CN114660241A - An online intelligent calibration system for ambient gas analyzers - Google Patents
An online intelligent calibration system for ambient gas analyzers Download PDFInfo
- Publication number
- CN114660241A CN114660241A CN202210317838.8A CN202210317838A CN114660241A CN 114660241 A CN114660241 A CN 114660241A CN 202210317838 A CN202210317838 A CN 202210317838A CN 114660241 A CN114660241 A CN 114660241A
- Authority
- CN
- China
- Prior art keywords
- gas
- ambient
- standard
- calibration
- control module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007789 gas Substances 0.000 claims abstract description 630
- 238000002360 preparation method Methods 0.000 claims abstract description 65
- 238000012360 testing method Methods 0.000 claims abstract description 53
- 239000000126 substance Substances 0.000 claims abstract description 47
- 239000012080 ambient air Substances 0.000 claims abstract description 36
- 238000012417 linear regression Methods 0.000 claims abstract description 22
- 238000012544 monitoring process Methods 0.000 claims description 86
- 238000005070 sampling Methods 0.000 claims description 56
- 239000002274 desiccant Substances 0.000 claims description 21
- 238000012795 verification Methods 0.000 claims description 21
- 239000003570 air Substances 0.000 claims description 18
- 239000010421 standard material Substances 0.000 claims description 17
- 238000005259 measurement Methods 0.000 claims description 13
- 230000001105 regulatory effect Effects 0.000 claims description 12
- 230000001276 controlling effect Effects 0.000 claims description 6
- 238000013480 data collection Methods 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 5
- 238000004868 gas analysis Methods 0.000 claims description 3
- 238000004164 analytical calibration Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 29
- 238000012423 maintenance Methods 0.000 description 17
- 238000012937 correction Methods 0.000 description 11
- 238000010790 dilution Methods 0.000 description 8
- 239000012895 dilution Substances 0.000 description 8
- 238000003908 quality control method Methods 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 7
- 239000003344 environmental pollutant Substances 0.000 description 7
- 231100000719 pollutant Toxicity 0.000 description 7
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 238000013523 data management Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0006—Calibrating gas analysers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
本发明公开了一种环境气体分析仪在线智能校准系统,涉及仪器校准领域,所述系统中的现场端标校系统,包括:系统控制模块和与系统控制模块连接的气体标准物质盛放装置、标准气体动态配制模块和气路控制模块;系统控制模块用于控制气路控制模块切换工作模式、控制标准气体动态配制模块配制不同浓度的标准气体、对被校环境气体分析仪的参数进行调节、对环境空气样的气体浓度示值进行校正、对线性回归曲线的参数进行验证以及对被校环境气体分析仪的稳定性进行验证。本发明实现了对环境气体分析仪的自动校准,能提高环境气体分析仪的校准效率及校准准确性。
The invention discloses an on-line intelligent calibration system for an ambient gas analyzer, which relates to the field of instrument calibration. The on-site calibration system in the system comprises: a system control module and a gas standard substance holding device connected with the system control module, The standard gas dynamic preparation module and the gas circuit control module; the system control module is used to control the gas circuit control module to switch the working mode, control the standard gas dynamic preparation module to prepare standard gases of different concentrations, adjust the parameters of the ambient gas analyzer under school, adjust the The gas concentration indication value of the ambient air sample is corrected, the parameters of the linear regression curve are verified, and the stability of the ambient gas analyzer under test is verified. The invention realizes the automatic calibration of the ambient gas analyzer, and can improve the calibration efficiency and calibration accuracy of the ambient gas analyzer.
Description
技术领域technical field
本发明涉及仪器校准领域,特别是涉及一种环境气体分析仪在线智能校准系统。The invention relates to the field of instrument calibration, in particular to an online intelligent calibration system for an ambient gas analyzer.
背景技术Background technique
气态污染物是在常态、常压下以分子状态存在的污染物。在环境空气污染控制中受到普遍重视的气态污染物有二氧化硫、氮氧化物、一氧化碳以及其它气态有机化合物等。环境气体分析仪的主要用途就是实时、准确的分析环境空气中气态污染物的含量。环境气体分析仪在使用过程中,每隔一定的时间需要进行校准,以保证仪器示值的准确性。Gaseous pollutants are pollutants that exist in the molecular state under normal conditions and atmospheric pressure. Gaseous pollutants that have received widespread attention in environmental air pollution control include sulfur dioxide, nitrogen oxides, carbon monoxide and other gaseous organic compounds. The main purpose of the ambient gas analyzer is to analyze the content of gaseous pollutants in the ambient air in real time and accurately. During the use of the ambient gas analyzer, calibration is required at regular intervals to ensure the accuracy of the instrument's indicated value.
目前,环境气体分析仪的校准仍然采用传统的现场手工操作的方式,其作业方式为:将某种气体的标准物质和零点气通过手动稀释装置混合配制成目标浓度的标准气体,然后通过管道接入到被校仪器中,通过比较仪器的示值与标准气体配制浓度的差值来判断仪器示值的准确性。当差值超过质控要求时,需对仪器进行校准时,即根据该差值对仪器进行手工调节,使仪器示值与标准气体配制浓度值达到一致。有时在校准过程中,为了获得仪器的线性,还需要配制不同浓度的标准气体进行校准测量。At present, the calibration of the ambient gas analyzer still adopts the traditional on-site manual operation method. The operation method is as follows: the standard gas of a certain gas and the zero point gas are mixed and prepared into the standard gas of the target concentration through the manual dilution device, and then connected through the pipeline. Enter the instrument to be calibrated, and judge the accuracy of the instrument's indication by comparing the difference between the instrument's indication and the standard gas preparation concentration. When the difference exceeds the quality control requirements, the instrument needs to be calibrated, that is, the instrument is manually adjusted according to the difference, so that the displayed value of the instrument is consistent with the concentration value of the standard gas preparation. Sometimes in the calibration process, in order to obtain the linearity of the instrument, it is also necessary to prepare standard gases of different concentrations for calibration measurement.
在环境气体检测领域,人们关注的气体组分比较多,如SO2、NOx、CO等。对每种气体组分分析仪进行校准时都需要重复上述手工操作过程。而且鉴于仪器的稳定性不同,为了获得准确的测量结果,需要定期对仪器进行校准,甚至是频繁的校准。采用传统的手工人工校准,不仅操作繁琐、费时费力、溯源不及时、数据真实性和有效性得不到有力保证,而且还需要动用人力定时值守,并且由于过多的人为操作,容易引入人为误差,甚至操作失误或者数据造假。因此,现有的环境气体分析仪的校准效率及校准准确性有待提高。In the field of ambient gas detection, people pay attention to many gas components, such as SO 2 , NO x , CO and so on. The manual procedure described above is repeated for each gas composition analyzer calibration. And given the different stability of the instruments, in order to obtain accurate measurement results, the instruments need to be calibrated regularly, even frequently. Using traditional manual manual calibration is not only cumbersome, time-consuming, labor-intensive, untimely traceable, and unable to guarantee the authenticity and validity of data, but also requires manpower to be on duty regularly, and due to excessive manual operations, it is easy to introduce human errors , or even operational errors or data fraud. Therefore, the calibration efficiency and calibration accuracy of the existing ambient gas analyzers need to be improved.
发明内容SUMMARY OF THE INVENTION
基于此,本发明实施例提供一种环境气体分析仪在线智能校准系统,以提高环境气体分析仪的校准效率及校准准确性。Based on this, embodiments of the present invention provide an online intelligent calibration system for an ambient gas analyzer, so as to improve the calibration efficiency and calibration accuracy of the ambient gas analyzer.
为实现上述目的,本发明提供了如下方案:For achieving the above object, the present invention provides the following scheme:
一种环境气体分析仪在线智能校准系统,包括:现场端标校系统;所述现场端标校系统,包括:系统控制模块和与所述系统控制模块连接的气体标准物质盛放装置、标准气体动态配制模块和气路控制模块;An online intelligent calibration system for an ambient gas analyzer, comprising: an on-site end calibration system; the on-site end calibration system includes: a system control module and a gas standard substance holding device connected to the system control module, a standard gas Dynamic configuration module and pneumatic control module;
所述气体标准物质盛放装置与所述标准气体动态配制模块连通;所述标准气体动态配制模块分别与所述气路控制模块和被校仪器系统中的零气源连通;所述气路控制模块分别与所述被校仪器系统中的被校环境气体分析仪和所述被校仪器系统中的采样管连通;The gas standard substance holding device is communicated with the standard gas dynamic preparation module; the standard gas dynamic preparation module is respectively communicated with the gas circuit control module and the zero gas source in the instrument system to be calibrated; the gas circuit control The modules are respectively communicated with the tested ambient gas analyzer in the tested instrument system and the sampling pipe in the tested instrument system;
所述系统控制模块用于:The system control module is used for:
控制所述气路控制模块切换工作模式;所述工作模式包括校准模式和测量模式;controlling the air circuit control module to switch working modes; the working modes include a calibration mode and a measurement mode;
控制所述标准气体动态配制模块采用由所述零气源输送的洁净气体对由所述气体标准物质盛放装置输送的气体标准物质进行稀释,得到不同浓度的标准气体;Controlling the standard gas dynamic preparation module to dilute the gas standard substance conveyed by the gas standard substance holding device with the clean gas conveyed by the zero gas source to obtain standard gases of different concentrations;
在所述校准模式下,控制所述气路控制模块向所述被校环境气体分析仪输入所述洁净气体或不同浓度的标准气体,并获取所述被校环境气体分析仪测得的气体浓度示值,根据所述气体浓度示值与相对应的标准值对所述被校环境气体分析仪的参数进行调节;In the calibration mode, control the gas circuit control module to input the clean gas or standard gas with different concentrations to the ambient gas analyzer under test, and obtain the gas concentration measured by the ambient gas analyzer under test display value, and adjust the parameters of the ambient gas analyzer under school according to the gas concentration display value and the corresponding standard value;
在所述测量模式下,控制所述气路控制模块向所述被校环境气体分析仪输入所述采样管采集的环境空气样品,并获取所述被校环境气体分析仪测得的所述环境空气样的气体浓度示值,采用线性回归曲线对所述环境空气样的气体浓度示值进行校正;所述线性回归曲线表示通入所述被校环境气体分析仪中的不同浓度的标准气体与所述被校环境气体分析仪测得的相应气体浓度示值的关系;In the measurement mode, the air circuit control module is controlled to input the ambient air sample collected by the sampling pipe to the ambient gas analyzer under school, and the ambient air sample measured by the ambient gas analyzer under test is acquired. The gas concentration indication value of the air sample is corrected by the linear regression curve; The relationship between the corresponding gas concentration indication values measured by the ambient gas analyzer under school;
在所述校准模式下,根据设定参数控制目标对所述线性回归曲线的参数进行验证;In the calibration mode, verify the parameters of the linear regression curve according to the set parameter control target;
在所述校准模式下,根据相对标准偏差值和设定偏差控制目标对所述被校环境气体分析仪的稳定性进行验证;所述相对标准偏差值是根据通入所述被校环境气体分析仪中的洁净气体、不同浓度的标准气体以及所述被校环境气体分析仪测得的相应的气体浓度示值确定的。In the calibration mode, the stability of the tested ambient gas analyzer is verified according to the relative standard deviation value and the set deviation control target; the relative standard deviation value is based on the analysis of the tested ambient gas It is determined by the clean gas in the instrument, the standard gas of different concentrations and the corresponding gas concentration indication measured by the ambient gas analyzer under test.
