CN114659619B - 一种全软体的自驱动振动传感器及其制备方法 - Google Patents

一种全软体的自驱动振动传感器及其制备方法 Download PDF

Info

Publication number
CN114659619B
CN114659619B CN202210287824.6A CN202210287824A CN114659619B CN 114659619 B CN114659619 B CN 114659619B CN 202210287824 A CN202210287824 A CN 202210287824A CN 114659619 B CN114659619 B CN 114659619B
Authority
CN
China
Prior art keywords
pdms
porous carbon
carbon electrode
liquid metal
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210287824.6A
Other languages
English (en)
Other versions
CN114659619A (zh
Inventor
徐凯臣
罗华昱
赵浩楠
叶家宸
董哲遇
杨赓
杨华勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202210287824.6A priority Critical patent/CN114659619B/zh
Publication of CN114659619A publication Critical patent/CN114659619A/zh
Application granted granted Critical
Priority to JP2023042791A priority patent/JP7356766B1/ja
Publication of CN114659619B publication Critical patent/CN114659619B/zh
Priority to US18/124,279 priority patent/US11874158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/681Component parts, details or accessories; Auxiliary operations
    • B29C70/683Pretreatment of the preformed part, e.g. insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/70Completely encapsulating inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • B29C70/882Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/006Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of fluid seismic masses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2707/00Use of elements other than metals for preformed parts, e.g. for inserts
    • B29K2707/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/40Test specimens ; Models, e.g. model cars ; Probes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种全软体的自驱动振动传感器及其制备方法,该方法主要通过激光碳化技术制备含折纸结构的二维多孔碳电极,再通过模具转印法将二维多孔碳电极转移到三维PDMS空腔上,最后通过激光刻蚀技术为多孔碳电极和PDMS薄膜表面雕刻微结构。本发明中传感器由PDMS薄膜、液态金属液滴、多孔碳电极和PDMS空腔从上到下依次紧密组装。传感器的工作基于摩擦纳米发电机原理。当传感器受到振动激励时,液态金属液滴与PDMS薄膜摩擦起电,使得PDMS薄膜表面带有稳定的负电荷,从而使液态金属液滴的运动可以通过静电感应输出电流。本方法不需要复杂的物理、化学合成工艺,通过灵活控制激光扫描参数,使得液态金属液滴不与接触表面黏附,提供稳定的电信号输出。

Description

一种全软体的自驱动振动传感器及其制备方法
技术领域
本发明属于柔性传感器技术领域,涉及一种全软体的自驱动振动传感器及其制备方法,具体是基于液态金属与PDMS摩擦起电的全软体自驱动振动传感器。
背景技术
机械振动是广泛存在于工程装备、桥梁建筑以及生物体中的运动表现形式。捕获振动中包含的机械能,有望为周围的分布式电子设备可持续地供给能量,从而减少对电池的需求。另一方面,振动信号也能反映物体的运行状态,例如碰撞时的峰值加速度、齿轮传动系统的模态特性。因此,通过振动传感器来采集振动信号,同时利用振动机械能为该传感器供电,有望实现高性能、自驱动的传感系统。
近年来,基于摩擦纳米发电机原理(TENG)的自驱动传感器被广泛地研究。得益于摩擦起电和静电感应的联合效应,周而复始的机械运动可产生反映其特征的电流信号。通过将摩擦纳米发电机的运动部件设计为对外部振动响应的媒介,研究人员已经设计出几种典型的TENG型自驱动振动传感器。
然而,已有的TENG型自驱动振动传感器大多基于弹簧谐振系统。其主要缺点包括:(1)传感器的频率响应受限于弹簧谐振系统的固有频率特性,谐振频率由弹簧和负载共同决定,远离谐振频率的振动难以产生输出信号;(2)构成材料多为不可延展的刚性材料,限制了传感器在不规则曲面上的安装以及穿戴舒适性;(3)频繁振动下,固相起电材料的反复摩擦易导致材料表面的磨损,影响传感器的寿命。液态金属是一类具有高表面张力、高饱和蒸气压且本征柔软的金属材料,同时具有较好的失电子能力。相比于剧毒的汞单质,无毒的镓基合金是更适合应用的液态金属材料。本发明利用镓基合金液滴在振动激励下的随动特性设计一种全软体自驱动的振动传感器,为解决已有自驱动振动传感器固有问题提供一种新思路,有望提升自驱动振动传感器的有效量程和长期工作稳定性。
发明内容
本发明的目的在于针对现有技术的不足,提供一种以液态金属液滴为振动媒介的全软体自驱动振动传感器及其制备方法,该传感器具有更宽的有效量程,且性能稳定。
本发明所采用的技术方案为:
根据本发明的一种具体实施例,本发明一种全软体的自驱动振动传感器主要由PDMS薄膜、液态金属液滴、三维多孔碳电极和PDMS空腔自上到下依次紧密组装构成。
本发明的传感功能通过单电极式摩擦纳米发电机原理实现,包含摩擦起电和静电感应两部分。在振动过程中,液态金属液滴与PDMS薄膜表面摩擦起电,使得PDMS薄膜表面带有稳定的负电荷,液态金属液滴表面带有等量正电荷。由于静电感应现象,液态金属液滴远离PDMS薄膜时,正电荷通过电路负载流向多孔碳电极;当液态金属液滴靠近PDMS薄膜时正电荷从多孔碳电极流向负载。因此,反复的振动可在多孔碳电极端产生周期性的感应电流。
根据本发明的一种具体实施例,本发明的制备方法基于激光加工工艺,实现了可延展的三维多孔碳电极以及微米级别的表面结构,确保了液态金属液滴的稳定运动,具体包含:利用CO2激光的热效应对聚酰亚胺薄膜碳化,形成包含折纸结构的二维多孔碳电极;随后通过模具转移法将二维的多孔碳电极转移到三维的PDMS空腔上;利用UV脉冲激光的雕刻能力对多孔碳电极表面和PDMS薄膜表面雕刻微结构,调控液态金属液滴与界面的润湿性,使得这些表面与液态金属液滴不黏附。
本发明提出的一种全软体的自驱动振动传感器,基于激光辅助制造的三维多孔碳电极、PDMS空腔和PDMS薄膜共同构成了传感器的主体,可以实现液态金属液滴在传感器内部的往复运动。所提出的全软体自驱动振动传感器可广泛应用于可穿戴电子设备、人机智能交互等领域。
为实现该目的,根据本发明的一种具体实施例,本发明的方法通过以下步骤完成:
1.利用CO2激光器对聚酰亚胺基底进行碳化,生成预定义的二维多孔碳电极图案,并用该激光沿图案边缘将其切下。
2.将聚酰亚胺连同二维多孔碳电极图案贴附在与传感器腔体互补的模具上,并向模具内注满待固化的PDMS溶液(预聚体:固化剂质量比15:1)。
3.将上述样品置于真空釜中抽气5分钟,使PDMS流入多孔碳的孔隙中。随后置于80℃的环境中加热1小时,使PDMS充分固化。
4.取出模具中的PDMS固体,撕下聚酰亚胺,使多孔碳电极与之分离,完成多孔碳电极到三维PDMS表面的转移。
5.通过UV脉冲激光对三维多孔碳电极以及一片PDMS薄膜进行纹理雕刻,使得雕刻过的表面不与液态金属液滴粘附。
6.向三维多孔碳电极构成的空腔中注入一滴0.15g的液态金属液滴,并用雕刻过的PDMS薄膜将其封口,雕刻面朝向内测。
本发明中的液态金属液滴可以为任意的液态金属的液滴,优选为镓基合金液滴。
本发明的方案具有以下优点:
(1)频率响应范围比弹簧型振动传感器更宽,高频和低频的振动下均能有效输出;(2)以柔软的硅胶为腔体兼电负性摩擦材料,且作为电正性摩擦材料的金属为液态,因此传感器由全软体材料组成,便于安装,提高穿戴舒适性;(3)电正性与电负性摩擦材料之间为固-液接触,几乎没有磨损引起的寿命问题。
附图说明
图1是本发明全软体自驱动振动传感器的一种具体结构示意图。
图2是本发明全软体自驱动振动传感器的一种加工流程图。
图3是本发明全软体自驱动振动传感器在相同幅度、不同频率的正弦振动下输出的电流信号。
图4是本发明全软体自驱动振动传感器经历的正弦振动的峰值加速度与输出电流峰峰值之间的关系。
图5是本发明全软体自驱动振动传感器在连续1700次振动时的输出电流稳定性结果。
具体实施方式
下面结合附图和实施例对本发明技术方案做进一步说明:
如图1所示,本发明自上到下分别由PDMS薄膜1,液态金属液滴(以共晶镓铟液滴为例)2,三维多孔碳电极3和PDMS空腔4紧密组装而成。PDMS薄膜1的内表面以及三维多孔碳电极3的表面均通过UV脉冲激光雕刻了微结构。
如图2所示,自上而下分别是三维多孔碳电极3的加工与PDMS薄膜1的加工流程示意图。三维多孔碳电极3的加工分为三步:首先,通过CO2激光的热效应来碳化聚酰亚胺基底,形成具有折纸结构的二维多孔碳电极;随后,将该电极贴附到模具中部的梯形台状结构表面,其间电极折起形成三维结构,并向模具内部注入待固化的PDMS,使液态的PDMS渗入多孔碳电极的微孔;最后,从模具中揭起固化的PDMS空腔4,三维多孔碳电极3已被转移到PDMS空腔4的表面,通过UV脉冲激光雕刻三维多孔碳电极3使其表面具有微结构。PDMS薄膜1的加工分为两步:首先,通过模具法制作一片固定尺寸的PDMS薄膜1;随后通过UV脉冲激光雕刻使得PDMS薄膜1表面具有微结构。
具体实施的全软体自驱动振动传感器,其三维多孔碳电极3在转移到PDMS空腔4的表面后,两种材料已经完全嵌合,因此三维多孔碳电极3受应变产生的裂纹会因PDMS空腔4的回弹而愈合。
实施例1
本发明的电流输出测试的试验条件为,将全软体自驱动传感器放置在铝制屏蔽盒中,并通过一根同轴线缆将三维多孔碳电极3与静电计的输入端连接。将传感器连同屏蔽盒固定在振动试验台上,运行正弦振动模式,振幅为1mm,频率以Hz为单位按以下序列遍历:41.6、40、38.6、37、35.6、34.2、32.6、31、29.4、27.6、25.7、23.6、21.3、18.9、15.9、12.4。任一频率的振动持续10s,相邻频率之间间隔5s。上述频率的振动下的峰值加速度以m/s2为单位依次为68.5、63.3、58.8、54.0、50.1、46.1、41.9、37.9、34.1、30.0、26.1、22.1、17.9、14.0、10.0、6.0。
实验过程中的电流信号波形如图3所示。可以见到,当振动频率超过19Hz以后,电流信号明显增大,且与振动频率呈正相关。
实验过程中,振动频率与电流信号峰峰值之间的关系如图4所示。最后三个实验频率点的峰值加速度各为6、10、14m/s2。当峰值加速度小于或接近重力加速度时,共晶镓铟液滴2难以完全地与多孔碳电极3分离,从而无法与PDMS薄膜1摩擦起电。因此,最后三个实验频率点作用时,传感器无明显电流信号输出。其余频率点下,频率与电流峰峰值呈线明显的正相关关系,量程最大接近42Hz,对应峰值加速度为70m/s2
由此可以说明,本发明可以有效地输出反映物体振动状态的电流信号。
实施例2
本发明的稳定性测试的试验条件为,将全软体自驱动传感器放置在铝制屏蔽盒中,并通过一根同轴线缆将三维多孔碳电极3与静电计的输入端连接。将传感器连同屏蔽盒固定在振动试验台上,运行正弦振动模式,振幅为1mm,频率为29Hz,振动持续1700余次。
如图5所示,传感器输出电流的峰峰值,在实验初始与结尾无明显差异,波形的形状也高度相似。
由此可以说明,本发明可以在多次振动后保持稳定的工作性能。

Claims (5)

1.一种全软体的自驱动振动传感器的制备方法,其特征在于,所述传感器包括PDMS薄膜(1),液态金属液滴 (2),三维多孔碳电极(3)和PDMS空腔(4),其中三维多孔碳电极(3)设于PDMS空腔(4)表面,PDMS薄膜(1)盖于PDMS空腔(4)上二者紧密组装形成腔体,液态金属液滴(2)设于所述腔体内;具体采用如下方法制得:
1)形成含折纸结构的二维多孔碳电极:利用CO2激光按照预设计的图案碳化聚酰亚胺基底,生成预定义的二维多孔碳电极图案,按图案边缘将其切下;
2)将聚酰亚胺连同二维多孔碳电极图案贴附在与传感器腔体互补的模具上,并向模具内注满待固化的PDMS溶液;
3)将上述样品置于真空釜中抽气,使PDMS溶液流入多孔碳的孔隙中;之后取出样品加热使PDMS充分固化;
4)形成三维多孔碳电极:取出模具中的PDMS固体, 撕下聚酰亚胺使其与多孔碳电极分离,完成多孔碳电极到PDMS空腔三维表面的转移;
5) 利用UV脉冲激光对三维多孔碳电极表面和PDMS薄膜表面雕刻微结构,将液态金属液滴注入PDMS空腔并将PDMS薄膜雕刻面朝下盖于所述PDMS空腔上封口。
2.根据权利要求1所述的全软体的自驱动振动传感器的制备方法,其特征在于,在PDMS薄膜(1)的下表面以及三维多孔碳电极(3)的表面均形成有微结构。
3.根据权利要求1所述的全软体的自驱动振动传感器的制备方法,其特征在于,所述液态金属液滴(2)为共晶镓铟液滴。
4.如权利要求1-3任一项所述制备方法制得的传感器,其特征在于,所述传感器在振动过程中,通过液态金属液滴与PDMS薄膜表面摩擦起电,通过液态金属液滴不断靠近或远离PDMS薄膜在多孔碳电极端产生周期性的感应电流。
5.根据权利要求4所述的传感器,其特征在于,液态金属液滴与PDMS薄膜表面摩擦起电后,PDMS薄膜表面带有负电荷,液态金属液滴表面带有等量正电荷,液态金属液滴远离PDMS薄膜时,正电荷通过电路负载流向多孔碳电极;当液态金属液滴靠近PDMS薄膜时正电荷从多孔碳电极流向负载。
CN202210287824.6A 2022-03-22 2022-03-22 一种全软体的自驱动振动传感器及其制备方法 Active CN114659619B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210287824.6A CN114659619B (zh) 2022-03-22 2022-03-22 一种全软体的自驱动振动传感器及其制备方法
JP2023042791A JP7356766B1 (ja) 2022-03-22 2023-03-17 自己駆動型振動センサの製造方法
US18/124,279 US11874158B2 (en) 2022-03-22 2023-03-21 Fully soft self-powered vibration sensor and its fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210287824.6A CN114659619B (zh) 2022-03-22 2022-03-22 一种全软体的自驱动振动传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN114659619A CN114659619A (zh) 2022-06-24
CN114659619B true CN114659619B (zh) 2023-03-17

Family

ID=82031174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210287824.6A Active CN114659619B (zh) 2022-03-22 2022-03-22 一种全软体的自驱动振动传感器及其制备方法

Country Status (3)

Country Link
US (1) US11874158B2 (zh)
JP (1) JP7356766B1 (zh)
CN (1) CN114659619B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755570A (zh) * 2017-11-06 2019-05-14 北京碳阳科技有限公司 三维复合电极材料及其制备方法、电极和储能器件
CN110504111A (zh) * 2019-09-05 2019-11-26 大连理工大学 一种具有三维储能结构的纸基电容器激光雕刻制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668319A (en) * 1994-02-07 1997-09-16 The Regents Of The University Of California Micromachined accelerometer
KR101436991B1 (ko) * 2013-09-11 2014-09-05 포항공과대학교 산학협력단 미세 액체금속 액적을 이용한 촉각센서
US10502756B2 (en) * 2016-08-26 2019-12-10 Robert Bosch Gmbh Flexible microfluidic motion sensors
US10302460B2 (en) * 2016-10-28 2019-05-28 Microsoft Technology Licensing, Llc Liquid metal sensor
CN107583696B (zh) * 2017-09-19 2019-08-09 北京工业大学 一种基于体声波激励和移动气泡的微粒捕获与释放装置
CN108313976A (zh) * 2017-12-29 2018-07-24 西北工业大学 一种聚酰亚胺表面微结构制备方法
CN108956737B (zh) * 2018-05-25 2019-08-09 清华大学 柔性微针式传感器及其制备方法、三维立体状电极及其封装体
KR102110203B1 (ko) * 2018-06-14 2020-05-13 재단법인 나노기반소프트일렉트로닉스연구단 부착형 진동센서 및 그의 제조방법
SG11202100227UA (en) * 2018-07-11 2021-02-25 Nat Univ Singapore Self-powered triboelectric based devices
CN108761129B (zh) * 2018-08-27 2024-02-23 北京梦之墨科技有限公司 一种加速度传感器
CN208766199U (zh) * 2018-08-27 2019-04-19 北京梦之墨科技有限公司 一种加速度传感器
CN110739879B (zh) * 2019-09-18 2021-04-06 浙江大学 农业环境能量收集的一体式柔性自充电电源及制备方法
CN111198052A (zh) * 2020-01-14 2020-05-26 清华大学 一种可变形液态传感器
CN112388168A (zh) * 2020-11-22 2021-02-23 镇江绅芯易创智能科技有限公司 基于激光加工技术的自供能柔性液滴传感器的制备工艺
CN215498761U (zh) * 2020-12-01 2022-01-11 湘潭大学 独立层模式的柔性摩擦纳米发电机、传感器以及可穿戴设备
CN113507232A (zh) * 2021-07-13 2021-10-15 大连海事大学 一种基于摩擦纳米发电机的船机振动自驱动传感装置
CN113699799B (zh) * 2021-07-14 2022-07-19 浙江大学 一种防水耐腐蚀发电农用布及其制备方法
CN113607973A (zh) 2021-07-21 2021-11-05 曲靖师范学院 一种基于液态金属的数字加速度计
CN113583196B (zh) * 2021-07-23 2023-06-23 浙江农林大学 摩擦纳米发电材料、其制备方法和摩擦纳米发电机
CN113556054B (zh) * 2021-08-11 2022-12-23 浙江大学杭州国际科创中心 基于液态金属和固-液摩擦界面的自驱动、免通道、可扩展传感器及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755570A (zh) * 2017-11-06 2019-05-14 北京碳阳科技有限公司 三维复合电极材料及其制备方法、电极和储能器件
CN110504111A (zh) * 2019-09-05 2019-11-26 大连理工大学 一种具有三维储能结构的纸基电容器激光雕刻制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙晓娜 ; 周洪波 ; 李刚 ; 朱壮晖 ; 姚源 ; 赵建龙 ; 任秋实 ; .三维柔性神经微电极阵列的制作.2008,(08),第1-6页. *

Also Published As

Publication number Publication date
JP7356766B1 (ja) 2023-10-05
US11874158B2 (en) 2024-01-16
JP2023152829A (ja) 2023-10-17
US20230304852A1 (en) 2023-09-28
CN114659619A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
CN110739879B (zh) 农业环境能量收集的一体式柔性自充电电源及制备方法
CN103633879B (zh) 基于柔性主梁的振动能量采集器拾振结构
CN111409284B (zh) 一种基于4d打印的柔性压电传感器及其制备方法
CN101908837B (zh) 基于pdms薄膜结构的mems宽频压电能量采集器
CN101459390A (zh) 一种介电弹性体材料在发电机上的应用
CN106374777A (zh) 一种s型压电悬臂梁振动能量采集器
CN114659619B (zh) 一种全软体的自驱动振动传感器及其制备方法
CN204258662U (zh) 打桩机式压电发电装置
CN104506086B (zh) 一种微型压电和电容复合振动能量采集器
CN103532427A (zh) 利用压电振动发电供能的物联网节点
CN104065303B (zh) 压电双稳态能量收集器
CN102315381A (zh) 一种核壳结构的氧化锌纳米膜碳纤维压电材料的方法及其应用
CN102522491A (zh) 具有驱动和传感能力的聚合物器件及其制备和应用
Zhang et al. Noise-less hybrid nanogenerator based on flexible WPU and siloxene composite for self-powered portable and wearable electronics
CN108598628A (zh) 一种金属空气电池
CN107769612A (zh) 一种涡街激励下的升频压电‑电磁复合发电装置
Hu et al. Electrically driven hydrogel actuators: working principle, material design and applications
CN104079208B (zh) 一种在低速水流冲击下压电发电装置及方法
CN101867013B (zh) 叉指状电极
CN110061652A (zh) 一种宽频带静电微能量采集器、采集系统及其制备方法
Wu et al. Advances in magnetic-assisted triboelectric nanogenerators: structures, materials and self-sensing systems
CN108448939A (zh) 一种复合压电-热电的汽车尾气微型能量收集器
CN205049973U (zh) 一种小型无人机飞行振动响应的主动控制系统
CN209364541U (zh) 一种新型微纳制造用工业电锤
CN106628022A (zh) 一种压电驱动的水上机器人

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant