动子片段和Hsp终止子片段。
以GRF5-F/GRF5-R为引物,以合成的AtGRF5 DNA片段为模板进行PCR获得GRF5片段。
UBQ10p-F:taaaacgacggccagtgccggtaccgatcaggatattcttgtttaaga(SEQ ID NO:5)。
UBQ10p-R:ctgttaatcagaaaaactcagatta(SEQ ID NO:6)。
HspT-F:atatgaagatgaagatgaaatattt(SEQ ID NO:7)。
HspT-R:tgttgacctgcaggcatgcaagcttcttatctttaatcatattcca(SEQ ID NO:8)。
GRF5-F:agtttttctgattaacagatgatgagtctaagtggaagt(SEQ ID NO:9)。
GRF5-R:tcatcttcatcttcatatttagctaccagtgtcgagtct(SEQ ID NO:10)。
然后以UBQ10p-F/HspT-R为引物,以上述UBQ10启动子片段、GRF5片段和Hsp终止子片段为模板进行PCR,得到2.7kb的AtGRF5表达盒(SEQ ID NO:11)。
SEQ ID NO:11:
gatcaggatattcttgtttaagatgttgaactctatggaggtttgtatgaactgatgatctaggaccggataagttcccttcttcatagcgaacttattcaaagaatgttttgtgtatcattcttgttacattgttattaatgaaaaaatattattggtcattggactgaacacgagtgttaaatatggaccaggccccaaataagatccattgatatatgaattaaataacaagaataaatcgagtcaccaaaccacttgccttttttaacgagacttgttcaccaacttgatacaaaagtcattatcctatgcaaatcaataatcatacaaaaatatccaataacactaaaaaattaaaagaaatggataatttcacaatatgttatacgataaagaagttacttttccaagaaattcactgattttataagcccacttgcattagataaatggcaaaaaaaaacaaaaaggaaaagaaataaagcacgaagaattctagaaaatacgaaatacgcttcaatgcagtgggacccacggttcaattattgccaattttcagctccaccgtatatttaaaaaataaaacgataatgctaaaaaaatataaatcgtaacgatcgttaaatctcaacggctggatcttatgacgaccgttagaaattgtggttgtcgacgagtcagtaataaacggcgtcaaagtggttgcagccggcacacacgagtcgtgtttatcaactcaaagcacaaatacttttcctcaacctaaaaataaggcaattagccaaaaacaactttgcgtgtaaacaacgctcaatacacgtgtcattttattattagctattgcttcaccgccttagctttctcgtgacctagtcgtcctcgtcttttcttcttcttcttctataaaacaatacccaaagagctcttcttcttcacaattcagatttcaatttctcaaaatcttaaaaactttctctcaattctctctaccgtgatcaaggtaaatttctgtgttccttattctctcaaaatcttcgattttgttttcgttcgatcccaatttcgtatatgttctttggtttagattctgttaatcttagatcgaagacgattttctgggtttgatcgttagatatcatcttaattctcgattagggtttcatagatatcatccgatttgttcaaataatttgagttttgtcgaataattactcttcgatttgtgatttctatctagatctggtgttagtttctagtttgtgcgatcgaatttgtcgattaatctgagtttttctgattaacagatgatgagtctaagtggaagtagcgggagaacaataggaaggcctccatttacaccaacacaatgggaagaactggaacatcaagctctaatctacaagtacatggtttctggtgttcctgtcccacctgaactcatcttctccattagaagatcattggacacttccttggtttctaggctccttcctcaccaatcccttggatgggggtgttaccagatgggatttgggagaaaaccagatccagagccaggaagatgcagaagaacagatggtaagaaatggagatgctcaagagaggcttacccagattctaagtactgtgaaaaacacatgcacagaggaagaaaccgtgctagaaaatctcttgatcagaatcagacaacaacaactcctttaacatcaccatctctctcattcaccaacaacaacaacccaagtcctaccttgtcatcttcttcttcatctaattcatcttctactacttattctgcttcatcttcatctatggatgcttacagtaacagtaataggtttgggcttggtggaagtagtagtaacactagaggttatttcaacagccattctcttgattatccttatccttctacttcacctaaacaacaacaacaaactcttcatcatgcttccgctttgtcacttcatcaaaatactaattctacttctcagttcaatgtcttagcttctgctactgaccacaaagacttcaggtactttcaagggattggggagagagttggaggagttggggagagaacgttctttccagaagcatcaagatcatttcaagattctccataccatcatcaccaacaaccgttagcaacagtgatgaatgatccgtaccaccactgtagtactgatcataataagattgatcatcatcacacatactcttcatcttcatcatctcaacatctccatcacgaccatgatcatagacagcaacagtgttttgttttgggtgctgacatgttcaacaaacctacaagaagtgtccttgcaaactcatcaagacaagatcaaaatcaagaagaagatgagaaagattcatcagagtcttcaaagaagtctctacatcacttctttggtgaggactgggcacagaacaagaacagttcagattcttggcttgacctttcttcccactcaagactcgacactggtagctaaatatgaagatgaagatgaaatatttggtgtgtcaaataaaaagcttgtgtgcttaagtttgtgtttttttcttggcttgttgtgttatgaatttgtggctttttctaatattaaatgaatgtaagatctcattataatgaataaacaaatgtttctataatccattgtgaatgttttgttggatctcttctgcagcatataactactgtatgtgctatggtatggactatggaatatgattaaagataag。
AtGRF5表达盒基因编码的氨基酸序列为SEQ ID NO:48。
SEQ ID NO:48:
MMSLSGSSGRTIGRPPFTPTQWEELEHQALIYKYMVSGVPVPPELIFSIRRSLDTSLVSRLLPHQSLGWGCYQMGFGRKPDPEPGRCRRTDGKKWRCSREAYPDSKYCEKHMHRGRNRARKSLDQNQTTTTPLTSPSLSFTNNNNPSPTLSSSSSSNSSSTTYSASSSSMDAYSNSNRFGLGGSSSNTRGYFNSHSLDYPYPSTSPKQQQQTLHHASALSLHQNTNSTSQFNVLASATDHKDFRYFQGIGERVGGVGERTFFPEASRSFQDSPYHHHQQPLATVMNDPYHHCSTDHNKIDHHHTYSSSSSSQHLHHDHDHRQQQCFVLGADMFNKPTRSVLANSSRQDQNQEEDEKDSSESSKKSLHHFFGEDWAQNKNSSDSWLDLSSHSRLDTGS。
用HindIII酶切pZKD672载体,回收15kb片段,与上述2.7kb的AtGRF5表达盒片段进行无缝克隆,得到pZKD673载体。pZKD671、pZKD672、pZKD673载体的区别片段参见图2。
实施例2:靶点构建
根据CRISPOR网站(http://crispor.tefor.net/),在生菜(Lactuca sativa)中挑选三个特异性靶点LsPDS、LsGGP2和LsBIN2;在本生烟(Nicotiana benthamiana)中挑选NbPDS2靶点。
LsPDS靶点:ggccaccgagtgactcgatg(SEQ ID NO:12)。
LsGGP2靶点:acgacaagttgcagacatca(SEQ ID NO:13)。
LsBIN2靶点:atcacagtgatgctcgtcaa(SEQ ID NO:14)。
NbPDS2靶点:ttggtagtagcgactccatg(SEQ ID NO:15)。
对于每个靶点,以对应的靶点F引物和R引物等量混合后退火,所用引物参见表2。
表2
Figure BDA0003592947420000091
Figure BDA0003592947420000101
用限制性酶切酶BsaI酶切pZKD671、pZKD672和pZKD673载体,回收载体片段。
靶点对应的U6-F/U6-R退火产物与BsaI酶切后的pZKD671载体片段进行T4 DNA连接酶连接。
靶点对应的PTG-F/PTG-R退火产物与BsaI酶切后的pZKD672和pZKD673载体片段进行T4 DNA连接酶连接。
连接产物转化大肠杆菌,挑选序列正确的单克隆进行后续实验。
实施例3:烟草中Cas9和sgRNA的表达量分析
将实施例2中正确的NbPDS2靶点编辑质粒电击转化农杆菌菌株EHA105,挑选正确的农杆菌单克隆在含有50mg/L卡那霉素和10mg/L利福平的LB液体培养基中28℃培养过夜。
第二天,按照1:200的比例将过夜培养的农杆菌菌液转接至含有50mg/L卡那霉素、10mg/L利福平、0.01mM乙酰丁香酮、10mM MES-KOH pH5.8的液体LB培养基中28℃培养过夜。
第三天离心收集菌体,重悬于含有0.2mM乙酰丁香酮的10mM MgCl2溶液中并调节菌液浓度,使农杆菌菌液OD600为1.5,室温静置2-5h。选择生长状态良好的烟草,在叶片用注射器针尖扎孔,用1mL注射器吸取菌液,将菌液由小孔注射到烟草第四和第五片真叶中。注射4天后收集叶片冻存于-80℃。
植物RNA的提取使用康为世纪的超纯RNA提取试剂盒(CW0581M)。操作步骤为:取约0.1g者烟草样品于2mL离心管中,加入钢珠。将离心管在液氮中速冻后使用样品破碎仪进行高速破碎。加入1mL Buffer RLT,涡旋振荡器振荡15s,使样本充分裂解。室温放置5min,使蛋白核酸复合物完全分离。然后加入200μL氯仿,盖紧离心管后,剧烈震荡15s,室温放置2min。4℃,12,000g离心10min,将含有RNA的上层水相移到一个新的RNase-Free离心管中并加入等体积的70%乙醇混匀。将上述溶液全部加入吸附柱中,12,000g离心30s,弃掉收集管中的废液。将吸附柱重新放回收集管中,加入700μL Buffer RW1,12,000g离心30s洗涤,再加入500μL Buffer RW2洗涤两次。12,000g离心2min,倒掉离心管中废液。将吸附柱置于室温2min,彻底晾干。将吸附柱置于新的无RNase离心管中,向吸附柱的中间部位加入40μLRNase-Free Water,室温放置2min,12,000g离心2min,收集RNA。使用NanoDrop 2000测量RNA浓度和质量。
使用天根FastQuant cDNA第一链合成试剂盒(去基因组)(KR106-02)将RNA反转录为cDNA,操作如下:将5×gDNA Buffer、FQ-RT Primer Mix、10×Fast RT Buffer和RNase-Free Water在室温解冻,解冻后迅速置于冰上。使用前将每种溶液涡旋振荡混匀,简短离心以收集残留在管壁的液体。配置gDNA去除反应体系:5×gDNA Buffer 2μL,RNA 2μg,用RNase-Free Water补足10μL,42℃孵育3min去除基因组DNA。然后加入10μL如下反应体系:10×Fast RT Buffer 2μL,RT Enzyme Mix 1μL,Q-RT Primer Mix 2μL,RNase-Free Water4.5μL,0.5μL sgRNA-RT引物。混匀后42℃孵育15min。之后95℃孵育3min将酶变性失活放于冰上,即得到cDNA。
sgRNA-RT引物的序列为actcggtgccactttttcaa(SEQ ID NO:32),浓度为10mM。
使用天根Talent qPCR PreMix(SYBR Green)试剂盒(FP209-03)。配置如下反应体系:2×Talent qPCR PreMix 6μL,F引物和R引物各0.5μL,稀释后的cDNA 2μL,RNase-FreeWater 3μL。混匀后离心,在Biorad CFX96仪器上使用两步法反应程序进行分析:95℃预变性3min,95℃变性5s,60℃退火/延伸15s。循环45个循环后进行熔解曲线分析。内参基因为NbACT7。试验结果参见图3和图4,qPCR引物参见表3。
表3
Figure BDA0003592947420000111
实施例4:生菜中Cas9和sgRNA的表达量分析
生菜原生质体的制备和转化简单修改自(Woo et al.,2015)。简略描述如下:用结球生菜Various types(101)(购买自京研门市部),选择菜心的叶片部分,用双面剃须刀片(吉列)将叶片切为细丝。将叶片放入盛有酶解液(1%Cellulase R10,0.25%MacerozymeR10,0.4M Mannitol,20mM KCl,20mM MES pH 5.7,20mM的KCl)的锥形瓶中40rpm在黑暗条件下酶解至大部分原生质体从叶片中脱落下来(大约3-4h)。将酶解液用Miracloth(CALBIOCHEM Cat 475855)过滤,转移到50mL圆底离心管中,100g离心1min收集原生质体。原生质体用10mL的W5(154mM NaCl,125mM CaCl2,5mM KCl,2mM MES pH 5.7)溶液重悬后100g离心1min。重复洗涤一次,然后加入10mL W5溶液将原生质体重悬,置于冰上,静置30min,100g离心1min。吸走上清,加入适量的MMG溶液(0.4M Mannitol,15mM MgCl2,4mMMES pH 5.7)将原生质体重悬,使用细胞计数板计算原生质体细胞浓度并用MMG溶液调整细胞浓度至2×104到2×105个/mL左右。
吸取200μL原生质体到2mL圆底离心管中,加入10μg的生菜编辑质粒,缓慢颠倒混匀。加入220μL PEG/CaCl2溶液(40%PEG4000,0.2M Mannitol,100mM CaCl2),缓慢颠倒混匀后,室温静置15min(从加PEG开始计时)。缓慢加入大约1.5mL W5溶液,轻轻晃匀后,100g离心1min收集原生质体。弃上清,缓慢加入200μL W5溶液,轻轻晃匀后,24℃避光培养两天后,收集原生质体。
原生质体的RNA提取、cDNA合成和荧光定量PCR实验步骤同实施例3,仅更换荧光定量PCR反应的引物,引物参见表4。其中LsPDS的R引物和qRT-NbPDS-gRNA-R相同。Cas9的鉴定引物和实施例3中的qRT-Cas9-F2/qRT-Cas9-R2相同。试验结果参见图5和图6。
表4
Figure BDA0003592947420000121
实施例5:不同载体在生菜中的基因编辑效率分析
用农杆菌介导的叶盘法对生菜进行转化。
将饱满的生菜种子先用70%的乙醇浸泡1min,用无菌水洗3~5遍;再加入20%的花王消毒液(购于超市)15min,用无菌水洗涤3~5次;把种子置于无菌吸水纸上去除水分。将处理过的种子接种于MS固体培养基表面,25℃,16h光周期培养至长出两片子叶。取无菌生菜苗的子叶,去掉子叶尖端,将子叶置于活化好的根癌农杆菌1/2MS悬浮液,侵染15min,取出侵染过的叶片,用无菌吸水纸吸干多余的菌液,将叶片放在共培养培养基MS1(MS+0.5mg/L 6-BA+0.1mg/L NAA)上,25℃,暗培养48h。然后将叶片转入分化培养基MS2(MS+0.5mg/L 6-BA+0.1mg/L NAA+40mg/L Kan+250mg/L Cab),25℃,16h光周期培养,继代培养至获得卡那抗性分化苗。将芽切下移入生根培养基MS4(MS+20mg/L Kan+250mg/L Cab),这样即可获得具有卡那霉素抗性的植株。待根系发达后,移入珍珠岩中(参照(Zhang et al.,2018)。
取组培出来的植株的叶片,提取基因组DNA。选择Cas9基因鉴定阳性的转基因植株,使用靶点对应的鉴定引物PCR扩增目的基因序列进行测序分析。LsBIN2的鉴定引物为LsBIN2-seq-F/LsBIN2-seq-R,LsGGP2的鉴定引物为LsGGP2-seq-F/LsGGP2-seq-R,LsPDS的鉴定引物为LsPDS-SEQ2F/LsPDS-SEQ2R,参见表5。
表5
Figure BDA0003592947420000131
测序的峰图通过TIDE网站(http://shinyapps.datacurators.nl/tide/)分析其突变形式。
分析结果如表6和图7。
表6
Figure BDA0003592947420000132
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:通过内含子介导的表达增强提高Cas9蛋白和sgRNA的表达量,提高了植物中的基因编辑效率。并利用生长调节基因AtGRF5辅助遗传转化,进一步提高了基因编辑效率。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
序列表
<110> 北京大学现代农业研究院
<120> 一种基因编辑系统及其应用
<130> PN172029XDNY
<160> 48
<170> SIPOSequenceListing 1.0
<210> 1
<211> 468
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(468)
<223> 改造内含子
<400> 1
atcagctcca cccccgaaaa atttctcccc aatctcgcga ggctctcgtc gtcgaatcga 60
atcctctcgc gtcctcaagg tacgctgctt ctcctctcct cgcttcgttt cgattcgatt 120
tcggacggca aacaaagcac cagtggtcta gtggtagaat agtaccctgc cacggtacag 180
acccgggttc gattcccggc tggtgcatga gacctgaatt caggtctcag ttttagagct 240
agaaatagca agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc 300
ggtgcaacaa agcaccagtg gtctagtggt agaatagtac cctgccacgg tacagacccg 360
ggttcgattc ccggctggtg cagtttgctg tttgatccgt tgttgtgtcc ttaatcttgt 420
gctagttctt accctatctg tttggtgatt atttcttgca gattctag 468
<210> 2
<211> 1194
<212> DNA
<213> Arabidopsis thaliana
<400> 2
atgatgagtc taagtggaag tagcgggaga acaataggaa ggcctccatt tacaccaaca 60
caatgggaag aactggaaca tcaagctcta atctacaagt acatggtttc tggtgttcct 120
gtcccacctg aactcatctt ctccattaga agatcattgg acacttcctt ggtttctagg 180
ctccttcctc accaatccct tggatggggg tgttaccaga tgggatttgg gagaaaacca 240
gatccagagc caggaagatg cagaagaaca gatggtaaga aatggagatg ctcaagagag 300
gcttacccag attctaagta ctgtgaaaaa cacatgcaca gaggaagaaa ccgtgctaga 360
aaatctcttg atcagaatca gacaacaaca actcctttaa catcaccatc tctctcattc 420
accaacaaca acaacccaag tcctaccttg tcatcttctt cttcatctaa ttcatcttct 480
actacttatt ctgcttcatc ttcatctatg gatgcttaca gtaacagtaa taggtttggg 540
cttggtggaa gtagtagtaa cactagaggt tatttcaaca gccattctct tgattatcct 600
tatccttcta cttcacctaa acaacaacaa caaactcttc atcatgcttc cgctttgtca 660
cttcatcaaa atactaattc tacttctcag ttcaatgtct tagcttctgc tactgaccac 720
aaagacttca ggtactttca agggattggg gagagagttg gaggagttgg ggagagaacg 780
ttctttccag aagcatcaag atcatttcaa gattctccat accatcatca ccaacaaccg 840
ttagcaacag tgatgaatga tccgtaccac cactgtagta ctgatcataa taagattgat 900
catcatcaca catactcttc atcttcatca tctcaacatc tccatcacga ccatgatcat 960
agacagcaac agtgttttgt tttgggtgct gacatgttca acaaacctac aagaagtgtc 1020
cttgcaaact catcaagaca agatcaaaat caagaagaag atgagaaaga ttcatcagag 1080
tcttcaaaga agtctctaca tcacttcttt ggtgaggact gggcacagaa caagaacagt 1140
tcagattctt ggcttgacct ttcttcccac tcaagactcg acactggtag ctaa 1194
<210> 3
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(38)
<223> PTG F端扩增引物
<400> 3
cgaacgatac tcgagtaaat cagctccacc cccgaaaa 38
<210> 4
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(43)
<223> PTG R端扩增引物
<400> 4
tggtccttgt aatccatcta gaatctgcaa gaaataatca cca 43
<210> 5
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(48)
<223> UBQ10p F端扩增引物
<400> 5
taaaacgacg gccagtgccg gtaccgatca ggatattctt gtttaaga 48
<210> 6
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(25)
<223> UBQ10p R端扩增引物
<400> 6
ctgttaatca gaaaaactca gatta 25
<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(25)
<223> HspT F端扩增引物
<400> 7
atatgaagat gaagatgaaa tattt 25
<210> 8
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(46)
<223> HspT R端扩增引物
<400> 8
tgttgacctg caggcatgca agcttcttat ctttaatcat attcca 46
<210> 9
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(39)
<223> GRF5 F端扩增引物
<400> 9
agtttttctg attaacagat gatgagtcta agtggaagt 39
<210> 10
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(39)
<223> GRF5 R端扩增引物
<400> 10
tcatcttcat cttcatattt agctaccagt gtcgagtct 39
<210> 11
<211> 2751
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<222> (1)..(2751)
<223> AtGRF5表达盒
<400> 11
gatcaggata ttcttgttta agatgttgaa ctctatggag gtttgtatga actgatgatc 60
taggaccgga taagttccct tcttcatagc gaacttattc aaagaatgtt ttgtgtatca 120
ttcttgttac attgttatta atgaaaaaat attattggtc attggactga acacgagtgt 180
taaatatgga ccaggcccca aataagatcc attgatatat gaattaaata acaagaataa 240
atcgagtcac caaaccactt gcctttttta acgagacttg ttcaccaact tgatacaaaa 300
gtcattatcc tatgcaaatc aataatcata caaaaatatc caataacact aaaaaattaa 360
aagaaatgga taatttcaca atatgttata cgataaagaa gttacttttc caagaaattc 420
actgatttta taagcccact tgcattagat aaatggcaaa aaaaaacaaa aaggaaaaga 480
aataaagcac gaagaattct agaaaatacg aaatacgctt caatgcagtg ggacccacgg 540
ttcaattatt gccaattttc agctccaccg tatatttaaa aaataaaacg ataatgctaa 600
aaaaatataa atcgtaacga tcgttaaatc tcaacggctg gatcttatga cgaccgttag 660
aaattgtggt tgtcgacgag tcagtaataa acggcgtcaa agtggttgca gccggcacac 720
acgagtcgtg tttatcaact caaagcacaa atacttttcc tcaacctaaa aataaggcaa 780
ttagccaaaa acaactttgc gtgtaaacaa cgctcaatac acgtgtcatt ttattattag 840
ctattgcttc accgccttag ctttctcgtg acctagtcgt cctcgtcttt tcttcttctt 900
cttctataaa acaataccca aagagctctt cttcttcaca attcagattt caatttctca 960
aaatcttaaa aactttctct caattctctc taccgtgatc aaggtaaatt tctgtgttcc 1020
ttattctctc aaaatcttcg attttgtttt cgttcgatcc caatttcgta tatgttcttt 1080
ggtttagatt ctgttaatct tagatcgaag acgattttct gggtttgatc gttagatatc 1140
atcttaattc tcgattaggg tttcatagat atcatccgat ttgttcaaat aatttgagtt 1200
ttgtcgaata attactcttc gatttgtgat ttctatctag atctggtgtt agtttctagt 1260
ttgtgcgatc gaatttgtcg attaatctga gtttttctga ttaacagatg atgagtctaa 1320
gtggaagtag cgggagaaca ataggaaggc ctccatttac accaacacaa tgggaagaac 1380
tggaacatca agctctaatc tacaagtaca tggtttctgg tgttcctgtc ccacctgaac 1440
tcatcttctc cattagaaga tcattggaca cttccttggt ttctaggctc cttcctcacc 1500
aatcccttgg atgggggtgt taccagatgg gatttgggag aaaaccagat ccagagccag 1560
gaagatgcag aagaacagat ggtaagaaat ggagatgctc aagagaggct tacccagatt 1620
ctaagtactg tgaaaaacac atgcacagag gaagaaaccg tgctagaaaa tctcttgatc 1680
agaatcagac aacaacaact cctttaacat caccatctct ctcattcacc aacaacaaca 1740
acccaagtcc taccttgtca tcttcttctt catctaattc atcttctact acttattctg 1800
cttcatcttc atctatggat gcttacagta acagtaatag gtttgggctt ggtggaagta 1860
gtagtaacac tagaggttat ttcaacagcc attctcttga ttatccttat ccttctactt 1920
cacctaaaca acaacaacaa actcttcatc atgcttccgc tttgtcactt catcaaaata 1980
ctaattctac ttctcagttc aatgtcttag cttctgctac tgaccacaaa gacttcaggt 2040
actttcaagg gattggggag agagttggag gagttgggga gagaacgttc tttccagaag 2100
catcaagatc atttcaagat tctccatacc atcatcacca acaaccgtta gcaacagtga 2160
tgaatgatcc gtaccaccac tgtagtactg atcataataa gattgatcat catcacacat 2220
actcttcatc ttcatcatct caacatctcc atcacgacca tgatcataga cagcaacagt 2280
gttttgtttt gggtgctgac atgttcaaca aacctacaag aagtgtcctt gcaaactcat 2340
caagacaaga tcaaaatcaa gaagaagatg agaaagattc atcagagtct tcaaagaagt 2400
ctctacatca cttctttggt gaggactggg cacagaacaa gaacagttca gattcttggc 2460
ttgacctttc ttcccactca agactcgaca ctggtagcta aatatgaaga tgaagatgaa 2520
atatttggtg tgtcaaataa aaagcttgtg tgcttaagtt tgtgtttttt tcttggcttg 2580
ttgtgttatg aatttgtggc tttttctaat attaaatgaa tgtaagatct cattataatg 2640
aataaacaaa tgtttctata atccattgtg aatgttttgt tggatctctt ctgcagcata 2700
taactactgt atgtgctatg gtatggacta tggaatatga ttaaagataa g 2751
<210> 12
<211> 20
<212> DNA
<213> Lactuca sativa
<400> 12
ggccaccgag tgactcgatg 20
<210> 13
<211> 20
<212> DNA
<213> Lactuca sativa
<400> 13
acgacaagtt gcagacatca 20
<210> 14
<211> 20
<212> DNA
<213> Lactuca sativa
<400> 14
atcacagtga tgctcgtcaa 20
<210> 15
<211> 20
<212> DNA
<213> Nicotiana benthamiana
<400> 15
ttggtagtag cgactccatg 20
<210> 16
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<222> (1)..(23)
<223> LsPDS-U6 F端扩增引物
<400> 16
attggccacc gagtgactcg atg 23
<210> 17
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(23)
<223> LsPDS-U6 R端扩增引物
<400> 17
aaaccatcga gtcactcggt ggc 23
<210> 18
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(23)
<223> LsGGP2-U6 F端扩增引物
<400> 18
attgcgacaa gttgcagaca tca 23
<210> 19
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(23)
<223> LsGGP2-U6 R端扩增引物
<400> 19
aaaccgacaa gttgcagaca tca 23
<210> 20
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(23)
<223> LsBIN2-U6 F端扩增引物
<400> 20
attgtcacag tgatgctcgt caa 23
<210> 21
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(23)
<223> LsBIN2-U6 R端扩增引物
<400> 21
aaacttgacg agcatcactg tga 23
<210> 22
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(24)
<223> LsPDS-PTG F端扩增引物
<400> 22
tgcaggccac cgagtgactc gatg 24
<210> 23
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(24)
<223> LsPDS-PTG R端扩增引物
<400> 23
aaaccatcga gtcactcggt ggcc 24
<210> 24
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(24)
<223> LsGGP2-PTG F端扩增引物
<400> 24
tgcaacgaca agttgcagac atca 24
<210> 25
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(24)
<223> LsGGP2-PTG F端扩增引物
<400> 25
aaactgatgt ctgcaacttg tcgt 24
<210> 26
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<222> (1)..(24)
<223> LsBIN2-PTG F端扩增引物
<400> 26
tgcaatcaca gtgatgctcg tcaa 24
<210> 27
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(24)
<223> LsBIN2-PTG R端扩增引物
<400> 27
aaacttgacg agcatcactg tgat 24
<210> 28
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(23)
<223> NbPDS2-U6 F端扩增引物
<400> 28
attgtggtag tagcgactcc atg 23
<210> 29
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(23)
<223> NbPDS2-U6 R端扩增引物
<400> 29
aaaccatgga gtcgctacta cca 23
<210> 30
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(24)
<223> NbPDS2-PTG F端扩增引物
<400> 30
tgcattggta gtagcgactc catg 24
<210> 31
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(24)
<223> NbPDS2-PTG R端扩增引物
<400> 31
aaaccatgga gtcgctacta ccaa 24
<210> 32
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(20)
<223> sgRNA-RT引物
<400> 32
actcggtgcc actttttcaa 20
<210> 33
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(20)
<223> qRT-NbACT7 qPCR R端引物
<400> 33
cgtcacccac ataggcatct 20
<210> 34
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(21)
<223> qRT-NbACT7 qPCR F端引物
<400> 34
ttcctagcat tgtgggtcgt c 21
<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(20)
<223> qRT-Cas9 QPCR F端引物
<400> 35
gcaggagatt ggcaaggcta 20
<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(20)
<223> qRT-Cas9 qPCR R端引物
<400> 36
gccattggcc agagtgatct 20
<210> 37
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(22)
<223> qRT-NbPDS-gRNA qPCR F端引物
<400> 37
tggtagtagc gactccatgg tt 22
<210> 38
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(20)
<223> qRT-NbPDS-gRNA qPCR R端引物
<400> 38
cgactcggtg ccactttttc 20
<210> 39
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(21)
<223> qRT-LsACT qPCR F端引物
<400> 39
ctggtgtgat ggtaggtatg g 21
<210> 40
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(22)
<223> qRT-LsACT qPCR R端引物
<400> 40
ctcgttgtag aaagtgtgat gc 22
<210> 41
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(19)
<223> qRT-LsPDS qPCR F端引物
<400> 41
gccaccgagt gactcgatg 19
<210> 42
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(20)
<223> LsBIN2的F端鉴定引物
<400> 42
tgtggtaggg gctggatctt 20
<210> 43
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(20)
<223> LsBIN2的R端鉴定引物
<400> 43
gaggcttcaa gtccctgtgg 20
<210> 44
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(20)
<223> LsGGP2的F端鉴定引物
<400> 44
ctcacccaac cgctcatctt 20
<210> 45
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(20)
<223> LsGGP2的R端鉴定引物
<400> 45
cccctccttc tggtagttgg 20
<210> 46
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(22)
<223> LsPDS的F端鉴定引物
<400> 46
ggtggacagg cttatgttga gg 22
<210> 47
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(22)
<223> LsPDS的R端鉴定引物
<400> 47
acgtatacca ggggtagcga aa 22
<210> 48
<211> 397
<212> PRT
<213> Arabidopsis thaliana
<400> 48
Met Met Ser Leu Ser Gly Ser Ser Gly Arg Thr Ile Gly Arg Pro Pro
1 5 10 15
Phe Thr Pro Thr Gln Trp Glu Glu Leu Glu His Gln Ala Leu Ile Tyr
20 25 30
Lys Tyr Met Val Ser Gly Val Pro Val Pro Pro Glu Leu Ile Phe Ser
35 40 45
Ile Arg Arg Ser Leu Asp Thr Ser Leu Val Ser Arg Leu Leu Pro His
50 55 60
Gln Ser Leu Gly Trp Gly Cys Tyr Gln Met Gly Phe Gly Arg Lys Pro
65 70 75 80
Asp Pro Glu Pro Gly Arg Cys Arg Arg Thr Asp Gly Lys Lys Trp Arg
85 90 95
Cys Ser Arg Glu Ala Tyr Pro Asp Ser Lys Tyr Cys Glu Lys His Met
100 105 110
His Arg Gly Arg Asn Arg Ala Arg Lys Ser Leu Asp Gln Asn Gln Thr
115 120 125
Thr Thr Thr Pro Leu Thr Ser Pro Ser Leu Ser Phe Thr Asn Asn Asn
130 135 140
Asn Pro Ser Pro Thr Leu Ser Ser Ser Ser Ser Ser Asn Ser Ser Ser
145 150 155 160
Thr Thr Tyr Ser Ala Ser Ser Ser Ser Met Asp Ala Tyr Ser Asn Ser
165 170 175
Asn Arg Phe Gly Leu Gly Gly Ser Ser Ser Asn Thr Arg Gly Tyr Phe
180 185 190
Asn Ser His Ser Leu Asp Tyr Pro Tyr Pro Ser Thr Ser Pro Lys Gln
195 200 205
Gln Gln Gln Thr Leu His His Ala Ser Ala Leu Ser Leu His Gln Asn
210 215 220
Thr Asn Ser Thr Ser Gln Phe Asn Val Leu Ala Ser Ala Thr Asp His
225 230 235 240
Lys Asp Phe Arg Tyr Phe Gln Gly Ile Gly Glu Arg Val Gly Gly Val
245 250 255
Gly Glu Arg Thr Phe Phe Pro Glu Ala Ser Arg Ser Phe Gln Asp Ser
260 265 270
Pro Tyr His His His Gln Gln Pro Leu Ala Thr Val Met Asn Asp Pro
275 280 285
Tyr His His Cys Ser Thr Asp His Asn Lys Ile Asp His His His Thr
290 295 300
Tyr Ser Ser Ser Ser Ser Ser Gln His Leu His His Asp His Asp His
305 310 315 320
Arg Gln Gln Gln Cys Phe Val Leu Gly Ala Asp Met Phe Asn Lys Pro
325 330 335
Thr Arg Ser Val Leu Ala Asn Ser Ser Arg Gln Asp Gln Asn Gln Glu
340 345 350
Glu Asp Glu Lys Asp Ser Ser Glu Ser Ser Lys Lys Ser Leu His His
355 360 365
Phe Phe Gly Glu Asp Trp Ala Gln Asn Lys Asn Ser Ser Asp Ser Trp
370 375 380
Leu Asp Leu Ser Ser His Ser Arg Leu Asp Thr Gly Ser
385 390 395

Claims (10)

1.一种基因编辑系统,其特征在于,所述基因编辑系统包括
基因编辑元件和改造内含子,
所述改造内含子为包含多顺反子tRNA-gRNA的内含子;
利用所述改造内含子,增强所述基因编辑元件的表达;
所述基因编辑元件包括Cas效应蛋白和CRISPR重复序列;
所述CRISPR重复序列由所述多顺反子tRNA-gRNA加工而成。
2.根据权利要求1所述的基因编辑系统,其特征在于,所述基因编辑系统还包括AtGRF5基因或AtGRF5表达盒;
优选地,所述AtGRF5基因或AtGRF5表达盒,和所述改造内含子同时表达;
优选地,所述AtGRF5基因的核苷酸序列如SEQ ID NO:2所示;
优选地,所述AtGRF5表达盒包括以5’至3’端顺序排列的第一启动子、所述AtGRF5基因和第一终止子;
优选地,所述第一启动子包括UBQ10;
优选地,所述第一终止子包括Hsp;
优选地,所述AtGRF5表达盒包括SEQ ID NO:11所示的核苷酸序列,或编码SEQ ID NO:48所示氨基酸序列的核苷酸序列。
3.根据权利要求1或2所述的基因编辑系统,其特征在于,所述Cas效应蛋白包括Cas9、Cas12或Cas13;
优选地,所述CRISPR重复序列包括crRNA、tracrRNA或者sgRNA。
4.根据权利要求1所述的基因编辑系统,其特征在于,所述改造内含子中含有所述多顺反子结构,所述多顺反子结构由第一tRNA、sgRNA、第二tRNA从5'至3'端顺次连接组成;
优选地,所述多顺反子结构中还包括酶切位点,所述酶切位点位于所述第一tRNA和所述sgRNA之间,或位于所述第二tRNA和所述sgRNA之间;
优选地,所述改造内含子的改造前母本内含子,包括泛素UBQ内含子或肌动蛋白ACTIN内含子;
优选地,所述泛素UBQ内含子包括玉米ubi1内含子;
优选地,所述改造内含子选自SEQ ID NO:1所示的核苷酸序列组成的DNA;
优选地,在所述改造内含子的5'端,具有病毒启动子;
优选地,所述病毒启动子包括花椰菜花叶病毒35S启动子。
5.一种改造内含子,其特征在于,所述改造内含子具有SEQ ID NO:1所示的核苷酸序列。
6.一种重组载体,其特征在于,所述重组载体上含有权利要求1至4中任一项所述基因编辑系统,或权利要求5所述的改造内含子。
7.一种宿主细胞,其特征在于,所述宿主细胞转化有权利要求6所述的重组载体。
8.一种基因编辑方法,其特征在于,所述基因编辑方法利用权利要求1至4中任一项所述基因编辑系统、或权利要求5所述的改造内含子、或权利要求6所述的重组载体、或权利要求7所述的宿主细胞,在植物中进行基因编辑。
9.根据权利要求8所述的基因编辑方法,其特征在于,所述基因编辑元件包括植物基因组编辑基因,所述植物基因组编辑基因包括Cas9基因、Cas12基因或Cas13基因中的一种或多种;
优选地,利用农杆菌转化法将所述基因编辑系统、或所述重组载体或所述宿主细胞转化入所述植物中;
优选地,所述植物包括双子叶植物;
优选地,所述双子叶植物包括如下任意一种或多种:烟草、生菜、番茄、大豆或棉花。
10.权利要求1至4中任一项所述基因编辑系统、或权利要求5所述的改造内含子、或权利要求6所述的重组载体、或权利要求7所述的宿主细胞、或权利要求8或9所述的基因编辑方法在植物基因编辑、植物遗传转化或植物育种中的应用。
CN202210380909.9A 2022-04-12 2022-04-12 一种基因编辑系统及其应用 Active CN114672513B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210380909.9A CN114672513B (zh) 2022-04-12 2022-04-12 一种基因编辑系统及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210380909.9A CN114672513B (zh) 2022-04-12 2022-04-12 一种基因编辑系统及其应用

Publications (2)

Publication Number Publication Date
CN114672513A true CN114672513A (zh) 2022-06-28
CN114672513B CN114672513B (zh) 2024-04-02

Family

ID=82077740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210380909.9A Active CN114672513B (zh) 2022-04-12 2022-04-12 一种基因编辑系统及其应用

Country Status (1)

Country Link
CN (1) CN114672513B (zh)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150315605A1 (en) * 2014-02-21 2015-11-05 E I Du Pont De Nemours And Company Novel transcripts and uses thereof for improvement of agronomic characteristics in crop plants
WO2016061481A1 (en) * 2014-10-17 2016-04-21 The Penn State Research Foundation Methods and compositions for multiplex rna guided genome editing and other rna technologies
WO2017105991A1 (en) * 2015-12-18 2017-06-22 Danisco Us Inc. Methods and compositions for t-rna based guide rna expression
CN107937432A (zh) * 2017-11-24 2018-04-20 华中农业大学 一种基于crispr系统的基因组编辑方法及其应用
CN109456973A (zh) * 2018-12-28 2019-03-12 北京市农林科学院 SpCas9n&PmCDA1&UGI碱基编辑系统在植物基因编辑中的应用
EP3508581A1 (en) * 2018-01-03 2019-07-10 Kws Saat Se Regeneration of genetically modified plants
CN111748578A (zh) * 2020-07-14 2020-10-09 北大荒垦丰种业股份有限公司 植物导引模板原位合成基因编辑方法及应用
EP3757219A1 (en) * 2019-06-28 2020-12-30 KWS SAAT SE & Co. KGaA Enhanced plant regeneration and transformation by using grf1 booster gene
WO2021007284A2 (en) * 2019-07-11 2021-01-14 The Regents Of The University Of California Methods for improved regeneration of transgenic plants using growth-regulating factor (grf), grf-interacting factor (gif), or chimeric grf-gif genes and proteins
WO2021022043A2 (en) * 2019-07-30 2021-02-04 Pairwise Plants Services, Inc. Morphogenic regulators and methods of using the same
WO2021127341A1 (en) * 2019-12-20 2021-06-24 Pairwise Plants Services, Inc. Mutation of growth regulating factor family transcription factors for enhanced plant growth
CN113151346A (zh) * 2021-02-09 2021-07-23 中国农业科学院作物科学研究所 一种CRISPR/Cas9系统介导的小麦多基因敲除编辑体系
WO2021185358A1 (zh) * 2020-03-19 2021-09-23 中国科学院遗传与发育生物学研究所 一种提高植物遗传转化和基因编辑效率的方法
CN113544256A (zh) * 2019-03-12 2021-10-22 科沃施种子欧洲股份两合公司 改善植物再生
CN113549647A (zh) * 2021-06-16 2021-10-26 北京大学现代农业研究院 一种高效西瓜遗传转化体系及应用
CN113667689A (zh) * 2021-07-12 2021-11-19 中国农业科学院烟草研究所(中国烟草总公司青州烟草研究所) 一种能够在烟草中进行高效基因编辑的载体及其应用
WO2022002989A1 (en) * 2020-06-29 2022-01-06 KWS SAAT SE & Co. KGaA Boosting homology directed repair in plants
US11220694B1 (en) * 2018-01-29 2022-01-11 Inari Agriculture, Inc. Rice cells and rice plants
WO2022072335A2 (en) * 2020-09-30 2022-04-07 Pioneer Hi-Bred International, Inc. Rapid transformation of monocot leaf explants

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150315605A1 (en) * 2014-02-21 2015-11-05 E I Du Pont De Nemours And Company Novel transcripts and uses thereof for improvement of agronomic characteristics in crop plants
WO2016061481A1 (en) * 2014-10-17 2016-04-21 The Penn State Research Foundation Methods and compositions for multiplex rna guided genome editing and other rna technologies
WO2017105991A1 (en) * 2015-12-18 2017-06-22 Danisco Us Inc. Methods and compositions for t-rna based guide rna expression
CN107937432A (zh) * 2017-11-24 2018-04-20 华中农业大学 一种基于crispr系统的基因组编辑方法及其应用
EP3508581A1 (en) * 2018-01-03 2019-07-10 Kws Saat Se Regeneration of genetically modified plants
US11220694B1 (en) * 2018-01-29 2022-01-11 Inari Agriculture, Inc. Rice cells and rice plants
CN109456973A (zh) * 2018-12-28 2019-03-12 北京市农林科学院 SpCas9n&PmCDA1&UGI碱基编辑系统在植物基因编辑中的应用
CN113544256A (zh) * 2019-03-12 2021-10-22 科沃施种子欧洲股份两合公司 改善植物再生
CN114269933A (zh) * 2019-06-28 2022-04-01 科沃施种子欧洲股份两合公司 通过使用grf1加强基因实现的增强的植物再生及转化
EP3757219A1 (en) * 2019-06-28 2020-12-30 KWS SAAT SE & Co. KGaA Enhanced plant regeneration and transformation by using grf1 booster gene
WO2021007284A2 (en) * 2019-07-11 2021-01-14 The Regents Of The University Of California Methods for improved regeneration of transgenic plants using growth-regulating factor (grf), grf-interacting factor (gif), or chimeric grf-gif genes and proteins
WO2021022043A2 (en) * 2019-07-30 2021-02-04 Pairwise Plants Services, Inc. Morphogenic regulators and methods of using the same
WO2021127341A1 (en) * 2019-12-20 2021-06-24 Pairwise Plants Services, Inc. Mutation of growth regulating factor family transcription factors for enhanced plant growth
WO2021185358A1 (zh) * 2020-03-19 2021-09-23 中国科学院遗传与发育生物学研究所 一种提高植物遗传转化和基因编辑效率的方法
CN115315516A (zh) * 2020-03-19 2022-11-08 中国科学院遗传与发育生物学研究所 一种提高植物遗传转化和基因编辑效率的方法
WO2022002989A1 (en) * 2020-06-29 2022-01-06 KWS SAAT SE & Co. KGaA Boosting homology directed repair in plants
CN111748578A (zh) * 2020-07-14 2020-10-09 北大荒垦丰种业股份有限公司 植物导引模板原位合成基因编辑方法及应用
WO2022072335A2 (en) * 2020-09-30 2022-04-07 Pioneer Hi-Bred International, Inc. Rapid transformation of monocot leaf explants
CN113151346A (zh) * 2021-02-09 2021-07-23 中国农业科学院作物科学研究所 一种CRISPR/Cas9系统介导的小麦多基因敲除编辑体系
CN113549647A (zh) * 2021-06-16 2021-10-26 北京大学现代农业研究院 一种高效西瓜遗传转化体系及应用
CN113667689A (zh) * 2021-07-12 2021-11-19 中国农业科学院烟草研究所(中国烟草总公司青州烟草研究所) 一种能够在烟草中进行高效基因编辑的载体及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JUN UEKIL 等: "Enhancement of Reporter- Gene Expression by Insertions of Two Introns in Maize and Tobacco Protoplasts", PLANT BIOTECHNOLOGY, vol. 21, no. 1, pages 15 *
WENBO PAN等: "Efficient genetic transformation and CRISPR/Cas9-mediated genome editing of watermelon assisted by genes encoding developmental regulators", JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B (BIOMEDICINE & BIOTECHNOLOGY), vol. 23, no. 4, pages 344 *
WENBO PAN等: "Establishment of an Efficient Genome Editing System in Lettuce Without Sacrificing Specificity", FRONTIERS IN PLANT SCIENCE, vol. 13, pages 1 - 8 *

Also Published As

Publication number Publication date
CN114672513B (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
Katavic et al. In planta transformation of Arabidopsis thaliana
US20170327833A1 (en) Tal-mediated transfer dna insertion
Otani et al. Transgenic plant production from embryogenic callus of sweet potato (Ipomoea batatas (L.) Lam.) using Agrobacterium tumefaciens
US20060253934A1 (en) Methods for conditional transgene expression and trait removal in plants
WO2014144094A1 (en) Tal-mediated transfer dna insertion
WO2008112044A1 (en) Tranformation of immature soybean seeds through organogenesis
JP2022527766A (ja) 植物外稙片の形質転換
Chai et al. L-methionine sulfoximine as a novel selection agent for genetic transformation of orchids
CN117106820A (zh) 一种通过基因组编辑创制番茄少侧枝的方法及其应用
JP2024513588A (ja) 遺伝性突然変異のための可動性エンドヌクレアーゼ
Tazeen et al. Factors affecting Agrobacterium tumefaciens mediated genetic transformation of Vigna radiata (L.) Wilczek
CN114672513B (zh) 一种基因编辑系统及其应用
WO2000042206A1 (en) An expression silencing system and different uses thereof
CN106146636B (zh) 愈伤组织起始发育相关蛋白GaLBD-2及其相关生物材料与应用
JP4582853B2 (ja) グルタチオン−s−トランスフェラーゼ遺伝子を導入した低温抵抗性イネ
JP4505626B2 (ja) 花粉特異的発現活性を有するプロモーター
US20230392160A1 (en) Compositions and methods for increasing genome editing efficiency
KR102598907B1 (ko) 식물체의 재분화 효율을 조절하는 애기장대 유래 hda6 유전자 및 이의 용도
KR102695341B1 (ko) 바이러스 기반 유전자교정을 위한 꽃 조직 특이적 Cas9 발현 고추 형질전환체의 제조방법, 상기 방법에 의해 제조된 꽃 조직 특이적 Cas9 발현 고추 형질전환체 및 이의 용도
US20050101774A1 (en) Duplicated cassava vein mosaic virus enhancers and uses thereof
KR101040579B1 (ko) 스트레스 유도성 자가-절단형 식물형질전환 벡터 및 이를이용한 선발 마커 프리 식물체의 제조방법
KR101825960B1 (ko) 벼 유래 뿌리 특이적 프로모터 및 이의 용도
AU2023254505A1 (en) Compositions and methods for increasing genome editing efficiency
EP4267748A1 (en) Maize regulatory elements and uses thereof
Azzam Gibberellin 20-oxidase isolation and transformation its anti-sense by Agrobacterium tumfaciens to produce dwarf sunflower plants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No. 699 Binhu Road, Xiashan Economic Development Zone, Weifang City, Shandong Province, 261325

Patentee after: Institute of Modern Agriculture, Peking University

Country or region after: China

Address before: Building 6, 197 Yixia street, Xiashan Ecological Economic Development Zone, Weifang City, Shandong Province

Patentee before: Institute of Modern Agriculture, Peking University

Country or region before: China

CP03 Change of name, title or address