可选的,所述系统控制模块,包括:Optionally, the system control module includes:
自动零跨校准模块,用于:Automatic zero-span calibration module for:
在所述校准模式下,控制所述气路控制模块向所述被校环境气体分析仪输入所述洁净气体,并获取所述被校环境气体分析仪测得的气体浓度示值,根据所述气体浓度示值与零的差值对所述被校环境气体分析仪的零点参数进行调节;In the calibration mode, the gas circuit control module is controlled to input the clean gas to the ambient gas analyzer under test, and obtain the gas concentration indication value measured by the ambient gas analyzer under test, according to the The difference between the gas concentration indication and zero adjusts the zero-point parameter of the ambient gas analyzer under test;
在所述校准模式下,控制所述气路控制模块向所述被校环境气体分析仪输入不同浓度的标准气体,并获取所述被校环境气体分析仪测得的气体浓度示值,根据所述气体浓度示值与标准气体的浓度值的差值对所述被校环境气体分析仪的跨度参数进行调节;In the calibration mode, the gas circuit control module is controlled to input standard gases of different concentrations to the ambient gas analyzer under test, and the gas concentration indication value measured by the ambient gas analyzer under test is obtained. The difference between the gas concentration indication value and the standard gas concentration value adjusts the span parameter of the ambient gas analyzer under school;
自动示值校准模块,用于:Automatic Indication Calibration Module for:
在所述测量模式下,控制所述气路控制模块向所述被校环境气体分析仪输入不同浓度的标准气体,并获取所述被校环境气体分析仪测得的气体浓度示值,由不同浓度的标准气体的浓度值与对应的气体浓度示值做线性回归曲线;In the measurement mode, the gas circuit control module is controlled to input standard gases with different concentrations to the ambient gas analyzer under test, and the gas concentration indications measured by the ambient gas analyzer under test are obtained, which are determined by different concentrations. Make a linear regression curve between the concentration value of the standard gas concentration and the corresponding gas concentration indication value;
控制所述气路控制模块将通入所述被校环境气体分析仪的不同浓度的标准气体切换为所述采样管采集的环境空气样品,并获取所述被校环境气体分析仪测得的环境空气样品的气体浓度示值,采用所述线性回归曲线对所述环境空气样品的气体浓度示值进行校正;Control the gas circuit control module to switch the standard gas of different concentrations that pass into the ambient gas analyzer under school to the ambient air sample collected by the sampling tube, and obtain the ambient air sample measured by the ambient gas analyzer under school. The gas concentration indication value of the air sample, the linear regression curve is used to correct the gas concentration indication value of the ambient air sample;
自动线性度核验模块,用于:Automatic linearity verification module for:
在所述校准模式下,控制所述气路控制模块向所述被校环境气体分析仪输入不同浓度的标准气体,并获取所述被校环境气体分析仪测得的气体浓度示值,由不同浓度的标准气体的浓度值与对应的气体浓度示值做线性回归曲线,并确定所述线性回归曲线的参数;所述参数包括截距、斜率和线性系数;In the calibration mode, the gas circuit control module is controlled to input standard gases with different concentrations to the ambient gas analyzer under test, and the gas concentration indications measured by the ambient gas analyzer under test are obtained, which are determined by different concentrations. The concentration value of the standard gas of concentration and the corresponding gas concentration indication value make a linear regression curve, and determine the parameters of the linear regression curve; the parameters include intercept, slope and linear coefficient;
将所述参数与设定参数控制目标进行比较,实现对所述参数的验证;Compare the parameter with the set parameter control target to realize the verification of the parameter;
自动稳定性核验模块,用于:Automatic stability verification module for:
在所述校准模式下,多次进行数据采集操作,得到所述被校环境气体分析仪测得的不同浓度的标准气体的气体浓度示值,并根据不同浓度的标准气体的气体浓度示值计算相对标准偏差值,将所述相对标准偏差值和设定偏差控制目标进行比较,实现对所述被校环境气体分析仪的稳定性的验证;In the calibration mode, data collection operations are performed multiple times to obtain the gas concentration indications of standard gases with different concentrations measured by the ambient gas analyzer under test, and calculate the gas concentration indications based on the gas concentration indications of standard gases with different concentrations Relative standard deviation value, comparing the relative standard deviation value with the set deviation control target to verify the stability of the ambient gas analyzer under school;
其中,所述数据采集操作为:Wherein, the data collection operation is:
控制所述气路控制模块向所述被校环境气体分析仪输入所述洁净气体,获取所述被校环境气体分析仪测得的气体浓度示值;当所述气体浓度示值与零的差值小于或等于设定值时,控制所述气路控制模块将通入所述被校环境气体分析仪的所述洁净气体切换为设定浓度的标准气体,并获取所述被校环境气体分析仪测得的设定浓度的标准气体的气体浓度示值。Control the gas circuit control module to input the clean gas to the ambient gas analyzer under test, and obtain the gas concentration indication value measured by the ambient gas analyzer under test; when the difference between the gas concentration indication value and zero When the value is less than or equal to the set value, control the gas circuit control module to switch the clean gas flowing into the tested ambient gas analyzer to the standard gas of the set concentration, and obtain the tested ambient gas analysis The gas concentration indication of the standard gas of the set concentration measured by the instrument.
可选的,所述环境气体分析仪在线智能校准系统,还包括现场监控辅件;Optionally, the online intelligent calibration system for the ambient gas analyzer further includes on-site monitoring accessories;
所述现场监控辅件与所述系统控制模块连接;所述现场监控辅件用于获取实时现场信息;所述实时现场信息包括采样管的温度、采样管的流量、气体标准物质盛放装置内的压力、气体标准物质盛放装置是否存在泄露、被校仪器系统中干燥剂的图像、监测环境的图像、监测环境的温度、监测环境的湿度和监测环境的大气压力;The on-site monitoring accessory is connected to the system control module; the on-site monitoring accessory is used to obtain real-time on-site information; the real-time on-site information includes the temperature of the sampling pipe, the flow rate of the sampling pipe, and the inside of the gas standard substance holding device. pressure, whether there is leakage in the gas standard material holding device, the image of the desiccant in the calibrated instrument system, the image of the monitoring environment, the temperature of the monitoring environment, the humidity of the monitoring environment, and the atmospheric pressure of the monitoring environment;
所述系统控制模块还用于根据所述实时现场信息对所述气体标准物质盛放装置、所述被校仪器系统和所述监测环境进行监控,得到监控结果。The system control module is further configured to monitor the gas standard substance holding device, the calibrated instrument system and the monitoring environment according to the real-time on-site information, and obtain monitoring results.
可选的,所述环境气体分析仪在线智能校准系统,还包括:数据中心;Optionally, the online intelligent calibration system for the ambient gas analyzer further includes: a data center;
所述数据中心与所述系统控制模块连接;所述数据中心用于接收所述系统控制模块发送的校准结果和监控结果,并根据所述校准结果和所述监控结果发出报警信息。The data center is connected to the system control module; the data center is configured to receive calibration results and monitoring results sent by the system control module, and issue alarm information according to the calibration results and the monitoring results.
可选的,所述环境气体分析仪在线智能校准系统,还包括:用户端显示系统;Optionally, the online intelligent calibration system for the ambient gas analyzer further includes: a user terminal display system;
所述用户端显示系统与所述数据中心连接;所述用户端显示系统用于显示所述报警信息。The client display system is connected to the data center; the client display system is used to display the alarm information.
可选的,所述标准气体动态配制模块包括:配制气体管路、压力调节阀、第一气体质量流量控制器、第二气体质量流量控制器和控制单元;Optionally, the standard gas dynamic preparation module includes: a preparation gas pipeline, a pressure regulating valve, a first gas mass flow controller, a second gas mass flow controller and a control unit;
所述配制气体管路用于连通所述气体标准物质盛放装置与所述气路控制模块;所述压力调节阀设置在所述配制气体管路上;所述压力调节阀用于对所述气体标准物质进行降压,得到降压后的气体标准物质;所述第一气体质量流量控制器用于控制通入所述配制气体管路内的降压后的气体标准物质的流量;所述第二气体质量流量控制器用于控制通入所述配制气体管路内的洁净气体的流量;所述控制单元分别与所述第一气体质量流量控制器、所述第二气体质量流量控制器和所述系统控制模块连接;所述控制单元用于选择配制模式;所述配制模式包括手动配制和自动匹配。The preparation gas pipeline is used for connecting the gas standard substance holding device and the gas circuit control module; the pressure regulating valve is arranged on the preparation gas pipeline; the pressure regulating valve is used for regulating the gas The standard substance is depressurized to obtain a depressurized gas standard substance; the first gas mass flow controller is used to control the flow rate of the depressurized gas standard substance passed into the preparation gas pipeline; the second gas mass flow controller The gas mass flow controller is used to control the flow rate of the clean gas introduced into the preparation gas pipeline; the control unit is respectively connected with the first gas mass flow controller, the second gas mass flow controller and the The system control module is connected; the control unit is used to select a preparation mode; the preparation mode includes manual preparation and automatic matching.
可选的,所述气路控制模块包括:第一控制气体管路、第二控制气体管路、第一电磁阀、第二电磁阀和可编程逻辑控制器;Optionally, the gas circuit control module includes: a first control gas pipeline, a second control gas pipeline, a first solenoid valve, a second solenoid valve, and a programmable logic controller;
所述标准气体动态配制模块通过所述第一控制气体管路与所述被校环境气体分析仪连通;所述标准气体动态配制模块通过所述第二控制气体管路与所述采样管连通;所述可编程逻辑控制器分别与所述第一电磁阀、所述第二电磁阀和所述系统控制模块连接;所述可编程逻辑控制器用于控制所述第一电磁阀和所述第二电磁阀的开关状态;所述第一电磁阀用于控制所述第一控制气体管路的通断;所述第二电磁阀用于控制所述第二控制气体管路的通断。The standard gas dynamic preparation module is communicated with the tested ambient gas analyzer through the first control gas pipeline; the standard gas dynamic preparation module is communicated with the sampling pipe through the second control gas pipeline; The programmable logic controller is respectively connected with the first solenoid valve, the second solenoid valve and the system control module; the programmable logic controller is used to control the first solenoid valve and the second solenoid valve The switch state of the solenoid valve; the first solenoid valve is used to control the on-off of the first control gas pipeline; the second solenoid valve is used to control the on-off of the second control gas pipeline.
可选的,所述现场监控辅件,包括:Optionally, the on-site monitoring accessories include:
采样管温度传感器、采样管流量传感器、气体压力传感器、气体泄漏传感器、干燥剂图像传感器、仪器图像传感器、室内温度传感器、室内湿度传感器和室内大气压传感器;Sampling tube temperature sensor, sampling tube flow sensor, gas pressure sensor, gas leakage sensor, desiccant image sensor, instrument image sensor, indoor temperature sensor, indoor humidity sensor and indoor atmospheric pressure sensor;
所述采样管温度传感器用于采集采样管的温度;所述采样管流量传感器用于采集采样管的流量;所述气体压力传感器用于采集气体标准物质盛放装置内的压力;所述气体泄漏传感器用于确定气体标准物质盛放装置是否存在泄露;所述干燥剂图像传感器用于获取被校仪器系统中干燥剂的图像;所述仪器图像传感器用于获取监测环境的图像;所述室内温度传感器用于获取监测环境的温度;所述室内湿度传感器用于获取监测环境的湿度;所述室内大气压传感器用于获取监测环境的大气压力。The sampling tube temperature sensor is used to collect the temperature of the sampling tube; the sampling tube flow sensor is used to collect the flow rate of the sampling tube; the gas pressure sensor is used to collect the pressure in the gas standard substance holding device; the gas leakage The sensor is used to determine whether there is a leak in the gas standard substance holding device; the desiccant image sensor is used to acquire the image of the desiccant in the instrument system to be calibrated; the instrument image sensor is used to acquire the image of the monitoring environment; the indoor temperature The sensor is used to obtain the temperature of the monitoring environment; the indoor humidity sensor is used to obtain the humidity of the monitoring environment; the indoor atmospheric pressure sensor is used to obtain the atmospheric pressure of the monitoring environment.
可选的,所述系统控制模块还用于计算所述监测环境的温度与目标温度的温差,并根据所述温差调节所述被校环境气体分析仪所处环境的温度。Optionally, the system control module is further configured to calculate the temperature difference between the temperature of the monitoring environment and the target temperature, and adjust the temperature of the environment where the ambient gas analyzer under school is located according to the temperature difference.
可选的,所述系统控制模块,还包括:现场端操作界面;Optionally, the system control module further includes: an on-site operation interface;
所述现场端操作界面用于设定监控参数;所述监控参数包括校准参数和状态控制目标参数。The field terminal operation interface is used to set monitoring parameters; the monitoring parameters include calibration parameters and state control target parameters.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明实施例提出了一种环境气体分析仪在线智能校准系统,所述系统中的现场端标校系统,包括:系统控制模块和与系统控制模块连接的气体标准物质盛放装置、标准气体动态配制模块和气路控制模块;气体标准物质盛放装置与标准气体动态配制模块连通;标准气体动态配制模块分别与气路控制模块和被校仪器系统中的零气源连通;气路控制模块分别与被校仪器系统中的被校环境气体分析仪和被校仪器系统中的采样管连通;系统控制模块控制标准气体动态配制模块配制不同浓度的标准气体、实现对被校环境气体分析仪的参数的调节、实现对环境空气样的气体浓度示值的校正、实现对线性回归曲线的参数的验证以及实现对被校环境气体分析仪的稳定性的验证,本发明实现了对环境气体分析仪的自动校准,能提高环境气体分析仪的校准效率及校准准确性。The embodiment of the present invention proposes an online intelligent calibration system for an ambient gas analyzer. The on-site calibration system in the system includes: a system control module, a gas standard substance holding device connected to the system control module, a standard gas dynamic The preparation module and the gas circuit control module; the gas standard substance holding device is communicated with the standard gas dynamic preparation module; the standard gas dynamic preparation module is respectively communicated with the gas circuit control module and the zero gas source in the instrument system to be calibrated; the gas circuit control module is respectively connected with The calibrated ambient gas analyzer in the calibrated instrument system is connected with the sampling pipe in the calibrated instrument system; the system control module controls the standard gas dynamic preparation module to prepare standard gases of different concentrations, and realizes the adjustment of the parameters of the calibrated ambient gas analyzer. Adjust, realize the correction of the gas concentration indication value of the ambient air sample, realize the verification of the parameters of the linear regression curve, and realize the verification of the stability of the ambient gas analyzer to be calibrated. Calibration can improve the calibration efficiency and calibration accuracy of the ambient gas analyzer.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative labor.
图1为本发明实施例提供的环境气体分析仪在线智能校准系统的结构图。FIG. 1 is a structural diagram of an online intelligent calibration system for an ambient gas analyzer provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.
目前,全国环境空气质量监测网已建成5000多个监测站点,而且有些站点的位置远离市区,交通不便。目前普遍采用的人工校准频率为每周进行一次零跨校准,每半年进行一次线性校准。在进行人工校准时,为了满足校准要求就需要投入大量的运维人员,从而运维成本也大大增加,如果采用自动校准不仅可以提高校准频率,同时也可以减少运维人员数量,从而大大的减少运维成本。而且相关技术标准中,例如《HJ 818-2018环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统运行和质控规范》建议提高校准频率为每天一次,这对于人工校准方法运维数量众多的监测站点是难以完成的。基于此,本实施例提供了一种能实时采样、自动智能校准的环境气体分析仪在线智能校准系统。At present, the National Ambient Air Quality Monitoring Network has built more than 5,000 monitoring sites, and some sites are far away from the urban area and have inconvenient traffic. At present, the commonly used manual calibration frequency is to perform zero-span calibration once a week and linear calibration once every six months. When manual calibration is performed, a large number of operation and maintenance personnel need to be invested in order to meet the calibration requirements, thus greatly increasing the operation and maintenance cost. If automatic calibration is used, it can not only increase the calibration frequency, but also reduce the number of operation and maintenance personnel, thereby greatly reducing the number of operation and maintenance personnel. Operation and maintenance costs. Moreover, in related technical standards, such as "HJ 818-2018 Operation and Quality Control Specifications for Continuous Automatic Monitoring System of Ambient Air Gaseous Pollutants (SO 2 , NO 2 , O 3 , CO)", it is recommended to increase the calibration frequency to once a day. The calibration method is difficult to complete when operating a large number of monitoring sites. Based on this, this embodiment provides an online intelligent calibration system for an ambient gas analyzer capable of real-time sampling and automatic intelligent calibration.
参见图1,本实施例的环境气体分析仪在线智能校准系统,包括:现场端标校系统;所述现场端标校系统,包括:系统控制模块和与所述系统控制模块连接的气体标准物质盛放装置、标准气体动态配制模块和气路控制模块。Referring to FIG. 1 , the online intelligent calibration system for ambient gas analyzers in this embodiment includes: an on-site calibration system; the on-site calibration system includes: a system control module and a gas standard substance connected to the system control module Containing device, standard gas dynamic preparation module and gas circuit control module.
所述气体标准物质盛放装置与所述标准气体动态配制模块连通;所述标准气体动态配制模块分别与所述气路控制模块和被校仪器系统中的零气源连通;所述气路控制模块分别与所述被校仪器系统中的被校环境气体分析仪(被校仪器)和所述被校仪器系统中的采样管连通。The gas standard substance holding device is communicated with the standard gas dynamic preparation module; the standard gas dynamic preparation module is respectively communicated with the gas circuit control module and the zero gas source in the instrument system to be calibrated; the gas circuit control The modules are respectively communicated with the tested ambient gas analyzer (the tested instrument) in the tested instrument system and the sampling pipe in the tested tested instrument system.
所述系统控制模块用于:The system control module is used for:
控制所述气路控制模块切换工作模式;所述工作模式包括校准模式和测量模式;controlling the air circuit control module to switch working modes; the working modes include a calibration mode and a measurement mode;
控制所述标准气体动态配制模块采用由所述零气源输送的洁净气体对由所述气体标准物质盛放装置输送的气体标准物质进行稀释,得到不同浓度的标准气体;Controlling the standard gas dynamic preparation module to dilute the gas standard substance conveyed by the gas standard substance holding device with the clean gas conveyed by the zero gas source to obtain standard gases of different concentrations;
在所述校准模式下,控制所述气路控制模块向所述被校环境气体分析仪输入所述洁净气体或不同浓度的标准气体,并获取所述被校环境气体分析仪测得的气体浓度示值,根据所述气体浓度示值与相对应的标准值对所述被校环境气体分析仪的参数进行调节;In the calibration mode, control the gas circuit control module to input the clean gas or standard gas with different concentrations to the ambient gas analyzer under test, and obtain the gas concentration measured by the ambient gas analyzer under test display value, and adjust the parameters of the ambient gas analyzer under school according to the gas concentration display value and the corresponding standard value;
在所述测量模式下,控制所述气路控制模块向所述被校环境气体分析仪输入所述采样管采集的环境空气样品,并获取所述被校环境气体分析仪测得的所述环境空气样的气体浓度示值,采用线性回归曲线对所述环境空气样的气体浓度示值进行校正;所述线性回归曲线表示通入所述被校环境气体分析仪中的不同浓度的标准气体与所述被校环境气体分析仪测得的相应气体浓度示值的关系;In the measurement mode, the air circuit control module is controlled to input the ambient air sample collected by the sampling pipe to the ambient gas analyzer under school, and the ambient air sample measured by the ambient gas analyzer under test is acquired. The gas concentration indication value of the air sample is corrected by the linear regression curve; The relationship between the corresponding gas concentration indication values measured by the ambient gas analyzer under school;
在所述校准模式下,根据设定参数控制目标对所述线性回归曲线的参数进行验证;In the calibration mode, verify the parameters of the linear regression curve according to the set parameter control target;
在所述校准模式下,根据相对标准偏差值和设定偏差控制目标对所述被校环境气体分析仪的稳定性进行验证;所述相对标准偏差值是根据通入所述被校环境气体分析仪中的洁净气体、不同浓度的标准气体以及所述被校环境气体分析仪测得的相应的气体浓度示值确定的。In the calibration mode, the stability of the tested ambient gas analyzer is verified according to the relative standard deviation value and the set deviation control target; the relative standard deviation value is based on the analysis of the tested ambient gas It is determined by the clean gas in the instrument, the standard gas of different concentrations and the corresponding gas concentration indication measured by the ambient gas analyzer under test.
在一个示例中,所述被校仪器系统通常包括:被校环境气体分析仪,用于测量环境空气中的气态污染物浓度;采样管,用于将室外环境空气样品通过该管道导送到被校环境气体分析仪中;零气源,用于发生没有气态污染物杂质的洁净气体;干燥剂,为某些被校环境气体分析仪所配备的(例如化学发光法氮氧化物分析仪),用于脱除空气中的水分,防止含有水分过多的室内空气进入被校仪器。被校仪器系统通常放在室内,为保持被校仪器处于正常的工作温度,室内通常还安装了空调,可制冷和制热,调节室内温度,使其处于被校环境气体分析仪正常工作的温度范围内。In one example, the calibrated instrument system generally includes: a calibrated ambient gas analyzer for measuring the concentration of gaseous pollutants in the ambient air; a sampling pipe for conducting the outdoor ambient air sample to the subject through the pipe In the school ambient gas analyzer; zero gas source, used to generate clean gas without gaseous pollutant impurities; desiccant, equipped for some of the school ambient gas analyzers (such as chemiluminescence nitrogen oxide analyzer), It is used to remove the moisture in the air and prevent the indoor air containing too much moisture from entering the calibrated instrument. The instrument system to be calibrated is usually placed indoors. In order to keep the instrument to be calibrated at a normal working temperature, an air conditioner is usually installed in the room, which can cool and heat, and adjust the indoor temperature so that it is at the normal working temperature of the ambient gas analyzer to be calibrated. within the range.
在一个示例中,气体标准物质盛放装置包括气瓶柜和放置在气瓶柜内的气瓶;气瓶内放置气体标准物质。气体标准物质盛放装置与被校仪器系统同步存放在室内的校准现场,是被校环境气体分析仪量值溯源的源头。存放有气体标准物质的气瓶中放置于气瓶柜中,通过气体管路接入标准气体动态配制模块。In one example, the gas standard substance holding device includes a gas cylinder cabinet and a gas cylinder placed in the gas cylinder cabinet; the gas standard substance is placed in the gas cylinder. The gas standard material holding device and the calibrated instrument system are stored at the indoor calibration site synchronously, which is the source of the traceability of the calibrated ambient gas analyzer. The gas cylinder containing the gas standard substance is placed in the gas cylinder cabinet, and is connected to the standard gas dynamic preparation module through the gas pipeline.
在一个示例中,所述标准气体动态配制模块包括:配制气体管路、压力调节阀、第一气体质量流量控制器、第二气体质量流量控制器和控制单元。In one example, the standard gas dynamic formulation module includes: a formulation gas pipeline, a pressure regulating valve, a first gas mass flow controller, a second gas mass flow controller, and a control unit.
所述配制气体管路用于连通所述气体标准物质盛放装置与所述气路控制模块、连通零气源与所述气路控制模块。所述压力调节阀设置在所述配制气体管路上;所述压力调节阀用于对瓶装的所述气体标准物质这一高压气体进行降压,得到降压后的气体标准物质,即相对低的压力,然后通过气体管路接入到第一气体质量流量控制器。气体质量流量控制器主要是将降压后的气体标准物质(高浓度)通过与零气源过来的稀释气进行流量配比,稀释成低浓度的标准气体,然后通过气体管路输出到气路控制模块,其中,所述第一气体质量流量控制器用于控制通入所述配制气体管路内的降压后的气体标准物质的流量;所述第二气体质量流量控制器用于控制通入所述配制气体管路内的洁净气体的流量。所述控制单元通过数据线分别与所述第一气体质量流量控制器、所述第二气体质量流量控制器和所述系统控制模块连接;所述控制单元用于选择自动匹配或手动匹配控制以上气体稀释过程、显示气体质量流量控制器中的气体流量以及显示稀释后的标准气体浓度。The preparation gas pipeline is used for connecting the gas standard substance holding device and the gas circuit control module, and connecting the zero gas source and the gas circuit control module. The pressure regulating valve is arranged on the preparation gas pipeline; the pressure regulating valve is used to depressurize the high-pressure gas of the gas standard substance in the bottle to obtain a depressurized gas standard substance, that is, a relatively low gas standard substance. The pressure is then connected to the first gas mass flow controller through the gas pipeline. The gas mass flow controller mainly mixes the depressurized gas standard substance (high concentration) with the dilution gas from the zero gas source, dilutes it into a low concentration standard gas, and then outputs it to the gas circuit through the gas pipeline. A control module, wherein the first gas mass flow controller is used to control the flow rate of the depressurized gas standard substance passed into the preparation gas pipeline; Describe the flow rate of clean gas in the preparation gas pipeline. The control unit is respectively connected with the first gas mass flow controller, the second gas mass flow controller and the system control module through a data line; the control unit is used to select automatic matching or manual matching to control the above Gas dilution process, display of gas flow rate in gas mass flow controller and display of diluted standard gas concentration.
在一个示例中,所述气路控制模块包括:第一控制气体管路、第二控制气体管路、第一电磁阀、第二电磁阀和可编程逻辑控制器。In one example, the gas circuit control module includes: a first control gas line, a second control gas line, a first solenoid valve, a second solenoid valve, and a programmable logic controller.
所述标准气体动态配制模块通过所述第一控制气体管路与所述被校环境气体分析仪连通;所述标准气体动态配制模块通过所述第二控制气体管路与所述采样管连通;所述可编程逻辑控制器分别与所述第一电磁阀、所述第二电磁阀和所述系统控制模块连接;所述可编程逻辑控制器用于控制所述第一电磁阀和所述第二电磁阀的开关状态;所述第一电磁阀用于控制所述第一控制气体管路的通断;所述第二电磁阀用于控制所述第二控制气体管路的通断。所述可编程逻辑控制器可将标准气体动态配制模块流出的低浓度的标准气体输出到被校环境气体分析仪中,以及切换进样方式,即由环境空气样品切换成标准气体,进入校准工作方式,或者由标准气体切换成环境空气样品,进入测量工作方式,从而实现在线溯源。The standard gas dynamic preparation module is communicated with the tested ambient gas analyzer through the first control gas pipeline; the standard gas dynamic preparation module is communicated with the sampling pipe through the second control gas pipeline; The programmable logic controller is respectively connected with the first solenoid valve, the second solenoid valve and the system control module; the programmable logic controller is used to control the first solenoid valve and the second solenoid valve The switch state of the solenoid valve; the first solenoid valve is used to control the on-off of the first control gas pipeline; the second solenoid valve is used to control the on-off of the second control gas pipeline. The programmable logic controller can output the low-concentration standard gas flowing out of the standard gas dynamic preparation module to the ambient gas analyzer under test, and switch the sampling mode, that is, switch the ambient air sample to the standard gas, and enter the calibration work. mode, or switch from standard gas to ambient air sample, enter the measurement working mode, so as to realize online traceability.
在一个示例中,为了实现对气体标准物质盛放装置、被校仪器系统和现场端标校系统所处的监测环境的监控,所述环境气体分析仪在线智能校准系统中,还设有现场监控辅件;所述现场监控辅件与所述系统控制模块连接;所述现场监控辅件用于获取实时现场信息;所述实时现场信息包括采样管的温度、采样管的流量、气体标准物质盛放装置内的压力、气体标准物质盛放装置是否存在泄露、被校仪器系统中干燥剂的图像、监测环境的图像、监测环境的温度、监测环境的湿度和监测环境的大气压力。所述系统控制模块还用于根据所述实时现场信息对所述气体标准物质盛放装置、所述被校仪器系统和所述监测环境进行监控,得到监控结果。所述系统控制模块还用于计算所述监测环境的温度与目标温度的温差,并根据所述温差调节所述被校环境气体分析仪所处环境的温度。In one example, in order to monitor the monitoring environment in which the gas standard material holding device, the instrument system to be calibrated, and the on-site calibration system are located, the online intelligent calibration system for ambient gas analyzers is also provided with on-site monitoring accessories; the on-site monitoring accessories are connected to the system control module; the on-site monitoring accessories are used to obtain real-time on-site information; the real-time on-site information includes the temperature of the sampling pipe, the flow rate of the sampling pipe, the gas standard material content The pressure in the storage device, whether there is leakage in the gas standard material storage device, the image of the desiccant in the instrument system to be calibrated, the image of the monitoring environment, the temperature of the monitoring environment, the humidity of the monitoring environment, and the atmospheric pressure of the monitoring environment. The system control module is further configured to monitor the gas standard substance holding device, the calibrated instrument system and the monitoring environment according to the real-time on-site information, and obtain monitoring results. The system control module is further configured to calculate the temperature difference between the temperature of the monitoring environment and the target temperature, and adjust the temperature of the environment where the ambient gas analyzer under test is located according to the temperature difference.
在实际应用中,所述现场监控辅件,包括:In practical applications, the on-site monitoring accessories include:
采样管温度传感器A、采样管流量传感器B、气体压力传感器C、气体泄漏传感器D、干燥剂图像传感器F、仪器图像传感器E、室内温度传感器G、室内湿度传感器H和室内大气压传感器I。室内温度传感器、室内湿度传感器和室内大气压传感器也可以集成到一个传感器设备上。Sampling tube temperature sensor A, sampling tube flow sensor B, gas pressure sensor C, gas leakage sensor D, desiccant image sensor F, instrument image sensor E, indoor temperature sensor G, indoor humidity sensor H and indoor atmospheric pressure sensor I. Room temperature sensor, room humidity sensor and room atmospheric pressure sensor can also be integrated into one sensor device.
所述采样管温度传感器A位于采样管中间的管壁上,用于监测环境空气采样管道的温度(伴热温度),当发现温度异常时发出报警信息。The sampling pipe temperature sensor A is located on the pipe wall in the middle of the sampling pipe, and is used to monitor the temperature (heat tracing temperature) of the ambient air sampling pipe, and issue an alarm message when abnormal temperature is found.
所述采样管流量传感器B位于采样管末端,用于监测环境空气采样管内的被测环境空气样品的流量,当发现流量异常时发出报警信息。The sampling tube flow sensor B is located at the end of the sampling tube and is used to monitor the flow of the measured ambient air sample in the ambient air sampling tube, and issue an alarm message when abnormal flow is found.
所述气体压力传感器C位于装有气体标准物质的气瓶出口与标准气体动态配制模块之间的气体管路上,用于采集气体标准物质盛放装置内的压力(具体的,监测装有气体标准物质气瓶的瓶内气体压力),当压力过低时发出报警信息。The gas pressure sensor C is located on the gas pipeline between the gas cylinder outlet containing the gas standard substance and the standard gas dynamic preparation module, and is used to collect the pressure in the gas standard substance holding device (specifically, monitoring the gas standard The gas pressure in the gas bottle of the material), when the pressure is too low, an alarm message will be issued.
所述气体泄漏传感器D位于气瓶柜内部,用于确定气体标准物质盛放装置是否存在泄露(具体的,监测装有气体标准物质的气瓶是否存在泄漏),当发现有气体泄漏时发出报警信息。The gas leak sensor D is located inside the gas cylinder cabinet, and is used to determine whether there is a leak in the gas standard substance holding device (specifically, monitor whether there is a leak in the gas cylinder containing the gas standard substance), and issue an alarm when a gas leak is found information.
所述干燥剂图像传感器F距离被校环境气体分析仪配备的干燥剂有一段距离,镜头正对干燥剂管,得到干燥剂的图像,基于图像识别技术,用于监测被校仪器所带气体干燥剂的变色情况,以判断其使用状况,当发现干燥剂由蓝色变成粉色时发出报警信息The desiccant image sensor F is at a distance from the desiccant equipped with the ambient gas analyzer to be calibrated. The lens is facing the desiccant tube to obtain an image of the desiccant. Based on image recognition technology, it is used to monitor the drying of the gas carried by the calibrated instrument. The discoloration of the desiccant can be judged to judge its use status, and an alarm message will be issued when the desiccant is found to change from blue to pink.
所述仪器图像传感器E位于被校仪器系统所处室内的某高出,镜头正对被校仪器系统和现场端标校系统,获取监测环境的图像,基于图像识别技术,用于监测被校环境气体分析仪和现场端标校系统的外观状态,以及监测环境(校准现场环境),当发现有异常情况时发出报警信息。The instrument image sensor E is located at a certain height in the room where the instrument system to be calibrated is located, and the lens is facing the instrument system to be calibrated and the on-site calibration system to obtain images of the monitoring environment. Based on image recognition technology, it is used to monitor the environment to be calibrated. The appearance status of the gas analyzer and the on-site calibration system, as well as the monitoring environment (calibration of the on-site environment), and an alarm message is issued when abnormal conditions are found.
所述室内温度传感器G位于被校仪器系统附近,用于获取监测环境的温度,即被校环境气体分析仪所在室内环境的温度,当发现温度异常时发出报警信息。The indoor temperature sensor G is located near the instrument system to be calibrated, and is used to obtain the temperature of the monitoring environment, that is, the temperature of the indoor environment where the ambient gas analyzer to be calibrated is located, and to issue an alarm message when abnormal temperature is found.
所述室内湿度传感器H位于被校仪器系统附近,用于获取监测环境的湿度,即被校环境气体分析仪所在室内环境的湿度,当发现湿度异常时发出报警信息。The indoor humidity sensor H is located near the instrument system to be calibrated, and is used to obtain the humidity of the monitoring environment, that is, the humidity of the indoor environment where the ambient gas analyzer to be calibrated is located, and to issue an alarm message when abnormal humidity is found.
所述室内大气压传感器I位于被校仪器系统附近,用于获取监测环境的大气压力,即被校环境气体分析仪所在室内环境的大气压力,当发现大气压异常时发出报警信息。The indoor atmospheric pressure sensor 1 is located near the instrument system under school, and is used to obtain the atmospheric pressure of the monitoring environment, that is, the atmospheric pressure of the indoor environment where the ambient gas analyzer under school is located, and sends out an alarm message when abnormal atmospheric pressure is found.
在一个示例中,所述系统控制模块,包括:In one example, the system control module includes:
自动零跨校准模块,内置有零跨校准程序,用于:Automatic zero-span calibration module with built-in zero-span calibration routine for:
在所述校准模式下,控制所述气路控制模块向所述被校环境气体分析仪输入所述洁净气体,并获取所述被校环境气体分析仪测得的气体浓度示值,根据所述气体浓度示值与零的差值对所述被校环境气体分析仪的零点参数进行调节;In the calibration mode, the gas circuit control module is controlled to input the clean gas to the ambient gas analyzer under test, and obtain the gas concentration indication value measured by the ambient gas analyzer under test, according to the The difference between the gas concentration indication and zero adjusts the zero-point parameter of the ambient gas analyzer under test;
在所述校准模式下,控制所述气路控制模块向所述被校环境气体分析仪输入不同浓度的标准气体,并获取所述被校环境气体分析仪测得的气体浓度示值,根据所述气体浓度示值与标准气体的浓度值的差值对所述被校环境气体分析仪的跨度参数进行调节;In the calibration mode, the gas circuit control module is controlled to input standard gases of different concentrations to the ambient gas analyzer under test, and the gas concentration indication value measured by the ambient gas analyzer under test is obtained. The difference between the gas concentration indication value and the standard gas concentration value adjusts the span parameter of the ambient gas analyzer under school;
自动示值校准模块,内置有自动示值校准程序,用于:Automatic value calibration module, with built-in automatic value calibration program, used for:
在所述测量模式下,控制所述气路控制模块向所述被校环境气体分析仪输入不同浓度的标准气体,并获取所述被校环境气体分析仪测得的气体浓度示值,由不同浓度的标准气体的浓度值与对应的气体浓度示值做线性回归曲线;In the measurement mode, the gas circuit control module is controlled to input standard gases with different concentrations to the ambient gas analyzer under test, and the gas concentration indications measured by the ambient gas analyzer under test are obtained, which are determined by different concentrations. Make a linear regression curve between the concentration value of the standard gas concentration and the corresponding gas concentration indication value;
控制所述气路控制模块将通入所述被校环境气体分析仪的不同浓度的标准气体切换为所述采样管采集的环境空气样品,并获取所述被校环境气体分析仪测得的环境空气样品的气体浓度示值,采用所述线性回归曲线对所述环境空气样品的气体浓度示值进行校正;Control the gas circuit control module to switch the standard gas of different concentrations that pass into the ambient gas analyzer under school to the ambient air sample collected by the sampling tube, and obtain the ambient air sample measured by the ambient gas analyzer under school. The gas concentration indication value of the air sample, the linear regression curve is used to correct the gas concentration indication value of the ambient air sample;
自动线性度核验模块,内置有自动线性度核验程序,用于:Automatic linearity verification module, built-in automatic linearity verification program, used for:
在所述校准模式下,控制所述气路控制模块向所述被校环境气体分析仪输入不同浓度的标准气体,并获取所述被校环境气体分析仪测得的气体浓度示值,由不同浓度的标准气体的浓度值与对应的气体浓度示值做线性回归曲线,并确定所述线性回归曲线的参数;所述参数包括截距、斜率和线性系数;In the calibration mode, the gas circuit control module is controlled to input standard gases with different concentrations to the ambient gas analyzer under test, and the gas concentration indications measured by the ambient gas analyzer under test are obtained, which are determined by different concentrations. The concentration value of the standard gas of concentration and the corresponding gas concentration indication value make a linear regression curve, and determine the parameters of the linear regression curve; the parameters include intercept, slope and linear coefficient;
将所述参数与设定参数控制目标进行比较,实现对所述参数的验证;Compare the parameter with the set parameter control target to realize the verification of the parameter;
自动稳定性核验模块,内置有自动稳定性核验程序,用于:Automatic stability verification module, built-in automatic stability verification program, used for:
在所述校准模式下,多次进行数据采集操作,得到所述被校环境气体分析仪测得的不同浓度的标准气体的气体浓度示值,并根据不同浓度的标准气体的气体浓度示值计算相对标准偏差值,将所述相对标准偏差值和设定偏差控制目标进行比较,实现对所述被校环境气体分析仪的稳定性的验证;In the calibration mode, data collection operations are performed multiple times to obtain the gas concentration indications of standard gases with different concentrations measured by the ambient gas analyzer under test, and calculate the gas concentration indications based on the gas concentration indications of standard gases with different concentrations Relative standard deviation value, comparing the relative standard deviation value with the set deviation control target to verify the stability of the ambient gas analyzer under school;
其中,所述数据采集操作为:Wherein, the data collection operation is:
控制所述气路控制模块向所述被校环境气体分析仪输入所述洁净气体,获取所述被校环境气体分析仪测得的气体浓度示值;当所述气体浓度示值与零的差值小于或等于设定值时,控制所述气路控制模块将通入所述被校环境气体分析仪的所述洁净气体切换为设定浓度的标准气体,并获取所述被校环境气体分析仪测得的设定浓度的标准气体的气体浓度示值。Control the gas circuit control module to input the clean gas to the ambient gas analyzer under test, and obtain the gas concentration indication value measured by the ambient gas analyzer under test; when the difference between the gas concentration indication value and zero When the value is less than or equal to the set value, control the gas circuit control module to switch the clean gas flowing into the tested ambient gas analyzer to the standard gas of the set concentration, and obtain the tested ambient gas analysis The gas concentration indication of the standard gas of the set concentration measured by the instrument.
在一个示例中,所述系统控制模块,还包括:现场端操作界面;In one example, the system control module further includes: a field-side operation interface;
所述现场端操作界面用于设定监控参数;所述监控参数包括校准参数和状态控制目标参数。The field terminal operation interface is used to set monitoring parameters; the monitoring parameters include calibration parameters and state control target parameters.
在一个示例中,系统控制模块包括工业控制机、显示器、键盘鼠标、交换机等,是实现自动校准的核心。工业控制机中内置自动零跨校准模块、自动示值校准模块、自动线性度核验模块和自动稳定性核验模块。显示器中有现场端操作界面。系统控制模块通过互联网与数据中心相连,实现数据传输;通过串口数据线与标准气体动态配制模块、气路控制模块、采样管温度传感器A、采样管流量传感器B、气体压力传感器C、气体泄漏传感器D、仪器图像传感器E、干燥剂图像传感器F、室内温度传感器G、室内湿度传感器H和室内大气压传感器I相连,实现数据传输;通过网线同时与多台被校仪器进行通讯,可实时读取仪器示值并且对仪器进行反控,并实时监控仪器内部的气体流量和压力、内部电流、电压和温度以及仪器内部报警等信息;通过无线传输或数据线实现对现场室内空调的控制。In one example, the system control module includes an industrial control computer, a display, a keyboard and mouse, a switch, etc., and is the core for realizing automatic calibration. The industrial control computer has built-in automatic zero-span calibration module, automatic indication calibration module, automatic linearity verification module and automatic stability verification module. There is a field terminal operation interface in the display. The system control module is connected to the data center through the Internet to realize data transmission; it is connected to the standard gas dynamic preparation module, the gas circuit control module, the sampling tube temperature sensor A, the sampling tube flow sensor B, the gas pressure sensor C, and the gas leakage sensor through the serial port data cable. D. The instrument image sensor E, the desiccant image sensor F, the indoor temperature sensor G, the indoor humidity sensor H and the indoor atmospheric pressure sensor I are connected to realize data transmission; communicate with multiple instruments to be calibrated at the same time through the network cable, and the instruments can be read in real time Display value and reverse control the instrument, and monitor the gas flow and pressure, internal current, voltage and temperature inside the instrument, as well as the internal alarm of the instrument in real time; realize the control of the on-site indoor air conditioner through wireless transmission or data line.
在一个示例中,所述环境气体分析仪在线智能校准系统,还包括:数据中心和用户端显示系统。In one example, the online intelligent calibration system for the ambient gas analyzer further includes: a data center and a client display system.
所述数据中心与所述系统控制模块连接;所述数据中心用于接收所述系统控制模块发送的校准结果和监控结果,并根据所述校准结果和所述监控结果发出报警信息。数据中心通过互联网与现场端标校系统和用户端显示系统相连,实现数据传输,数据中心可以依托于实际的大型计算机服务器系统,也可以依托于云服务器系统。数据中心可收集、整理和保存对被校仪器和校准现场的数据、信息和视频图像、设定控制目标和校准流程,按照预设方式形成记录、结果或报告。当标准气体、被校仪器、采样管道及其周围环境在日常运行出现异常时或校准过程中出数据超差时,数据中心会实时发送报警或维护通知给用户,提醒其及时维护。The data center is connected to the system control module; the data center is configured to receive calibration results and monitoring results sent by the system control module, and issue alarm information according to the calibration results and the monitoring results. The data center is connected to the on-site calibration system and the user-end display system through the Internet to realize data transmission. The data center can rely on the actual large-scale computer server system or cloud server system. The data center can collect, organize and save the data, information and video images of the calibrated instruments and calibration sites, set control objectives and calibration procedures, and form records, results or reports in a preset manner. When the standard gas, the instrument to be calibrated, the sampling pipeline and its surrounding environment are abnormal in the daily operation or the data is out of tolerance during the calibration process, the data center will send an alarm or maintenance notification to the user in real time to remind them to maintain in time.
所述用户端显示系统与所述数据中心连接;所述用户端显示系统用于显示所述报警信息。用户端显示系统包括电脑显示设备和手机显示设备,用户端通过电脑显示设备登录数据中心获取被校仪器的校准记录、结果和报告,以及被校仪器和周围环境的实时视频图像、报警或维护通知;也可通过手机显示设备查看以上信息,手机显示设备同时具有报警或维护通知短信提醒功能。The client display system is connected to the data center; the client display system is used to display the alarm information. The user terminal display system includes computer display equipment and mobile phone display equipment. The user terminal logs in to the data center through the computer display equipment to obtain the calibration records, results and reports of the instruments being calibrated, as well as real-time video images, alarms or maintenance notices of the instruments being calibrated and the surrounding environment. ; You can also view the above information through the mobile phone display device, which also has the function of alarm or maintenance notification SMS reminder.
下面对本实施例的环境气体分析仪在线智能校准系统进一步详细说明。The online intelligent calibration system for the ambient gas analyzer of this embodiment will be further described in detail below.
从软件角度来说,环境气体分析仪在线智能校准系统的软件部分包括:智能校准部分、状态监控部分和数据管理部分。其中智能校准部分用于控制现场端标校系统对被校仪器进行校准操作,通过标准气体动态配制模块智能配制目标浓度的标准气体,通入被校仪器;具有零跨校准程序、示值校准程序、线性度核验程序、稳定性核验程序等程序;这些程序可以单独使用也可以组合使用;具备数据统计、分析、运算和判断功能,可将修正指令反馈给被校仪器。校准频率的设定可以根据工作需要设为一周一次、几天一次或者一天一次,从而实现高频校准。可以根据工作需要,自由设定校准程序的启动时间,可以是夜里自行启动,也可以是白天自行启动。可以选择自动校准也可以选择手动校准,当选择自动校准时,校准程序根据设计的校准频率和启动时间,自行启动;当选择手动校准时,可由工作人员在现场控制现场端标校系统,进行校准操作。From the software point of view, the software part of the online intelligent calibration system of ambient gas analyzer includes: intelligent calibration part, state monitoring part and data management part. The intelligent calibration part is used to control the on-site calibration system to calibrate the instrument to be calibrated. The standard gas of the target concentration is intelligently prepared through the standard gas dynamic preparation module and passed into the instrument to be calibrated; it has zero-span calibration procedures and indication calibration procedures. , linearity verification program, stability verification program and other programs; these programs can be used alone or in combination; they have data statistics, analysis, calculation and judgment functions, and can feedback correction instructions to the instrument to be calibrated. The calibration frequency can be set to once a week, once a few days or once a day according to work needs, so as to achieve high-frequency calibration. The starting time of the calibration program can be freely set according to the work needs, which can be started by itself at night or by itself during the day. You can choose automatic calibration or manual calibration. When automatic calibration is selected, the calibration program starts automatically according to the designed calibration frequency and startup time; when manual calibration is selected, the staff can control the field-side calibration system on-site for calibration. operate.
其中,通过标准气体动态配制模块智能配制目标浓度的标准气体的实现方式如下:根据瓶装气体标准物质的标称浓度值、被校仪器的满量程和拟校准的浓度点位(例如10%满量程、80%满量程等),自动计算出标准气体动态配制的目标浓度,并且根据该目标浓度和设定好的标准气体总流量,自动调节标准气体动态配制模块内两个气体质量流量控制器的流量输出值,第一气体质量流量控制器控制瓶装气体标准物质的流量,第二气体质量流量控制器控制来自零气源的稀释气的流量,从而将高浓度的瓶装气体标准物质稀释到目标浓度的标准气体。如果瓶装气体标准物质中的特性组分不只一个,而是多个特性组分,则先选择锁定一个特性组分,稀释到目标浓度,将该目标浓度除以瓶装气体标准物质中该组分的标称浓度值计算出一个稀释系数。瓶装气体标准物质中其它特性组分稀释后的浓度通过瓶装气体标准物质中其它特性组分的标称浓度值乘以该稀释系数计算得到。Among them, the realization method of intelligently preparing standard gas of target concentration through the standard gas dynamic preparation module is as follows: according to the nominal concentration value of the bottled gas standard substance, the full scale of the instrument to be calibrated and the concentration point to be calibrated (for example, 10% of the full scale) , 80% full scale, etc.), automatically calculate the target concentration of the standard gas dynamic preparation, and automatically adjust the two gas mass flow controllers in the standard gas dynamic preparation module according to the target concentration and the set standard gas total flow. Flow output value, the first gas mass flow controller controls the flow rate of the bottled gas standard material, and the second gas mass flow controller controls the flow rate of the dilution gas from the zero gas source, thereby diluting the high concentration bottled gas standard material to the target concentration standard gas. If there is more than one characteristic component in the bottled gas standard material, but multiple characteristic components, first select and lock one characteristic component, dilute it to the target concentration, and divide the target concentration by the amount of the component in the bottled gas standard material. The nominal concentration value calculates a dilution factor. The diluted concentration of other characteristic components in the bottled gas standard material is calculated by multiplying the nominal concentration value of other characteristic components in the bottled gas standard material by the dilution factor.
在自动校准流程启动后现场端标校系统的系统控制模块向标准气体动态配制模块下发配气指令,标准气体动态配制模块根据接收到的配气指令自动对高浓度气体标准物质进行稀释并输出低浓度标准气体;向气路控制模块下发气路切换指令,气路控制模块接收到气路切换指令后打开和关闭相应的电磁阀将低浓度标准气体输入到被校仪器中;系统控制模块实时从被校准仪器中获取仪器测量标准气体的示值,并对示值进行分析和判断,并根据判断结果选择是否对被校仪器进行处理或调节。After the automatic calibration process is started, the system control module of the on-site calibration system sends a gas distribution command to the standard gas dynamic preparation module, and the standard gas dynamic preparation module automatically dilutes the high-concentration gas standard substance according to the received gas distribution command and outputs low Concentration standard gas; send the gas circuit switching command to the gas circuit control module, and the gas circuit control module opens and closes the corresponding solenoid valve after receiving the gas circuit switching command to input the low-concentration standard gas into the instrument under test; the system control module real-time Obtain the indication value of the standard gas measured by the instrument from the calibrated instrument, analyze and judge the indication value, and choose whether to process or adjust the calibrated instrument according to the judgment result.
其中,自动零跨校准程序的实现方式如下:在预设的时间点或在上一个校准程序结束后,系统自动启动该校准程序,通过标准气体动态配制模块将来自零气源的稀释气通入被校仪器,自动控制气体的流量,实时采集被校仪器的原始信号示值,当被校仪器示值稳定后,自动比较仪器信号示值(即气体浓度示值)与“0”的差异,得到气体浓度示值与“0”的差值,自动将该差值与设定零点校准控制目标(如:对于NO和SO2两个气体组分,其设定零点校准控制目标为气体浓度示值与“0”的差值不超过±10nmol/mol,对于CO气体组分,其设定零点校准控制目标为气体浓度示值与“0”的差值不超过±1μmol/mol)相比较判断差异的显著性与否,当差异显著(差值不满足设定零点校准控制目标)时自动发送反馈修正指令给被校仪器,根据该差异对被校仪器的零点参数进行调节,当差异不显著(差值满足设定零点校准控制目标)时,则不进行反馈修正。再根据程序设定通过标准气体动态配制模块将瓶装气体标准物质自动配制成被校仪器跨度校准用浓度点的标准气体(例如80%量程点),通入被校仪器,自动控制气体的流量,实时采集被校仪器的原始信号示值,当被校仪器示值稳定后,自动比较仪器信号示值(气体浓度示值)与此时标准气体的浓度值的差异,得到气体浓度示值与标准气体的浓度值的差值,自动将该差值与设定跨度校准控制目标(如:对于NO、SO2和CO三个气体组分,其设定跨度校准控制目标为气体浓度示值与标准气体的浓度值的差异不超过标准气体的浓度值的±5%)相比较判断差异的显著性与否,当差异显著(差异不满足设定跨度校准控制目标)时自动发送反馈修正指令给被校仪器,根据该差异对被校仪器的跨度参数进行调节,当差异不显著(差异满足设定跨度校准控制目标)时,则不进行反馈修正。如果跨度参数进行了调节,系统自动重复运行零跨校准程序,再次自动判断零点校准时的示值差异是否满足设定零点校准控制目标且跨度校准时的示值差异是否满足设定跨度校准控制目标,如果均满足,则结束零跨校准程序,报送全部校准记录给数据中心;如果不满足,则再进行反馈修正调节和再重复零跨校准程序。如果多次重复零跨校准程序,均不能同时满足设定零点校准控制目标和设定跨度校准控制目标,则结束校准程序,报送“零跨校准超差”的信息和全部校准记录给数据中心,数据中心将报警或维护通知发给用户端显示系统。Among them, the implementation of the automatic zero-span calibration procedure is as follows: at a preset time point or after the end of the previous calibration procedure, the system automatically starts the calibration procedure, and the dilution gas from the zero gas source is passed through the standard gas dynamic preparation module. The calibrated instrument automatically controls the gas flow, collects the original signal indication value of the calibrated instrument in real time, and automatically compares the difference between the instrument signal indication value (that is, the gas concentration indication value) and "0" when the calibrated instrument indication value is stable. Obtain the difference between the gas concentration indication and "0", and automatically set the difference to the zero calibration control target (for example, for NO and SO 2 gas components, set the zero calibration control target to be the gas concentration indication The difference between the value and "0" does not exceed ±10nmol/mol. For CO gas components, the set zero calibration control target is that the difference between the gas concentration indication and "0" does not exceed ±1μmol/mol). Whether the difference is significant or not, when the difference is significant (the difference does not meet the set zero calibration control target), the feedback correction command is automatically sent to the instrument to be calibrated, and the zero parameter of the instrument to be calibrated is adjusted according to the difference. When the difference is not significant (The difference satisfies the set zero calibration control target), no feedback correction is performed. Then according to the program setting, the bottled gas standard material is automatically prepared into the standard gas at the concentration point (such as 80% of the span) used for the span calibration of the calibrated instrument through the standard gas dynamic preparation module, and then passed into the calibrated instrument to automatically control the gas flow. Collect the original signal indication value of the calibrated instrument in real time, when the calibrated instrument indication value is stable, automatically compare the difference between the instrument signal indication value (gas concentration indication value) and the concentration value of the standard gas at this time, and obtain the gas concentration indication value and the standard gas concentration value. The difference value of the gas concentration value, the difference value and the set span calibration control target are automatically set (for example: for NO, SO 2 and CO three gas components, the set span calibration control target is the gas concentration indication value and the standard The difference of the concentration value of the gas does not exceed ±5% of the concentration value of the standard gas) to compare and judge whether the difference is significant or not. When the difference is significant (the difference does not meet the set span calibration control target), it will automatically send a feedback correction command to the receiver. When the difference is not significant (the difference meets the set span calibration control target), no feedback correction is performed. If the span parameter is adjusted, the system automatically repeats the zero-span calibration procedure, and automatically judges again whether the indication difference during zero calibration meets the set zero calibration control target and whether the indication difference during span calibration meets the set span calibration control target , if all are satisfied, end the zero-span calibration procedure, and submit all calibration records to the data center; if not, perform feedback correction adjustment and repeat the zero-span calibration procedure. If the zero-span calibration procedure is repeated many times, and the set zero-span calibration control target and the set span calibration control target cannot be met at the same time, end the calibration procedure, and report the information of "zero-span calibration out of tolerance" and all calibration records to the data center , the data center will send the alarm or maintenance notification to the client display system.
其中,自动示值校准程序的实现方式如下:在预设的时间点或在上一个校准程序结束后,系统自动启动该校准程序,根据程序设定通过标准气体动态配制模块将瓶装气体标准物质自动配制成不同浓度点的标准气体(如:0、10%、20%、40%、60%和80%量程点),通入被校仪器,自动控制气体的流量,实时采集被校仪器的原始信号示值,当被校仪器示值稳定后,自动记录仪器原始信号示值和标准气体浓度值,将不同浓度点的标准气体浓度值与对应的仪器原始信号示值,做线性回归曲线,保存该回归曲线的参数(例如截矩、斜率和线性系数)。现场端标校系统自动通过气路控制模块切换进样方式,由标准气体切换成环境空气样品,将被测量的实际环境空气样品引入到被校仪器中,实时采集被校仪器的原始信号示值,并根据最近一次获得的回归曲线参数自动计算出被测环境空气样品的真实浓度值,报送全部校准记录给数据中心。Among them, the realization of the automatic indication calibration procedure is as follows: at a preset time point or after the end of the previous calibration procedure, the system automatically starts the calibration procedure, and according to the procedure setting, the bottled gas standard material is automatically prepared through the standard gas dynamic preparation module Prepare standard gas with different concentration points (such as: 0, 10%, 20%, 40%, 60% and 80% of the range point), pass it into the calibrated instrument, automatically control the gas flow, and collect the original data of the calibrated instrument in real time. Signal indication value, when the calibrated instrument indication value is stable, the original signal indication value of the instrument and the standard gas concentration value are automatically recorded, and the standard gas concentration value at different concentration points and the corresponding instrument original signal indication value are drawn into a linear regression curve and saved. Parameters of this regression curve (eg intercept, slope, and linearity coefficients). The on-site calibration system automatically switches the sampling mode through the gas circuit control module, from the standard gas to the ambient air sample, introduces the measured actual ambient air sample into the instrument to be calibrated, and collects the original signal indication value of the instrument to be calibrated in real time. , and automatically calculate the true concentration value of the tested ambient air sample according to the most recent regression curve parameters, and submit all calibration records to the data center.
其中,自动线性度核验程序的实现方式如下:在预设的时间点或在上一个校准程序结束后,系统自动启动该校准程序,根据程序设定通过标准气体动态配制模块将瓶装气体标准物质自动配制成不同浓度点的标准气体(如:0、10%、20%、40%、60%和80%量程点),通入被校仪器,自动控制气体的流量,实时采集被校仪器的原始信号示值,当被校仪器示值稳定后,自动记录仪器原始信号示值和标准气体浓度值,将不同浓度点的标准气体浓度值与对于的仪器原始信号示值,做线性回归曲线,保存该回归曲线的参数(例如截矩、斜率、线性系数),结束程序。系统自动判断获得的截矩、斜率、线性系数等参数与设定参数控制目标(截距在满量程的±1%范围内、0.95≤斜率≤1.05、线性系数>0.999)相比较是否存在显著性差异。如果差异显著(参数不满足设定参数控制目标),则报送“线性度核验超差”的信息和全部核验记录给数据中心,数据中心将报警或维护通知发给用户端显示系统;如果差异不显著(参数满足设定参数控制目标),则报送全部核验记录给数据中心。Among them, the realization of the automatic linearity verification program is as follows: at a preset time point or after the end of the previous calibration program, the system automatically starts the calibration program, and according to the program settings, the bottled gas standard material is automatically prepared through the standard gas dynamic preparation module. Prepare standard gas with different concentration points (such as: 0, 10%, 20%, 40%, 60% and 80% of the range point), pass it into the calibrated instrument, automatically control the gas flow, and collect the original data of the calibrated instrument in real time. Signal indication value, when the calibrated instrument indication value is stable, the original signal indication value of the instrument and the standard gas concentration value are automatically recorded, and the standard gas concentration value at different concentration points and the original signal indication value of the corresponding instrument are used to make a linear regression curve and save. parameters of the regression curve (eg intercept, slope, linear coefficient), and the program ends. The system automatically judges whether the obtained parameters such as intercept, slope and linear coefficient are significant compared with the set parameter control target (intercept within ±1% of full scale, 0.95≤slope≤1.05, linear coefficient>0.999). difference. If the difference is significant (parameters do not meet the set parameter control objectives), the information of "linearity verification out of tolerance" and all verification records will be reported to the data center, and the data center will send an alarm or maintenance notification to the client display system; If it is not significant (parameters meet the set parameter control objectives), then submit all verification records to the data center.
其中,自动稳定性核验程序的实现方式如下:在预设的时间点或在上一个校准程序结束后,系统自动启动该校准程序,根据程序设定通过标准气体动态配制模块将来自零气源的稀释气通入被校仪器,自动控制气体的流量,实时采集被校仪器的原始信号示值,当被校仪器示值稳定,并且与“0”的差异不大于某预设值时,通过标准气体动态配制模块将瓶装气体标准物质自动配制成某一浓度点的标准气体(如:20%量程点),通入被校仪器,自动控制气体的流量,实时采集被校仪器的原始信号示值,当被校仪器示值稳定后,自动记录仪器原始信号示值。循环重复通入零气和标准气体多次,获得多个原始信号示值数据,结束程序。系统自动对这些数据进行统计分析获得其相对标准偏差值,系统自动判断获得的相对标准偏差值与设定偏差控制目标(如:仪器示值的相对标准偏差值≤5%)相比较是否存在显著性差异。如果差异显著(相对标准偏差值不满足设定偏差控制目标),则报送“稳定性核验超差”的信息和全部核验记录给数据中心,数据中心将报警或维护通知发给用户端显示系统;如果差异不显著(相对标准偏差值满足设定偏差控制目标),则报送全部核验记录给数据中心。如果在该程序执行过程中出现通入来自零气源的稀释气时,被校仪器示值不稳定,或者虽然稳定、但是与“0”的差异大于某预设值时,停止该程序,报送“稳定性核验超差”的信息和全部核验记录给数据中心,数据中心将报警或维护通知发给用户端显示系统。Among them, the implementation of the automatic stability verification program is as follows: at a preset time point or after the end of the previous calibration program, the system automatically starts the calibration program, and according to the program settings, the standard gas dynamic preparation module will be from the zero gas source. The dilution gas is fed into the instrument to be calibrated, the flow of the gas is automatically controlled, and the original signal indication value of the instrument to be calibrated is collected in real time. The gas dynamic preparation module automatically prepares the standard gas of bottled gas into a standard gas of a certain concentration point (such as: 20% of the range point), passes it into the calibrated instrument, automatically controls the gas flow, and collects the original signal indication value of the calibrated instrument in real time. , when the calibrated instrument indication is stable, the original signal indication of the instrument is automatically recorded. Repeat the cycle of feeding zero gas and standard gas many times to obtain multiple original signal indication data, and end the program. The system automatically performs statistical analysis on these data to obtain the relative standard deviation value, and the system automatically determines whether the relative standard deviation value obtained is significantly compared with the set deviation control target (for example: the relative standard deviation value of the instrument display value ≤ 5%). sexual differences. If the difference is significant (the relative standard deviation value does not meet the set deviation control target), report the information of "stability verification out of tolerance" and all verification records to the data center, and the data center will send an alarm or maintenance notification to the client display system ; If the difference is not significant (the relative standard deviation value meets the set deviation control target), submit all verification records to the data center. If the indication value of the instrument to be calibrated is unstable when the dilution gas from the zero gas source is introduced during the execution of the program, or the difference from "0" is greater than a preset value although it is stable, stop the program and report Send the information of "stability verification out of tolerance" and all verification records to the data center, and the data center will send an alarm or maintenance notification to the client display system.
状态监控部分通过现场监控辅件和系统控制模块实现对被校仪器和校准系统的全方位监测:实时监测标准气体状态,例如瓶内气体压力、气体泄漏、气体流量,并将监测值与相应的数据质量控制目标(如:气瓶内气体压力不低于1MPa、气体浓度小于传感器的设定报警阈值、气体流量测量值与设定气体流量值的差异小于设定气体流量值的1%)相比较;实时监测被校仪器的关键参数,例如仪器内部的气体流量和压力、内部电流、电压和温度、报警信息等,并将监测值与相应的数据质量控制目标(由仪器制造厂家给定)相比较;实时监测环境空气采样管道,例如采样管伴热温度、采样管内被测环境空气样品的流量,并将监测值与相应的数据质量控制目标(如:温度控制目标为设定温度值的±5℃、流量控制目标为设定流量值的20%)相比较;实时视频监测被校仪器干燥剂的状况、被校仪器和现场端标校系统的外观状态和校准现场环境,并将图像识别的结果与正常图像相比较;实时监测室内温度、湿度、大气压,并将监测值与相应的数据质量控制目标(如:温度控制目标为设定温度值的±2℃、湿度控制目标为设定湿度值的±20%HR)相比较,并可对室内空调温度进行调控。所有监控数据、记录和视频图像都通过系统控制模块实时发送给数据中心,当发现监测到的某项数据超过相应的数据质量控制目标要求或图像识别结果与正常图像有明显差异时,实时发送该项报警信息给数据中心,并由数据中心将报警或维护通知发给用户端显示系统。The state monitoring part realizes all-round monitoring of the instrument under test and calibration system through the on-site monitoring accessories and system control module: real-time monitoring of the standard gas state, such as gas pressure in the bottle, gas leakage, gas flow, and the monitoring value and the corresponding. Data quality control objectives (such as: the gas pressure in the gas cylinder is not less than 1MPa, the gas concentration is less than the set alarm threshold of the sensor, the difference between the gas flow measurement value and the set gas flow value is less than 1% of the set gas flow value) Compare; monitor the key parameters of the instrument being calibrated in real time, such as gas flow and pressure inside the instrument, internal current, voltage and temperature, alarm information, etc., and compare the monitored value with the corresponding data quality control target (given by the instrument manufacturer) Compare; real-time monitoring of ambient air sampling pipes, such as the sampling pipe heat tracing temperature, the flow rate of the measured ambient air samples in the sampling pipe, and the monitoring value and the corresponding data quality control target (for example: the temperature control target is the set temperature value. ±5°C, the flow control target is 20% of the set flow value); real-time video monitors the condition of the desiccant of the calibrated instrument, the appearance state of the calibrated instrument and the on-site calibration system, and the calibration site environment, and converts the image The recognition result is compared with the normal image; the indoor temperature, humidity, and atmospheric pressure are monitored in real time, and the monitoring value is compared with the corresponding data quality control target (for example: the temperature control target is ±2°C of the set temperature value, and the humidity control target is the set temperature value. It can be compared with ±20% HR) of the constant humidity value, and the temperature of the indoor air conditioner can be regulated. All monitoring data, records and video images are sent to the data center in real time through the system control module. When it is found that the monitored data exceeds the corresponding data quality control target requirements or the image recognition results are significantly different from normal images, the real-time The alarm information is sent to the data center, and the data center will send the alarm or maintenance notification to the client display system.
当监测到的室内温度超过设定的控制目标参数范围时,现场端标校系统的系统控制模块自动计算温差,并根据温差向冷暖空调发送调温指令,调节被校仪器所在室内环境的温度,使其处于被校仪器正常工作的温度范围内。如果调节后室内温度仍超过设定的控制目标范围,则现场端标校系统自动记录信息,并实时发送该项报警信息给数据中心,并由数据中心将报警或维护通知发给用户端显示系统。When the monitored indoor temperature exceeds the set control target parameter range, the system control module of the on-site calibration system automatically calculates the temperature difference, and sends a temperature adjustment command to the heating and cooling air conditioner according to the temperature difference to adjust the temperature of the indoor environment where the calibrated instrument is located. Keep it within the temperature range for the normal operation of the instrument being calibrated. If the indoor temperature still exceeds the set control target range after adjustment, the on-site calibration system will automatically record the information, and send the alarm information to the data center in real time, and the data center will send the alarm or maintenance notification to the user-end display system .
数据管理部分包括数据及图像的获取、保存、分析、处理和监控参数的设定。现场端标校系统获取包括校准记录、校准结果、超差信息、状态监控的数据及图像信息保存在现场端同时,实时发送给数据中心;数据中心保存现场端标校系统发来的所有数据及图像信息。现场端标校系统保存的数据及图像信息以周、月或年计,循环更新;数据中心永久保存获得的数据及图像信息。现场端标校系统对校准结果是否超差、监控参数是否超过控制目标进行分析和判断,当出现超差或超目标时,发送报警信息给数据中心。当根据校准程序需要对被校仪器进行修正处理时,现场端标校系统自动发送修正反馈的指令给被校仪器,被校仪器根据该指令自动调整相关参数,实现修正。数据中心对现场端标校系统发来的全部数据和图像信息进行保存和分析,对于超差和超目标的情况实时以短信的方式发送报警或维护信息给用户端显示系统,提示用户及时维护。The data management part includes data and image acquisition, storage, analysis, processing and the setting of monitoring parameters. The on-site calibration system acquires data including calibration records, calibration results, out-of-tolerance information, status monitoring, and image information, which is stored on the site and sent to the data center in real time; the data center saves all the data sent by the on-site calibration system and image information. The data and image information saved by the on-site calibration system are updated cyclically on a weekly, monthly or annual basis; the data center permanently saves the obtained data and image information. The on-site calibration system analyzes and judges whether the calibration results are out of tolerance and whether the monitoring parameters exceed the control target. When the calibrated instrument needs to be corrected according to the calibration procedure, the on-site calibration system automatically sends a correction feedback command to the calibrated device, and the calibrated device automatically adjusts the relevant parameters according to the command to realize the correction. The data center saves and analyzes all the data and image information sent by the on-site calibration system, and sends alarm or maintenance information to the user-end display system in real time in the form of text messages for out-of-tolerance and out-of-target situations, prompting users to maintain in time.
其中,监控参数设定可以通过现场端标校系统登录现场端操作界面来完成,也可以通过用户端显示系统登录数据中心,由数据中心来完成,两者实时同步,当出现矛盾时,以数据中心设定为准。监控参数的设定包括:校准参数和状态控制目标参数。Among them, the monitoring parameter setting can be completed by logging into the field-side operation interface through the on-site calibration system, or by logging into the data center through the user-end display system, which is completed by the data center, and the two are synchronized in real time. The center setting shall prevail. The settings of monitoring parameters include: calibration parameters and state control target parameters.
校准参数,例如瓶装气体标准物质的标称浓度值、标准气体动态配制模块配制的标准气体总流量、校准程序的选择、拟校准的浓度点位、校准中的数据质量控制目标(设定零点校准控制目标、设定跨度校准控制目标、设定参数控制目标、设定偏差控制目标)、校准程序启动时间、校准程序循环次数等。Calibration parameters, such as the nominal concentration value of the bottled gas standard material, the total flow of the standard gas prepared by the standard gas dynamic preparation module, the selection of the calibration program, the concentration point to be calibrated, the data quality control target in the calibration (set the zero point calibration) Control target, set span calibration control target, set parameter control target, set deviation control target), calibration program start time, calibration program cycle times, etc.
状态控制目标参数,例如瓶装气体标准物质瓶内气体压力的最低压力、气体泄漏报警器是否发出报警信号、环境空气采样管伴热的温度范围、环境空气采样管道内的被测环境空气样品的流量范围、被校仪器所在室内环境温度的范围、被校仪器内部的气体流量和压力、内部电流电压和温度的正常工作范围、实时视频监测到的被校仪器干燥剂、被校仪器和现场端标校系统的图像识别结果与正常图像相比的差异度等。Status control target parameters, such as the minimum pressure of the gas pressure in the bottle of the bottled gas standard material, whether the gas leak alarm sends an alarm signal, the temperature range of the ambient air sampling pipe heat tracing, the flow rate of the ambient air sample to be measured in the ambient air sampling pipe Scope, the range of the indoor ambient temperature of the instrument to be calibrated, the gas flow and pressure inside the instrument to be calibrated, the normal working range of internal current, voltage and temperature, the desiccant of the instrument to be calibrated monitored by real-time video, the instrument to be calibrated and the on-site terminal mark The difference between the image recognition result of the calibration system and the normal image, etc.
本实施例的环境气体分析仪在线智能校准系统,可自动实现每天、每周、每季度对环境气体分析仪进行智能校准,并且对校准用的标准气体、被校仪器、采样管道和监测站内的环境状态进行实时监测。该系统实现了智能校准:可根据目标自动配制标准气体,并对被校仪器进行在线溯源、反馈修正和高频校准,整个校准过程自动运行,可自动采集数据、生成记录和校准报告;该系统实现了全方位监测:可实时监测标准气体状态,例如瓶内气体压力、气体泄漏、气体流量,可实时监测被校仪器的关键参数,例如内部气体流量和压力、内部电流电压和温度、干燥剂状况等,可实时监测环境空气采样管道,例如采气管伴热温度、采气流量,可实时监测站内环境状态,例如室内温度、湿度、大气压,并可对室内空调温度进行调控。本系统设有现场端标校系统、数据中心和用户端显示系统。现场端标校系统通过网口同时对多台被校的环境气体分析仪进行通讯,可实时读取被校仪器示值并且对被校仪器进行反控和示值反馈修正,现场端标校系统含有现场监控辅件,通过串口实现对流量、温度、湿度、气体压力、气体泄漏等参数的实时监测及控制;现场端标校系统将采集到的校准数据、监控数据和视频图像,通过互联网发送给数据中心,实现数据中心对被校仪器和校准现场的监测、控制和记录,以及校准数据的收集和校准报告的编制;数据中心通过互联网接入用户端显示系统,用户通过显示系统登录数据中心获取被校仪器的校准记录、结果和报告,被校仪器和周围环境的实时视频图像,以及数据中心发来的通知;当气体标准物质、被校仪器、采样系统及其周围环境在日常运行或校准过程中出现异常或者超差时,数据中心会实时发送通知给用户,提醒其及时维护。The online intelligent calibration system of the ambient gas analyzer in this embodiment can automatically realize the intelligent calibration of the ambient gas analyzer every day, every week, and every quarter, and can automatically calibrate the standard gas used for calibration, the instrument to be calibrated, the sampling pipeline and the monitoring station. Real-time monitoring of environmental status. The system realizes intelligent calibration: it can automatically prepare standard gas according to the target, and perform online traceability, feedback correction and high-frequency calibration for the calibrated instruments. The entire calibration process runs automatically, and can automatically collect data, generate records and calibration reports; the system Realize all-round monitoring: standard gas status can be monitored in real time, such as gas pressure in bottle, gas leakage, gas flow, and key parameters of the instrument being calibrated can be monitored in real time, such as internal gas flow and pressure, internal current, voltage and temperature, desiccant It can monitor the ambient air sampling pipeline in real time, such as the heating temperature of the gas sampling pipe and the gas sampling flow rate, and can monitor the environmental status in the station in real time, such as indoor temperature, humidity, and atmospheric pressure, and can adjust the indoor air conditioning temperature. The system is equipped with on-site calibration system, data center and user-end display system. The on-site calibration system communicates with multiple ambient gas analyzers to be calibrated at the same time through the network port, and can read the displayed value of the calibrated instrument in real time and perform reverse control and feedback correction on the calibrated device. The on-site calibration system It contains on-site monitoring accessories, and realizes real-time monitoring and control of parameters such as flow, temperature, humidity, gas pressure, gas leakage, etc. through the serial port; the on-site calibration system will collect the calibration data, monitoring data and video images, and send them through the Internet For the data center, the data center can monitor, control and record the instruments to be calibrated and the calibration site, as well as the collection of calibration data and the preparation of calibration reports; the data center accesses the client display system through the Internet, and the user logs in to the data center through the display system Obtain calibration records, results and reports of the calibrated instruments, real-time video images of the calibrated instruments and the surrounding environment, and notifications from the data center; When an abnormality or out-of-tolerance occurs during the calibration process, the data center will send a notification to the user in real time to remind them to maintain in time.
该以实时采样、自动监控、智能校准为一体的环境气体分析仪在线智能校准系统替代了人工定时去现场进行校准的繁杂工作,实现了对环境气体分析仪的智能校准,解决了目前人工校准存在的操作繁琐、费时费力、溯源不及时、数据真实性和有效性得不到有力保证、运维成本过高等一系列问题,提高了对环境气体分析仪的校准频率及效率,降低了运维成本,杜绝了因为人为因素造成的原始数据错误或者造假等一系列问题。The online intelligent calibration system for ambient gas analyzers, which integrates real-time sampling, automatic monitoring, and intelligent calibration, replaces the complicated work of manually going to the site for calibration at regular intervals, realizes intelligent calibration of ambient gas analyzers, and solves the problem of existing manual calibration. A series of problems such as cumbersome operation, time-consuming and laborious, untimely traceability, data authenticity and validity cannot be guaranteed, and operation and maintenance costs are too high, which improves the calibration frequency and efficiency of ambient gas analyzers and reduces operation and maintenance costs. , to eliminate a series of problems such as original data errors or falsification caused by human factors.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other.
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。In this paper, specific examples are used to illustrate the principles and implementations of the present invention. The descriptions of the above embodiments are only used to help understand the methods and core ideas of the present invention; meanwhile, for those skilled in the art, according to the present invention There will be changes in the specific implementation and application scope. In conclusion, the contents of this specification should not be construed as limiting the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210317838.8A CN114660241A (en) | 2022-03-29 | 2022-03-29 | An online intelligent calibration system for ambient gas analyzers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210317838.8A CN114660241A (en) | 2022-03-29 | 2022-03-29 | An online intelligent calibration system for ambient gas analyzers |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114660241A true CN114660241A (en) | 2022-06-24 |
Family
ID=82033127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210317838.8A Pending CN114660241A (en) | 2022-03-29 | 2022-03-29 | An online intelligent calibration system for ambient gas analyzers |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114660241A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115372418A (en) * | 2022-08-12 | 2022-11-22 | 深圳绿米联创科技有限公司 | Gas sensor testing and calibrating method and system and electronic equipment |
CN115639324A (en) * | 2022-10-31 | 2023-01-24 | 交通运输部公路科学研究所 | Remote calibration device and method for tunnel carbon monoxide content detector |
CN117783449A (en) * | 2024-02-23 | 2024-03-29 | 艾科思电子科技(常州)有限公司 | A gas detector detection and calibration system |
WO2024174280A1 (en) * | 2023-02-21 | 2024-08-29 | 上海重塑能源科技有限公司 | Method and system for calibrating hydrogen concentration sensor of fuel cell vehicle |
CN118688400A (en) * | 2024-06-25 | 2024-09-24 | 广东省计量科学研究院(华南国家计量测试中心) | A calibration device and method for a greenhouse gas online monitoring system |
CN119224228A (en) * | 2024-09-30 | 2024-12-31 | 中国环境科学研究院 | A vehicle-mounted sensor calibration and evaluation system and method |
CN119413260A (en) * | 2024-12-25 | 2025-02-11 | 中国计量科学研究院 | A fixed pollution source flow in-situ calibration device and calibration method |
WO2025051033A1 (en) * | 2023-09-07 | 2025-03-13 | 中碳实测(北京)科技有限公司 | Verification method and apparatus for gas analysis system, device, and storage medium |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102109504A (en) * | 2010-11-19 | 2011-06-29 | 聚光科技(杭州)股份有限公司 | Automatic calibration method and device |
CN105136683A (en) * | 2015-07-28 | 2015-12-09 | 安徽蓝盾光电子股份有限公司 | Long optical path air quality automatic monitoring system with remote quality control function |
CN107153106A (en) * | 2017-06-29 | 2017-09-12 | 北京竹青世纪科技有限公司 | A kind of dynamic dilution gas calibration device |
CN109541141A (en) * | 2018-11-27 | 2019-03-29 | 汇众翔环保科技股份有限公司 | A kind of small air mass monitoring system and analysis method |
JP2019090805A (en) * | 2017-11-13 | 2019-06-13 | 富士通株式会社 | Processor for detection data of environmental sensor, method for processing detection data of environmental sensor, computer-readable storage medium, and environment sensor system |
CN209055534U (en) * | 2019-03-07 | 2019-07-02 | 中国计量科学研究院 | A standard gas distribution device for calibration of ambient gas analyzers |
CN110095569A (en) * | 2019-03-22 | 2019-08-06 | 珠海高凌信息科技股份有限公司 | A kind of VOCs remotely monitors the system and method for calibration |
CN112964834A (en) * | 2021-03-01 | 2021-06-15 | 上海市计量测试技术研究院 | Calibration method of dynamic calibrator for fixed pollution source |
-
2022
- 2022-03-29 CN CN202210317838.8A patent/CN114660241A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102109504A (en) * | 2010-11-19 | 2011-06-29 | 聚光科技(杭州)股份有限公司 | Automatic calibration method and device |
CN105136683A (en) * | 2015-07-28 | 2015-12-09 | 安徽蓝盾光电子股份有限公司 | Long optical path air quality automatic monitoring system with remote quality control function |
CN107153106A (en) * | 2017-06-29 | 2017-09-12 | 北京竹青世纪科技有限公司 | A kind of dynamic dilution gas calibration device |
JP2019090805A (en) * | 2017-11-13 | 2019-06-13 | 富士通株式会社 | Processor for detection data of environmental sensor, method for processing detection data of environmental sensor, computer-readable storage medium, and environment sensor system |
CN109541141A (en) * | 2018-11-27 | 2019-03-29 | 汇众翔环保科技股份有限公司 | A kind of small air mass monitoring system and analysis method |
CN209055534U (en) * | 2019-03-07 | 2019-07-02 | 中国计量科学研究院 | A standard gas distribution device for calibration of ambient gas analyzers |
CN110095569A (en) * | 2019-03-22 | 2019-08-06 | 珠海高凌信息科技股份有限公司 | A kind of VOCs remotely monitors the system and method for calibration |
CN112964834A (en) * | 2021-03-01 | 2021-06-15 | 上海市计量测试技术研究院 | Calibration method of dynamic calibrator for fixed pollution source |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115372418A (en) * | 2022-08-12 | 2022-11-22 | 深圳绿米联创科技有限公司 | Gas sensor testing and calibrating method and system and electronic equipment |
CN115639324A (en) * | 2022-10-31 | 2023-01-24 | 交通运输部公路科学研究所 | Remote calibration device and method for tunnel carbon monoxide content detector |
WO2024174280A1 (en) * | 2023-02-21 | 2024-08-29 | 上海重塑能源科技有限公司 | Method and system for calibrating hydrogen concentration sensor of fuel cell vehicle |
WO2025051033A1 (en) * | 2023-09-07 | 2025-03-13 | 中碳实测(北京)科技有限公司 | Verification method and apparatus for gas analysis system, device, and storage medium |
CN117783449A (en) * | 2024-02-23 | 2024-03-29 | 艾科思电子科技(常州)有限公司 | A gas detector detection and calibration system |
CN118688400A (en) * | 2024-06-25 | 2024-09-24 | 广东省计量科学研究院(华南国家计量测试中心) | A calibration device and method for a greenhouse gas online monitoring system |
CN119224228A (en) * | 2024-09-30 | 2024-12-31 | 中国环境科学研究院 | A vehicle-mounted sensor calibration and evaluation system and method |
CN119413260A (en) * | 2024-12-25 | 2025-02-11 | 中国计量科学研究院 | A fixed pollution source flow in-situ calibration device and calibration method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114660241A (en) | An online intelligent calibration system for ambient gas analyzers | |
CN101943691B (en) | Method for checking SF6 gas leakage monitoring and alarming apparatuses | |
CN201335967Y (en) | On-line monitoring system for emission of industrial fumes and flue gases | |
CN103091134B (en) | Stationary source particle and volatile organic matter diluting and sampling system and the method for sampling | |
CN209055534U (en) | A standard gas distribution device for calibration of ambient gas analyzers | |
CN113280378B (en) | Online oil fume monitoring system with self-cleaning function and control method | |
CN111650109B (en) | Calibration method of mask particulate matter filtering efficiency tester | |
CN111679038A (en) | An online self-calibration monitor for carbon dioxide concentration in flue gas emissions | |
CN113588882B (en) | Automatic zero calibration method based on ambient air quality monitoring device | |
CN205388484U (en) | Continuous automatic monitoring system of boats and ships fume emission | |
CN203490209U (en) | Calibrating device for harmful gas detection alarm of coal mine | |
CN107247032A (en) | A kind of SF6 on-line monitoring alarm device for leakage and its detection method | |
CN107607449A (en) | A kind of device and method for detecting particulate matter quality concentration | |
CN111238574A (en) | An Internet of Things-based Environmental Monitoring System | |
Tran et al. | Determining the cutoff diameter and counting efficiency of optical particle counters with an aerodynamic aerosol classifier and an inkjet aerosol generator | |
CN116067425A (en) | Real-time monitoring system and monitoring method for high-requirement laboratory environment | |
CN110554145A (en) | device and method for remotely detecting and calibrating automatic flue gas monitoring system | |
CN113419036A (en) | Portable flue gas monitoring data acquisition system, device and method based on 5G communication | |
CN111679708A (en) | A kind of maintenance room temperature humidity test system and method based on Internet of things | |
CN105699596A (en) | Alerter detection device and method thereof | |
CN204461493U (en) | A kind of SF 6gas monitoring apparatus | |
CN113218912A (en) | Flue gas online monitoring method and system based on remote quality control monitoring platform | |
CN105678983A (en) | Automatic detection device for household alarm devices and method thereof | |
CN106596871A (en) | Method and device for detecting performance reliability of air quality monitor | |
CN117825626A (en) | Monitoring method and system for continuously monitoring pollution source gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |