CN114653314A - Method for preparing self-assembled microcapsule - Google Patents
Method for preparing self-assembled microcapsule Download PDFInfo
- Publication number
- CN114653314A CN114653314A CN202011538862.1A CN202011538862A CN114653314A CN 114653314 A CN114653314 A CN 114653314A CN 202011538862 A CN202011538862 A CN 202011538862A CN 114653314 A CN114653314 A CN 114653314A
- Authority
- CN
- China
- Prior art keywords
- emulsion
- oil
- preparing self
- microcapsules
- initiator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003094 microcapsule Substances 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000002245 particle Substances 0.000 claims abstract description 84
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 68
- 239000000178 monomer Substances 0.000 claims abstract description 54
- 239000000839 emulsion Substances 0.000 claims abstract description 47
- 239000000203 mixture Substances 0.000 claims abstract description 37
- 239000008367 deionised water Substances 0.000 claims abstract description 33
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 33
- 239000006185 dispersion Substances 0.000 claims abstract description 31
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 29
- 239000004094 surface-active agent Substances 0.000 claims abstract description 29
- 239000003999 initiator Substances 0.000 claims abstract description 23
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- 239000003995 emulsifying agent Substances 0.000 claims abstract description 19
- 238000004945 emulsification Methods 0.000 claims abstract description 13
- 239000012535 impurity Substances 0.000 claims abstract description 13
- 230000035484 reaction time Effects 0.000 claims abstract description 13
- 238000005303 weighing Methods 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 20
- 239000003921 oil Substances 0.000 claims description 20
- 239000007787 solid Substances 0.000 claims description 20
- 239000002775 capsule Substances 0.000 claims description 18
- 235000019198 oils Nutrition 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 16
- 239000000126 substance Substances 0.000 claims description 13
- 238000005406 washing Methods 0.000 claims description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 10
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 claims description 9
- -1 dimethyl methacrylate Chemical compound 0.000 claims description 9
- 229950004959 sorbitan oleate Drugs 0.000 claims description 9
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 8
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 8
- BANXPJUEBPWEOT-UHFFFAOYSA-N 2-methyl-Pentadecane Chemical compound CCCCCCCCCCCCCC(C)C BANXPJUEBPWEOT-UHFFFAOYSA-N 0.000 claims description 6
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 claims description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 6
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 6
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 claims description 6
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 claims description 6
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 5
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 5
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 5
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 claims description 4
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 4
- 235000004347 Perilla Nutrition 0.000 claims description 4
- 244000124853 Perilla frutescens Species 0.000 claims description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 4
- 229930006000 Sucrose Natural products 0.000 claims description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 4
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 239000000787 lecithin Substances 0.000 claims description 4
- 229940067606 lecithin Drugs 0.000 claims description 4
- 235000010445 lecithin Nutrition 0.000 claims description 4
- 239000004006 olive oil Substances 0.000 claims description 4
- 235000008390 olive oil Nutrition 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- 239000005720 sucrose Substances 0.000 claims description 4
- 229940043268 2,2,4,4,6,8,8-heptamethylnonane Drugs 0.000 claims description 3
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 claims description 3
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 claims description 3
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 claims description 3
- 229920001651 Cyanoacrylate Polymers 0.000 claims description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 3
- 235000019482 Palm oil Nutrition 0.000 claims description 3
- 235000019483 Peanut oil Nutrition 0.000 claims description 3
- 150000003863 ammonium salts Chemical class 0.000 claims description 3
- 239000004359 castor oil Substances 0.000 claims description 3
- 235000019438 castor oil Nutrition 0.000 claims description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 3
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 claims description 3
- JJJFUHOGVZWXNQ-UHFFFAOYSA-N enbucrilate Chemical compound CCCCOC(=O)C(=C)C#N JJJFUHOGVZWXNQ-UHFFFAOYSA-N 0.000 claims description 3
- 229950010048 enbucrilate Drugs 0.000 claims description 3
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 claims description 3
- 229940117955 isoamyl acetate Drugs 0.000 claims description 3
- KUVMKLCGXIYSNH-UHFFFAOYSA-N isopentadecane Natural products CCCCCCCCCCCCC(C)C KUVMKLCGXIYSNH-UHFFFAOYSA-N 0.000 claims description 3
- 239000004530 micro-emulsion Substances 0.000 claims description 3
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 claims description 3
- 239000007908 nanoemulsion Substances 0.000 claims description 3
- 229940049964 oleate Drugs 0.000 claims description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 3
- 239000002540 palm oil Substances 0.000 claims description 3
- 239000000312 peanut oil Substances 0.000 claims description 3
- 229920001451 polypropylene glycol Polymers 0.000 claims description 3
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 3
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 claims description 3
- 239000003549 soybean oil Substances 0.000 claims description 3
- 235000012424 soybean oil Nutrition 0.000 claims description 3
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 claims description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 claims 1
- 229960001777 castor oil Drugs 0.000 claims 1
- 230000001804 emulsifying effect Effects 0.000 claims 1
- 229940074928 isopropyl myristate Drugs 0.000 claims 1
- 235000020238 sunflower seed Nutrition 0.000 claims 1
- 238000000502 dialysis Methods 0.000 abstract description 13
- 238000009827 uniform distribution Methods 0.000 abstract description 2
- 239000013543 active substance Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 17
- 238000001000 micrograph Methods 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 14
- 230000009477 glass transition Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 235000019486 Sunflower oil Nutrition 0.000 description 5
- 235000012741 allura red AC Nutrition 0.000 description 5
- 239000004191 allura red AC Substances 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- CEZCCHQBSQPRMU-UHFFFAOYSA-L chembl174821 Chemical compound [Na+].[Na+].COC1=CC(S([O-])(=O)=O)=C(C)C=C1N=NC1=C(O)C=CC2=CC(S([O-])(=O)=O)=CC=C12 CEZCCHQBSQPRMU-UHFFFAOYSA-L 0.000 description 5
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 239000002600 sunflower oil Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000011162 core material Substances 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000013268 sustained release Methods 0.000 description 4
- 239000012730 sustained-release form Substances 0.000 description 4
- MWWSFMDVAYGXBV-RUELKSSGSA-N Doxorubicin hydrochloride Chemical compound Cl.O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 MWWSFMDVAYGXBV-RUELKSSGSA-N 0.000 description 3
- TWFQJFPTTMIETC-UHFFFAOYSA-N dodecan-1-amine;hydron;chloride Chemical compound [Cl-].CCCCCCCCCCCC[NH3+] TWFQJFPTTMIETC-UHFFFAOYSA-N 0.000 description 3
- 229960002918 doxorubicin hydrochloride Drugs 0.000 description 3
- DAJSVUQLFFJUSX-UHFFFAOYSA-M sodium;dodecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCS([O-])(=O)=O DAJSVUQLFFJUSX-UHFFFAOYSA-M 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- FJWSMXKFXFFEPV-UHFFFAOYSA-N prop-2-enamide;hydrochloride Chemical compound Cl.NC(=O)C=C FJWSMXKFXFFEPV-UHFFFAOYSA-N 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- AXISYYRBXTVTFY-UHFFFAOYSA-N Isopropyl tetradecanoate Chemical compound CCCCCCCCCCCCCC(=O)OC(C)C AXISYYRBXTVTFY-UHFFFAOYSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- AHVOFPQVUVXHNL-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate Chemical compound COC(=O)C(C)=C.CCCCOC(=O)C=C AHVOFPQVUVXHNL-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing Of Micro-Capsules (AREA)
Abstract
本发明公开了一种制备自组装型微胶囊的方法,包括如下步骤:将表面活性剂溶于去离子水中,称量聚合单体,将引发剂溶于去离子水中;氮气氛围下,将表面活性剂溶液和单体混合物循环输送到超重力旋转填充床中,混合得到预乳化液;将引发剂溶液加入到预乳化液中,进行聚合反应,反应结束后,透析除去杂质,得到胶体颗粒水分散体;将胶体颗粒水分散体、油相及乳化剂的混合物循环通入到超重力旋转填充床中强化乳化过程,得到乳液;将乳液加热,离心,洗涤,干燥,得微胶囊。本发明制备的胶体颗粒粒径小且分布均匀,为10‑200nm;聚合反应时间可缩短20%‑50%;微胶囊尺寸及孔隙率可控,形貌良好,呈规则球形,粒径在0.1‑10μm之间。
The invention discloses a method for preparing self-assembled microcapsules, which comprises the following steps: dissolving a surfactant in deionized water, weighing a polymerized monomer, and dissolving an initiator in the deionized water; The active agent solution and the monomer mixture are cyclically transported to the supergravity rotating packed bed, and mixed to obtain a pre-emulsion; the initiator solution is added to the pre-emulsion to carry out the polymerization reaction. After the reaction is completed, the impurities are removed by dialysis to obtain colloidal particle water. Dispersion; the mixture of colloidal particle water dispersion, oil phase and emulsifier is circulated into a supergravity rotating packed bed to strengthen the emulsification process to obtain an emulsion; the emulsion is heated, centrifuged, washed and dried to obtain microcapsules. The colloidal particles prepared by the invention have small particle size and uniform distribution, and are 10-200 nm; the polymerization reaction time can be shortened by 20-50%; ‑10µm.
Description
技术领域technical field
本发明涉及微胶囊制备技术领域;更具体地,涉及一种制备自组装型微胶囊的方法。The invention relates to the technical field of microcapsule preparation; more particularly, to a method for preparing self-assembled microcapsules.
背景技术Background technique
微胶囊是指使用天然或合成的高分子材料作为囊壁材料,可将固体、液体或气体包埋于内部的固体微粒产品,其粒径范围通常在1-1000μm之间。微胶囊特有的核壳结构,使其具有保护芯物质既不会向外界逸出,又不会受到外界环境的侵入影响的性能。根据不同壁材对芯材的释放特性,在保留芯材物质原有特性的前提下,实现其缓慢释放、瞬间释放或持久保存作用,达到控制芯材释放的目的。目前,微胶囊的制备和包埋技术已经被广泛应用于医药、食品以及纺织等领域。Microcapsules refer to solid particulate products that use natural or synthetic polymer materials as capsule wall materials and can embed solids, liquids or gases inside. The unique core-shell structure of the microcapsule enables it to protect the core material from escaping to the outside world, nor being affected by the intrusion of the external environment. According to the release characteristics of different wall materials to the core material, on the premise of retaining the original characteristics of the core material, it can realize its slow release, instant release or long-lasting preservation, so as to achieve the purpose of controlling the release of the core material. At present, the preparation and embedding technology of microcapsules has been widely used in the fields of medicine, food and textile.
20世纪初,Ramsden[1]和Pickering[2]首次报道了胶体颗粒在油水界面上的自组装过程,形成了稳定的Pickering乳液([1]Ramsden W.Separation of solids in thesurface-layers of solutions and“suspensions”(observations on surface-membranes,bubbles,emulsions,and mechanical coagulation):Preliminary account[J].Proceedings of the Royal Society ofLondon,1903,72:156–164;[2]Pickering SU.Emulsions[J].Journal ofthe Chemical Society,Transactions,1907,91:2001-2021.)。90年代,Velev等人[3-5]利用Pickering乳液制得了自组装型微胶囊,其外壳的胶体颗粒是通过聚电解质的沉积作用而被固定([3]Velev O D,Furusawa K,NagayamaK.Assembly oflatex particles by using emulsion droplets astemplates.1.microstructured hollow spheres[J].Langmuir,1996,12:2374–2384;[4]Velev O D,Furusawa K,Nagayama K.Assembly of latex particles by using emulsiondroplets as templates.2.ball-like and composite aggregates[J].Langmuir,1996,12:2385–2391;[5]Velev O D,Nagayama K.Assembly oflatex particles by usingemulsion droplets.3.reverse(water in oil)system[J].Langmuir,1997,13:1856–1859)。随后,Dinsmore等人[6]发明了加热固定微胶囊外壳的方法,该方法将胶体颗粒加热到玻璃化转变温度以上,使聚合物胶体颗粒熔化交联在一起,形成自组装微胶囊([6]Dinsmore AD,Hsu M F,Nikolaides M G,Marquez M,BauschAR,Weitz DA.Colloidosomes:selectively permeable capsules composed of colloidalparticles[J].Science,2002,298:1006–1009.)。Routh等人[7]进一步发明了一种低温制备自组装型微胶囊的方法,通过控制加热温度和加热时间,以改变微胶囊壳层胶体颗粒的熔化交联程度,进而达到不同的缓释速率([7]SamiaAlexander F.Routh.Fabricationof colloidosomes at low temperature for the encapsulation ofthermallysensitive compounds[J].Journal ofColloid and Interface Science,2008,317:121–129.)。Keen等人[8]利用Pickering乳液制备的自组装型微胶囊,包埋了淀粉酶、乳酸菌、酵母菌等大分子物质,既限制了被包埋物的活动,又可以在微胶囊内外进行小分子物质交换([8]Polly H R Keen.Encapsulation of biological material in colloidosomes[D].London:University of Cambridge,2013.)。上述制备的自组装型微胶囊的孔隙率和缓释速率均可调控,制备过程相对简单且生物毒性低。At the beginning of the 20th century, Ramsden [1] and Pickering [2] first reported the self-assembly process of colloidal particles at the oil-water interface to form stable Pickering emulsions ([1] Ramsden W. Separation of solids in the surface-layers of solutions and “suspensions” (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation): Preliminary account[J].Proceedings of the Royal Society of London,1903,72:156–164;[2]Pickering SU.Emulsions[J] . Journal of the Chemical Society, Transactions, 1907, 91:2001-2021.). In the 1990s, Velev et al. [3-5 ] used Pickering emulsions to prepare self-assembled microcapsules, and the colloidal particles of the shell were fixed by the deposition of polyelectrolytes ([3] Velev OD, Furusawa K, Nagayama K. Assembly oflatex particles by using emulsion droplets astemplates.1.microstructured hollow spheres[J].Langmuir,1996,12:2374–2384;[4]Velev OD,Furusawa K,Nagayama K.Assembly of latex particles by using emulsion droplets as templates.2 .ball-like and composite aggregates[J].Langmuir,1996,12:2385–2391;[5]Velev OD,Nagayama K.Assembly oflatex particles by usingemulsion droplets.3.reverse(water in oil)system[J]. Langmuir, 1997, 13:1856–1859). Subsequently, Dinsmore et al. [6] invented a method of heating and fixing the shell of microcapsules, which heated the colloidal particles above the glass transition temperature to melt and cross-link the polymer colloidal particles together to form self-assembled microcapsules ([6] ] Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA. Colloidosomes: selectively permeable capsules composed of colloidal particles [J]. Science, 2002, 298:1006-1009.). Routh et al. [7] further invented a method for preparing self-assembled microcapsules at low temperature. By controlling the heating temperature and heating time, the degree of melting and crosslinking of the colloidal particles in the shell layer of the microcapsules can be changed to achieve different sustained release rates. ([7]Samia Alexander F. Routh. Fabrication of colloidosomes at low temperature for the encapsulation of thermallysensitive compounds [J]. Journal of Colloid and Interface Science, 2008, 317: 121–129.). Keen et al. [8] used the self-assembled microcapsules prepared by Pickering emulsion to embed macromolecular substances such as amylase, lactic acid bacteria, yeast, etc., which not only limited the activity of the embedded substances, but also carried out microcapsules inside and outside the microcapsules. Molecular material exchange ([8] Polly HR Keen. Encapsulation of biological material in colloidosomes [D]. London: University of Cambridge, 2013.). The porosity and sustained release rate of the self-assembled microcapsules prepared above can be adjusted, the preparation process is relatively simple, and the biological toxicity is low.
但是,目前的微胶囊制备方法仍存在如下问题:1)囊壁材料制备效率较低;2)囊壁材料颗粒粒径不均匀;3)被包埋物无法有效控制释放;4)微胶囊产品稳定性不高等。However, the current microcapsule preparation methods still have the following problems: 1) the preparation efficiency of the capsule wall material is low; 2) the particle size of the capsule wall material is not uniform; 3) the embedded material cannot be effectively controlled to release; 4) the microcapsule product Stability is not high.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是提供一种制备自组装型微胶囊的方法。该方法在囊壁材料阶段,能得到稳定的表面活性剂水溶液与单体的预乳化液,可调控制备胶体颗粒粒径,且聚合反应的反应时间大幅度缩短;在后续制备微胶囊的阶段,形成的油包水型Pickering乳液也更加稳定,进而制备的微胶囊粒径更小更均一;通过改变胶体颗粒大小、乳液加热时间、加热温度等条件,灵活控制微胶囊的尺寸与孔隙率,以包埋不同小分子物质,达到不同缓释速率的效果;该方法制得的微胶囊呈规则球形,颗粒直径0.1-10μm。The technical problem to be solved by the present invention is to provide a method for preparing self-assembled microcapsules. The method can obtain a stable pre-emulsion of surfactant aqueous solution and monomer in the stage of capsule wall material, can control the particle size of colloidal particles, and greatly shorten the reaction time of the polymerization reaction; in the subsequent stage of preparing microcapsules, The formed water-in-oil Pickering emulsion is also more stable, and the particle size of the prepared microcapsules is smaller and more uniform. Different small molecular substances are embedded to achieve the effect of different sustained release rates; the microcapsules prepared by this method are in regular spherical shape, and the particle diameter is 0.1-10 μm.
为解决上述技术问题,本发明采用如下的技术方案:In order to solve the above-mentioned technical problems, the present invention adopts the following technical scheme:
一种制备自组装型微胶囊的方法,包括如下步骤:A method for preparing self-assembled microcapsules, comprising the steps of:
1)将表面活性剂溶于去离子水中,得到表面活性剂溶液;称量聚合单体,得到单体混合物;将引发剂溶于去离子水中,得到引发剂溶液;1) Dissolving the surfactant in deionized water to obtain a surfactant solution; weighing the polymerized monomers to obtain a monomer mixture; dissolving the initiator in deionized water to obtain an initiator solution;
2)氮气氛围下,将表面活性剂溶液和单体混合物循环输送到超重力旋转填充床中,混合得到预乳化液;2) Under a nitrogen atmosphere, the surfactant solution and the monomer mixture are cyclically transported into the supergravity rotating packed bed, and mixed to obtain a pre-emulsion;
3)将引发剂溶液加入到预乳化液中,进行聚合反应,反应结束后,透析除去杂质,得到胶体颗粒水分散体,作为囊壁材料;3) adding the initiator solution to the pre-emulsion, carrying out a polymerization reaction, and after the reaction finishes, removing impurities by dialysis to obtain a colloidal particle water dispersion as a capsule wall material;
4)将胶体颗粒水分散体、油相及乳化剂的混合物循环通入到超重力旋转填充床中强化乳化过程,得到微乳液或纳米乳液;4) circulating the mixture of colloidal particle water dispersion, oil phase and emulsifier into the supergravity rotating packed bed to strengthen the emulsification process to obtain microemulsion or nanoemulsion;
5)将上述乳液加热,离心,用去离子水洗涤,分散于水中,制得水相微胶囊,或洗涤后直接干燥,得到微胶囊固体颗粒。5) heating the above-mentioned emulsion, centrifuging, washing with deionized water, dispersing in water to obtain water-phase microcapsules, or directly drying after washing to obtain microcapsule solid particles.
根据本发明的某些实施方式,步骤1)中,所述表面活性剂选自下列物质中的一种或多种:十二烷基磺酸钠、十二烷基硫酸钠、聚乙烯醇、聚环氧乙烷、铵盐(如十二烷基氯化铵)、季铵盐(如十六烷基三甲基溴化铵)。According to some embodiments of the present invention, in step 1), the surfactant is selected from one or more of the following substances: sodium dodecyl sulfonate, sodium dodecyl sulfate, polyvinyl alcohol, Polyethylene oxide, ammonium salts (eg lauryl ammonium chloride), quaternary ammonium salts (eg cetyltrimethylammonium bromide).
根据本发明的某些实施方式,步骤1)中,所述表面活性剂的用量为单体总质量的0.1-8wt%;更优选地,所述表面活性剂的用量为单体总质量的0.5-5wt%。According to some embodiments of the present invention, in step 1), the amount of the surfactant is 0.1-8wt% of the total mass of the monomer; more preferably, the amount of the surfactant is 0.5% of the total mass of the monomer -5wt%.
根据本发明的某些实施方式,步骤1)中,所述聚合单体选自下列物质中的一种或多种:苯乙烯、丙烯酸丁酯、甲基丙烯酸、丙烯酸、甲基丙烯酸甲酯、甲基丙烯酸丁酯、甲基丙烯酸二甲酯、甲基丙烯酸二甲胺基乙酯、丙烯胺盐酸盐、丙烯酰胺、氰基丙烯酸正丁酯、异丙基丙烯酰胺、乙烯基吡啶。According to some embodiments of the present invention, in step 1), the polymerized monomer is selected from one or more of the following substances: styrene, butyl acrylate, methacrylic acid, acrylic acid, methyl methacrylate, Butyl methacrylate, dimethyl methacrylate, dimethylaminoethyl methacrylate, acrylamine hydrochloride, acrylamide, n-butyl cyanoacrylate, isopropylacrylamide, vinylpyridine.
根据本发明的某些实施方式,步骤1)中,所述引发剂选自下列物质中的一种或多种:过硫酸钾、过硫酸铵、过硫酸钠、过氧化氢、偶氮二异丁基脒盐酸盐、偶氮二异丁基咪唑啉盐酸盐、偶氮二异丙基咪唑啉。According to some embodiments of the present invention, in step 1), the initiator is selected from one or more of the following substances: potassium persulfate, ammonium persulfate, sodium persulfate, hydrogen peroxide, azobisulfite Butylamidine hydrochloride, azodiisobutylimidazoline hydrochloride, azodiisopropylimidazoline.
根据本发明的某些实施方式,步骤1)中,所述引发剂的用量为单体总质量的0.1-5wt%;更优选地,所述引发剂的用量为单体总质量的0.5-3.5wt%。According to some embodiments of the present invention, in step 1), the amount of the initiator is 0.1-5wt% of the total mass of the monomer; more preferably, the amount of the initiator is 0.5-3.5% of the total mass of the monomer wt%.
根据本发明的某些实施方式,步骤2)中,所述混合物循环时间为5-150min;更优选地,所述混合物循环时间为5-120min。According to some embodiments of the present invention, in step 2), the cycle time of the mixture is 5-150min; more preferably, the cycle time of the mixture is 5-120min.
根据本发明的某些实施方式,步骤2)中,所述超重力旋转填充床的转子转速为300-5000rpm;更优选地,转子转速为500-2500rpm。采用调频变速仪调节转子转速。According to some embodiments of the present invention, in step 2), the rotating speed of the rotor of the supergravity rotating packed bed is 300-5000 rpm; more preferably, the rotating speed of the rotor is 500-2500 rpm. The rotor speed is adjusted by a frequency modulation variator.
根据本发明的某些实施方式,步骤3)中,所述聚合反应温度为60-95℃,聚合反应时间为0.5-10h;更优选地,聚合反应温度为70-90℃,聚合反应时间为1-5h。According to some embodiments of the present invention, in step 3), the polymerization reaction temperature is 60-95°C, and the polymerization reaction time is 0.5-10 h; more preferably, the polymerization reaction temperature is 70-90°C, and the polymerization reaction time is 1-5h.
根据本发明的某些实施方式,步骤3)中,所述引发剂溶液加入到预乳化溶液中,进行聚合反应,过程中保持超重力旋转填充床循环运行;According to some embodiments of the present invention, in step 3), the initiator solution is added to the pre-emulsified solution to carry out the polymerization reaction, and the supergravity rotating packed bed is kept in circulation during the process;
根据本发明的某些实施方式,步骤3)中,所述胶体颗粒粒径为10-200nm,其玻璃转化温度可根据聚合单体的配比不同进行调控,聚合物胶体颗粒呈球形,分散于水中且分散性良好。According to some embodiments of the present invention, in step 3), the particle size of the colloidal particles is 10-200 nm, and the glass transition temperature of the colloidal particles can be adjusted according to the ratio of the polymerized monomers. The colloidal polymer particles are spherical and dispersed in Good dispersibility in water.
根据本发明的某些实施方式,步骤4)中,所述胶体颗粒水分散体的固含量为0.5-5wt%。According to some embodiments of the present invention, in step 4), the solid content of the aqueous dispersion of colloidal particles is 0.5-5 wt%.
根据本发明的某些实施方式,步骤4)中,所述油相选自下列物质中的一种或多种:葵花籽油、大豆油、花生油、异十六烷、乙酸异戊酯、肉豆蔻酸异丙酯、蓖麻油、紫苏油、橄榄油、棕榈油。According to certain embodiments of the present invention, in step 4), the oil phase is selected from one or more of the following substances: sunflower oil, soybean oil, peanut oil, isohexadecane, isoamyl acetate, meat Isopropyl myristate, castor oil, perilla oil, olive oil, palm oil.
根据本发明的某些实施方式,步骤4)中,所述乳化剂选自下列物质中的一种或多种:聚甘油-3-聚蓖麻醇酸酯、失水山梨醇油酸酯、蔗糖多硬脂酸酯、双甘油聚丙二醇醚、油酸聚氧乙烯酯、卵磷脂。According to certain embodiments of the present invention, in step 4), the emulsifier is selected from one or more of the following substances: polyglycerol-3-polyricinoleate, sorbitan oleate, Sucrose polystearate, diglycerol polypropylene glycol ether, polyoxyethylene oleate, lecithin.
根据本发明的某些实施方式,步骤4)中,所述胶体颗粒水分散体、油相和乳化剂的体积用量比例为1:100:1-2.5。According to some embodiments of the present invention, in step 4), the volume dosage ratio of the colloidal particle water dispersion, the oil phase and the emulsifier is 1:100:1-2.5.
根据本发明的某些实施方式,步骤4)中,所述乳化过程时间为5-120min;更优选地,所述乳化过程时间为5-90min。According to certain embodiments of the present invention, in step 4), the emulsification process time is 5-120 min; more preferably, the emulsification process time is 5-90 min.
根据本发明的某些实施方式,步骤5)中,所述加热温度为20-60℃,加热时间为1-30min。According to some embodiments of the present invention, in step 5), the heating temperature is 20-60° C., and the heating time is 1-30 min.
本发明所记载的任何范围包括端值以及端值之间的任何数值以及端值或者端值之间的任意数值所构成的任意子范围。Any range recited herein includes the endpoints and any number between the endpoints and any sub-ranges formed by the endpoints or any number between the endpoints.
如无特殊说明,本发明中的各原料均可通过市售购买获得,本发明中所用的设备可采用所属领域中的常规设备或参照所属领域的现有技术进行。Unless otherwise specified, each raw material in the present invention can be obtained through commercial purchase, and the equipment used in the present invention can be performed with conventional equipment in the field or with reference to the prior art in the field.
与现有技术相比较,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1)本发明制备的胶体颗粒粒径小且分布均匀,为10-200nm,其玻璃转化温度可调控,且聚合反应时间大幅度缩短;1) The colloidal particles prepared by the present invention have a small particle size and a uniform distribution, ranging from 10 to 200 nm, whose glass transition temperature can be adjusted, and the polymerization reaction time is greatly shortened;
2)本发明可以通过胶体颗粒粒径的变化、乳液加热温度的变化、乳液加热时间的变化等,灵活控制微胶囊的尺寸以及孔隙率,以达到不同缓释速率的效果;2) The present invention can flexibly control the size and porosity of the microcapsules through changes in the particle size of the colloidal particles, changes in the heating temperature of the emulsion, and changes in the heating time of the emulsion, so as to achieve the effects of different sustained release rates;
3)本发明制备的自组装型微胶囊成球性好,聚合物纳米颗粒致密规整地排列在微胶囊的表面,≥90%的微胶囊为规则球形,粒径在0.1-10μm之间;3) The self-assembled microcapsules prepared by the present invention have good sphericity, the polymer nanoparticles are densely and regularly arranged on the surface of the microcapsules, and ≥90% of the microcapsules are regular spherical, and the particle size is between 0.1-10 μm;
4)本发明微胶囊的制备方法具有更高的产率,成本低,生物毒性低,操作简便,易于工业化生产。4) The preparation method of the microcapsules of the present invention has higher yield, low cost, low biological toxicity, simple operation and easy industrial production.
附图说明Description of drawings
下面结合附图对本发明的具体实施方式作进一步详细的说明The specific embodiments of the present invention will be described in further detail below in conjunction with the accompanying drawings.
图1为实施例1中所得囊壁材料胶体颗粒的扫描电镜图;Fig. 1 is the scanning electron microscope image of obtained capsule wall material colloidal particles in Example 1;
图2为实施例1中旋转填充床转速为500rpm时所制得的自组装型微胶囊的扫描电镜图;Fig. 2 is the scanning electron microscope picture of the self-assembled microcapsule obtained when the rotating packed bed rotating speed is 500rpm in
图3为实施例1中旋转填充床转速为1000rpm时所制得的自组装型微胶囊的扫描电镜图;Fig. 3 is the scanning electron microscope image of the self-assembled microcapsule obtained when the rotating packed bed rotating speed is 1000rpm in Example 1;
图4为实施例1中旋转填充床转速为1500rpm时所制得的自组装型微胶囊的扫描电镜图;Fig. 4 is the scanning electron microscope picture of the self-assembled microcapsule obtained when the rotating packed bed rotational speed is 1500rpm in
图5为实施例1中旋转填充床转速为2500rpm时所制得的自组装型微胶囊的扫描电镜图;Fig. 5 is the scanning electron microscope picture of the self-assembled microcapsule obtained when the rotating packed bed rotational speed is 2500rpm in
图6为实施例2中包埋了诱惑红染料的微胶囊共聚焦显微镜图;6 is a confocal microscope image of the microcapsules embedded with allura red dye in Example 2;
图7为对比例1中所制得的自组装型微胶囊的扫描电镜图;Fig. 7 is the scanning electron microscope image of the self-assembled microcapsule prepared in Comparative Example 1;
图8为对比例3中所制得的自组装型微胶囊的扫描电镜图;8 is a scanning electron microscope image of the self-assembled microcapsules prepared in Comparative Example 3;
图9为对比例5中所制得的胶体颗粒的扫描电镜图。FIG. 9 is a scanning electron microscope image of the colloidal particles prepared in Comparative Example 5. FIG.
图10为对比例8中所制得的胶体颗粒的扫描电镜图。FIG. 10 is a scanning electron microscope image of the colloidal particles prepared in Comparative Example 8. FIG.
具体实施方式Detailed ways
为了更清楚地说明本发明,下面结合优选实施例对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。In order to illustrate the present invention more clearly, the present invention will be further described below with reference to the preferred embodiments. Those skilled in the art should understand that the content specifically described below is illustrative rather than restrictive, and should not limit the protection scope of the present invention.
作为本发明的一个方面,一种制备自组装型微胶囊的方法,包括如下步骤:As an aspect of the present invention, a method for preparing self-assembled microcapsules, comprising the steps of:
1)将表面活性剂溶于去离子水中,得到表面活性剂溶液;称量聚合单体,得到单体混合物;将引发剂溶于去离子水中,得到引发剂溶液;1) Dissolving the surfactant in deionized water to obtain a surfactant solution; weighing the polymerized monomers to obtain a monomer mixture; dissolving the initiator in deionized water to obtain an initiator solution;
2)氮气氛围下,将表面活性剂溶液和单体混合物循环输送到超重力旋转填充床中,混合得到预乳化液;2) Under a nitrogen atmosphere, the surfactant solution and the monomer mixture are cyclically transported into the supergravity rotating packed bed, and mixed to obtain a pre-emulsion;
3)将引发剂溶液加入到预乳化液中,进行聚合反应,反应结束后,透析除去杂质,得到胶体颗粒水分散体,作为囊壁材料;3) adding the initiator solution to the pre-emulsion, carrying out a polymerization reaction, and after the reaction finishes, removing impurities by dialysis to obtain a colloidal particle water dispersion as a capsule wall material;
4)将胶体颗粒水分散体、油相及乳化剂的混合物循环通入到超重力旋转填充床中强化乳化过程,得到微乳液或纳米乳液;4) circulating the mixture of colloidal particle water dispersion, oil phase and emulsifier into the supergravity rotating packed bed to strengthen the emulsification process to obtain microemulsion or nanoemulsion;
5)将上述乳液加热,离心,用去离子水洗涤,分散于水中,制得水相微胶囊,或洗涤后直接干燥,得到微胶囊固体颗粒。5) heating the above-mentioned emulsion, centrifuging, washing with deionized water, dispersing in water to obtain water-phase microcapsules, or directly drying after washing to obtain microcapsule solid particles.
在某些实施例中,步骤1)中,所述表面活性剂选自下列物质中的一种或多种:十二烷基磺酸钠、十二烷基硫酸钠、聚乙烯醇、聚环氧乙烷、铵盐(如十二烷基氯化铵)、季铵盐(如十六烷基三甲基溴化铵)。表面活性剂的存在降低了油水界面张力,使单体分散成细小液滴,在液滴表面形成保护层,使预乳化液稳定;选择其他表面活性剂原料的乳化效果较差,且难以降解。In certain embodiments, in step 1), the surfactant is selected from one or more of the following: sodium dodecyl sulfonate, sodium dodecyl sulfate, polyvinyl alcohol, polycyclic Ethylene oxide, ammonium salts (eg lauryl ammonium chloride), quaternary ammonium salts (eg cetyltrimethylammonium bromide). The presence of surfactant reduces the oil-water interfacial tension, disperses the monomer into fine droplets, and forms a protective layer on the surface of the droplets to stabilize the pre-emulsion; other surfactant raw materials have poor emulsification effect and are difficult to degrade.
在某些实施例中,步骤1)中,所述表面活性剂的用量为单体总质量的0.1-8wt%;更优选地,所述表面活性剂的用量为单体总质量的0.5-5wt%。在此用量范围外,少则起不到乳化效果;多则易导致反应过程中起泡严重,制备的胶体颗粒粘连情况严重,且表面活性剂难以洗净。In certain embodiments, in step 1), the amount of the surfactant is 0.1-8wt% of the total mass of the monomer; more preferably, the amount of the surfactant is 0.5-5wt% of the total mass of the monomer %. Outside the range of this dosage, the emulsification effect will not be achieved at least; more will easily lead to serious foaming during the reaction process, serious adhesion of the prepared colloidal particles, and difficulty in cleaning the surfactant.
在某些实施例中,步骤1)中,所述聚合单体选自下列物质中的一种或多种:苯乙烯、丙烯酸丁酯、甲基丙烯酸、丙烯酸、甲基丙烯酸甲酯、甲基丙烯酸丁酯、甲基丙烯酸二甲酯、甲基丙烯酸二甲胺基乙酯、丙烯胺盐酸盐、丙烯酰胺、氰基丙烯酸正丁酯、异丙基丙烯酰胺、乙烯基吡啶。选择其他聚合单体原料不适宜作为囊壁材料,在乳液中的自组装行为较差,所制得的微胶囊形貌较差,且产率过低。In certain embodiments, in step 1), the polymerized monomer is selected from one or more of the following: styrene, butyl acrylate, methacrylic acid, acrylic acid, methyl methacrylate, methyl methacrylate Butyl acrylate, dimethyl methacrylate, dimethylaminoethyl methacrylate, acrylamine hydrochloride, acrylamide, n-butyl cyanoacrylate, isopropylacrylamide, vinylpyridine. Selecting other polymerized monomer raw materials is not suitable as the capsule wall material, the self-assembly behavior in the emulsion is poor, the morphology of the prepared microcapsules is poor, and the yield is too low.
在某些实施例中,步骤1)中,所述引发剂选自下列物质中的一种或多种:过硫酸钾、过硫酸铵、过硫酸钠、过氧化氢、偶氮二异丁基脒盐酸盐、偶氮二异丁基咪唑啉盐酸盐、偶氮二异丙基咪唑啉。其他引发剂原料分解温度较高,分解速率较低。In certain embodiments, in step 1), the initiator is selected from one or more of the following substances: potassium persulfate, ammonium persulfate, sodium persulfate, hydrogen peroxide, azodiisobutyl Amidine hydrochloride, azodiisobutylimidazoline hydrochloride, azodiisopropylimidazoline. Other initiator raw materials have higher decomposition temperature and lower decomposition rate.
在某些实施例中,步骤1)中,所述引发剂的用量为单体总质量的0.1-5wt%;更优选地,所述引发剂的用量为单体总质量的0.5-3.5wt%。在此用量范围外,少则不易引发,反应不能正常进行;多则反应速率太快,难以控制。In some embodiments, in step 1), the amount of the initiator is 0.1-5wt% of the total mass of the monomer; more preferably, the amount of the initiator is 0.5-3.5wt% of the total mass of the monomer . Outside this dosage range, if the amount is less, it is not easy to initiate, and the reaction cannot be carried out normally;
在某些实施例中,步骤2)中,所述混合物循环时间为5-150min;更优选地,所述混合物循环时间为5-120min。在此时间范围外,低则未形成稳定的预乳化液;高则杂质增多,机器损耗严重。In certain embodiments, in step 2), the cycle time of the mixture is 5-150min; more preferably, the cycle time of the mixture is 5-120min. Outside this time range, if it is low, a stable pre-emulsion will not be formed; if it is high, impurities will increase and the machine will be seriously damaged.
在某些实施例中,步骤2)中,所述超重力旋转填充床的转子转速为300-5000rpm;更优选地,转子转速为500-2500rpm、或1000-2500rpm。采用调频变速仪调节转子转速。在此转速范围外,低则混合效果一般,形成的液滴偏大不均一;高则杂质增多,机器损耗严重。In certain embodiments, in step 2), the rotating speed of the rotor of the supergravity rotating packed bed is 300-5000 rpm; more preferably, the rotating speed of the rotor is 500-2500 rpm, or 1000-2500 rpm. The rotor speed is adjusted by a frequency modulation variator. Outside this speed range, if the speed is low, the mixing effect will be general, and the formed droplets will be large and non-uniform; if the speed is high, the impurities will increase and the machine loss will be serious.
在某些实施例中,步骤3)中,所述聚合反应温度为60-95℃,聚合反应时间为0.5-10h;更优选地,聚合反应温度为70-90℃,聚合反应时间为1-5h。在此温度范围外,低则反应速率极慢,高则反应速率极快,难以控制,产品分散性差;在此时间范围外,低则反应不充分完全,高则长时间高温及搅拌易导致产品形貌变差。In certain embodiments, in step 3), the polymerization reaction temperature is 60-95°C, and the polymerization reaction time is 0.5-10 h; more preferably, the polymerization reaction temperature is 70-90°C, and the polymerization reaction time is 1- 5h. Outside this temperature range, if the temperature is low, the reaction rate will be extremely slow; if the temperature is high, the reaction rate will be extremely fast, which is difficult to control, and the product dispersibility will be poor. Deterioration of appearance.
在某些实施例中,步骤3)中,所述胶体颗粒粒径为10-200nm,其玻璃转化温度可根据聚合单体的配比不同进行调控,聚合物胶体颗粒呈球形,分散于水中且分散性良好。In some embodiments, in step 3), the particle size of the colloidal particles is 10-200 nm, the glass transition temperature of the colloidal particles can be adjusted according to the ratio of the polymerized monomers, and the colloidal polymer particles are spherical, dispersed in water and Good dispersibility.
在某些实施例中,步骤4)中,所述胶体颗粒水分散体的固含量为0.5-5wt%。在此用量范围外,少则导致囊壁材料不够,微胶囊产率低;多则有许多散落的胶体颗粒未能充分利用。In certain embodiments, in step 4), the solid content of the colloidal particle aqueous dispersion is 0.5-5 wt%. Outside the range of the dosage, if the amount is too small, the material of the capsule wall will be insufficient, and the yield of microcapsules will be low;
在某些实施例中,步骤4)中,所述油相选自下列物质中的一种或多种:葵花籽油、大豆油、花生油、异十六烷、乙酸异戊酯、肉豆蔻酸异丙酯、蓖麻油、紫苏油、橄榄油、棕榈油。油包水型的Pickering乳液中,油相作为连续相。其他油相原料生物毒性高,成本高。In certain embodiments, in step 4), the oil phase is selected from one or more of the following: sunflower oil, soybean oil, peanut oil, isohexadecane, isoamyl acetate, myristic acid Isopropyl ester, castor oil, perilla oil, olive oil, palm oil. In water-in-oil Pickering emulsions, the oil phase acts as the continuous phase. Other oil phase raw materials have high biological toxicity and high cost.
在某些实施例中,步骤4)中,所述乳化剂选自下列物质中的一种或多种:聚甘油-3-聚蓖麻醇酸酯、失水山梨醇油酸酯、蔗糖多硬脂酸酯、双甘油聚丙二醇醚、油酸聚氧乙烯酯、卵磷脂。在油水体系中加入乳化剂后,水和油就能相互混合,形成完全分散的乳液。选择其他乳化剂原料的乳化效果较差,且难以洗净。In certain embodiments, in step 4), the emulsifier is selected from one or more of the following substances: polyglycerol-3-polyricinoleate, sorbitan oleate, sucrose poly Stearate, Diglycerol Polypropylene Glycol Ether, Polyoxyethylene Oleate, Lecithin. After adding an emulsifier to the oil-water system, water and oil can be mixed with each other to form a completely dispersed emulsion. Selecting other emulsifier raw materials has poor emulsification effect and is difficult to clean.
在某些实施例中,步骤4)中,所述胶体颗粒水分散体、油相和乳化剂的体积用量比例为1:100:1-2.5。In certain embodiments, in step 4), the volume and dosage ratio of the colloidal particle water dispersion, the oil phase and the emulsifier is 1:100:1-2.5.
在某些实施例中,步骤4)中,所述乳化过程时间为5-120min;更优选地,所述乳化过程时间为5-90min。在此时间范围外,低则未形成稳定的乳液;高则杂质增多,机器损耗严重。In certain embodiments, in step 4), the emulsification process time is 5-120min; more preferably, the emulsification process time is 5-90min. Outside this time range, if it is low, a stable emulsion will not be formed; if it is high, impurities will increase and the machine will be seriously damaged.
在某些实施例中,步骤5)中,所述加热温度为20-60℃,加热时间为1-30min在此温度范围外,低则胶体颗粒未能熔化,无法制备出微胶囊,高则胶体颗粒熔化程度极高,微胶囊的孔隙率极低;在此时间范围外,低则胶体颗粒未完全熔化,高则长时间加热无明显变化。In some embodiments, in step 5), the heating temperature is 20-60° C., and the heating time is 1-30 min. Outside this temperature range, if the temperature is low, the colloidal particles cannot be melted and microcapsules cannot be prepared. The melting degree of colloidal particles is extremely high, and the porosity of microcapsules is extremely low; outside this time range, if the temperature is low, the colloidal particles are not completely melted, and if the temperature is high, there is no significant change in long-term heating.
实施例1Example 1
一种制备自组装型微胶囊的方法A kind of method for preparing self-assembled microcapsules
将十二烷基硫酸钠0.4g溶解在180mL去离子水中;将甲基丙烯酸甲酯30g、丙烯酸丁酯9.6g和丙烯酸0.4g单体混合;开启超重力旋转装置,调节转速至1500rpm;开启进料泵,将表面活性剂溶液和单体混合物一起输送至旋转填充床中,循环60min,得到预乳化液。将过硫酸钾0.4g溶解在20mL去离子水中,并将其加入到预乳化液中,引发聚合反应,反应温度控制在85℃,反应时间为2h,反应过程中一直处于氮气氛围下并开启3℃循环冷凝水。将制得的胶体颗粒水分散体分装到透析袋中进行透析,除去未反应完的单体与乳化剂等杂质,一周后,得到所需的囊壁材料。图1为合成的胶体颗粒扫描电镜图,粒径约为59nm。Dissolve 0.4 g of sodium lauryl sulfate in 180 mL of deionized water; mix 30 g of methyl methacrylate, 9.6 g of butyl acrylate and 0.4 g of acrylic acid monomers; turn on the supergravity rotating device, and adjust the rotational speed to 1500 rpm; The feed pump is used to transport the surfactant solution and the monomer mixture together into the rotating packed bed, and circulate for 60 minutes to obtain a pre-emulsion. Dissolve 0.4 g of potassium persulfate in 20 mL of deionized water, and add it to the pre-emulsion to initiate a polymerization reaction. The reaction temperature is controlled at 85 °C, and the reaction time is 2 h. During the reaction process, it has been under a nitrogen atmosphere and turned on for 3 ℃ circulating condensed water. The prepared colloidal particle aqueous dispersion is divided into dialysis bags for dialysis, and impurities such as unreacted monomers and emulsifiers are removed, and the desired capsule wall material is obtained after one week. Figure 1 is a scanning electron microscope image of the synthesized colloidal particles, with a particle size of about 59 nm.
添加去离子水,调节胶体颗粒水分散体的固含量为2wt%。取其2mL与200mL葵花籽油、5mL失水山梨醇油酸酯混合,将此混合物分成四份,输送至旋转填充床中进行混合强化,调节旋转填充床转速分别为500rpm、1000rpm、1500rpm和2500rpm,循环60min。将得到的乳液在48℃水浴下加热15min。离心,去离子水洗涤后,得到分散于水中的自组装型微胶囊。Deionized water was added to adjust the solid content of the aqueous dispersion of colloidal particles to 2 wt%. Take 2mL of it and mix it with 200mL of sunflower oil and 5mL of sorbitan oleate, divide the mixture into four parts, transport it to the rotating packed bed for mixing and strengthening, and adjust the rotating speed of the rotating packed bed to be 500rpm, 1000rpm, 1500rpm and 2500rpm respectively. , cycle 60min. The resulting emulsion was heated in a 48°C water bath for 15 min. After centrifugation and washing with deionized water, self-assembled microcapsules dispersed in water were obtained.
图2为旋转填充床转速500rpm制备的微胶囊扫描电镜图,该条件下失水山梨醇油酸酯用量过多,难以洗净,微胶囊形貌不是很规则。图3为旋转填充床转速1000rpm制备的微胶囊扫描电镜图,该条件下制备的微胶囊大部分为规则球形,表面略有缩皱。图4为旋转填充床转速1500rpm制备的微胶囊扫描电镜图,该条件下微胶囊表面胶体颗粒规整排列,形貌良好。图5为旋转填充床转速2500rpm制备的微胶囊扫描电镜图,该条件下微胶囊成规则球形,表面胶体颗粒熔化度较高。Figure 2 is a scanning electron microscope image of the microcapsules prepared by rotating the packed bed at 500 rpm. Under this condition, the amount of sorbitan oleate is too much, it is difficult to wash, and the microcapsules have irregular morphology. Fig. 3 is a scanning electron microscope image of the microcapsules prepared by rotating the packed bed at a speed of 1000 rpm. Most of the microcapsules prepared under this condition are regular spherical, and the surface is slightly wrinkled. Figure 4 is a scanning electron microscope image of the microcapsules prepared by rotating the packed bed at a speed of 1500 rpm. Under this condition, the colloidal particles on the surface of the microcapsules are regularly arranged and the morphology is good. Figure 5 is a scanning electron microscope image of the microcapsules prepared by rotating the packed bed at a rotational speed of 2500 rpm. Under this condition, the microcapsules are in a regular spherical shape, and the surface colloidal particles have a high degree of melting.
实施例2Example 2
一种制备自组装型微胶囊包埋诱惑红染料的方法A kind of method for preparing self-assembled microcapsule-embedded allura red dye
将十二烷基硫酸钠0.8g溶解在180mL去离子水中;分别将不同单体配比甲基丙烯酸甲酯:丙烯酸丁酯:丙烯酸=65:34:1,75:24:1,85:14:1的单体混合,单体混合物总质量都为40g;开启超重力旋转装置,调节转速至1500rpm;开启进料泵,将表面活性剂溶液和单体混合物一起输送至旋转填充床中,循环60min,得到预乳化液。将过硫酸钾0.8g溶解在20mL去离子水中,并将其加入到预乳化液中,引发聚合反应,反应温度控制在85℃,反应时间为2h,反应过程中一直处于氮气氛围下并开启3℃循环冷凝水。将制得的胶体颗粒水分散体分装到透析袋中进行透析,除去未反应完的单体与乳化剂等杂质,一周后,得到所需的囊壁材料。Dissolve 0.8 g of sodium lauryl sulfate in 180 mL of deionized water; mix different monomer ratios of methyl methacrylate:butyl acrylate:acrylic acid=65:34:1, 75:24:1, 85:14 :1 monomer mixture, the total mass of the monomer mixture is 40g; turn on the supergravity rotating device, adjust the speed to 1500rpm; turn on the feed pump, transport the surfactant solution and the monomer mixture to the rotating packed bed together, circulate 60min to obtain a pre-emulsion. Dissolve 0.8 g of potassium persulfate in 20 mL of deionized water, and add it to the pre-emulsion to initiate a polymerization reaction. The reaction temperature is controlled at 85 °C, and the reaction time is 2 h. During the reaction process, it has been under a nitrogen atmosphere and turned on for 3 ℃ circulating condensed water. The prepared colloidal particle aqueous dispersion is divided into dialysis bags for dialysis, and impurities such as unreacted monomers and emulsifiers are removed, and the desired capsule wall material is obtained after one week.
利用单体均聚物的玻璃转化温度,按照Fox方程如式(1)所示,可计算得到聚合物的玻璃转化温度Tg。Using the glass transition temperature of the monomer homopolymer, as shown in formula (1) according to the Fox equation, the glass transition temperature Tg of the polymer can be calculated.
式中,w1,2,3…n为单体1,2,3…n的质量分数,Tg1,2,3…n为单体1,2,3…n的均聚物的Tg,单位为K。通过差示扫描量热仪测定聚合物的实际玻璃转化温度。表1为不同单体配比制备的胶体颗粒的玻璃转化温度,可以看出理论计算值与实际测量值很接近。In the formula, w 1 , 2, 3...n is the mass fraction of
表1:不同单体配比制备的胶体颗粒的玻璃转化温度Table 1: Glass transition temperature of colloidal particles prepared with different monomer ratios
添加去离子水,调节胶体颗粒水分散体的固含量为2wt%。称量0.04g诱惑红,溶解到2mL上述胶体颗粒水分散体中。将上述溶解诱惑红的混合物与200mL葵花籽油、5mL失水山梨醇油酸酯混合,输送至旋转填充床中进行混合强化,调节旋转填充床转速分别为1500rpm,循环30min。将得到的乳液在48℃水浴下加热15min。离心,去离子水洗涤后,得到分散于水中的自组装型微胶囊。Deionized water was added to adjust the solid content of the aqueous dispersion of colloidal particles to 2 wt%. 0.04 g of allura red was weighed and dissolved in 2 mL of the above-mentioned colloidal particle aqueous dispersion. The above-mentioned mixture of dissolving allura red was mixed with 200 mL of sunflower oil and 5 mL of sorbitan oleate, and transported to a rotating packed bed for mixing and strengthening. The resulting emulsion was heated in a 48°C water bath for 15 min. After centrifugation and washing with deionized water, self-assembled microcapsules dispersed in water were obtained.
图6为包埋了诱惑红染料的微胶囊共聚焦显微镜图,可以从中看出染料被成功包埋。Figure 6 is a confocal microscope image of the microcapsules embedded with allura red dye, from which it can be seen that the dye was successfully embedded.
实施例3Example 3
一种制备自组装型微胶囊包埋盐酸阿霉素的方法A kind of method for preparing self-assembled microcapsules embedded doxorubicin hydrochloride
将十二烷基磺酸钠1.0g溶解在180mL去离子水中;将苯乙烯25.6g、丙烯酸丁酯14g和丙烯酸0.4g单体混合;开启超重力旋转装置,调节转速至1500rpm;开启进料泵,将表面活性剂溶液和单体混合物一起输送至旋转填充床中,循环30min,得到预乳化液。将过硫酸铵1.0g溶解在20mL去离子水中,并将其加入到预乳化液中,引发聚合反应,反应温度控制在80℃,反应时间为4h,反应过程中一直处于氮气氛围下并开启3℃循环冷凝水。将制得的胶体颗粒水分散体分装到透析袋中进行透析,除去未反应完的单体与乳化剂等杂质,一周后,得到所需的囊壁材料。Dissolve 1.0 g of sodium dodecyl sulfonate in 180 mL of deionized water; mix 25.6 g of styrene, 14 g of butyl acrylate and 0.4 g of acrylic acid monomers; turn on the supergravity rotating device, and adjust the speed to 1500 rpm; turn on the feed pump , the surfactant solution and the monomer mixture are transported to the rotating packed bed together, and circulated for 30 minutes to obtain a pre-emulsion. Dissolve 1.0 g of ammonium persulfate in 20 mL of deionized water, and add it to the pre-emulsion to initiate a polymerization reaction. The reaction temperature is controlled at 80 °C, and the reaction time is 4 h. During the reaction process, it has been under a nitrogen atmosphere and turned on for 3 ℃ circulating condensed water. The prepared colloidal particle aqueous dispersion is divided into dialysis bags for dialysis, and impurities such as unreacted monomers and emulsifiers are removed, and the desired capsule wall material is obtained after one week.
添加去离子水,调节胶体颗粒水分散体的固含量为2wt%。称量0.04g盐酸阿霉素,溶解到2mL上述胶体颗粒水分散体中。将上述溶解盐酸阿霉素的混合物与200mL葵花籽油、5mL蔗糖多硬脂酸酯混合,输送至旋转填充床中进行混合强化,调节旋转填充床转速分别为1500rpm,循环30min。将得到的乳液在48℃水浴下加热30min。离心,用去离子水洗涤后,干燥,得到自组装型微胶囊固体颗粒。Deionized water was added to adjust the solid content of the aqueous dispersion of colloidal particles to 2 wt%. 0.04 g of doxorubicin hydrochloride was weighed and dissolved in 2 mL of the above-mentioned colloidal particle aqueous dispersion. The above-mentioned mixture of dissolving doxorubicin hydrochloride was mixed with 200 mL of sunflower oil and 5 mL of sucrose polystearate, and transported to a rotating packed bed for mixing and strengthening. The resulting emulsion was heated in a 48°C water bath for 30 min. After centrifugation, washing with deionized water, and drying, the solid particles of self-assembled microcapsules are obtained.
实施例4Example 4
一种制备自组装型微胶囊的方法A kind of method for preparing self-assembled microcapsules
将聚乙烯醇0.4g溶解在180mL去离子水中;将苯乙烯6.4g、甲基丙烯酸丁酯3.5g和丙烯酸0.1g单体混合;开启超重力旋转装置,调节转速至800rpm;开启进料泵,将表面活性剂溶液和单体混合物一起输送至旋转填充床中,循环10min,得到预乳化液。将偶氮二异丙基咪唑啉0.4g溶解在20mL去离子水中,并将其加入到预乳化液中,引发聚合反应,反应温度控制在70℃,反应时间为10h,反应过程中一直处于氮气氛围下并开启3℃循环冷凝水。将制得的胶体颗粒水分散体分装到透析袋中进行透析,除去未反应完的单体与乳化剂等杂质,一周后,得到所需的囊壁材料。Dissolve 0.4 g of polyvinyl alcohol in 180 mL of deionized water; mix 6.4 g of styrene, 3.5 g of butyl methacrylate, and 0.1 g of acrylic acid; turn on the supergravity rotating device, and adjust the speed to 800 rpm; turn on the feed pump, The surfactant solution and the monomer mixture were transported into the rotating packed bed together, and circulated for 10 minutes to obtain a pre-emulsion. Dissolve 0.4 g of azodiisopropyl imidazoline in 20 mL of deionized water, and add it to the pre-emulsion to initiate the polymerization reaction. The reaction temperature is controlled at 70 ° C, the reaction time is 10 h, and the reaction process is always in nitrogen. Under the atmosphere and turn on the circulating condensed water at 3 ℃. The prepared colloidal particle aqueous dispersion is divided into dialysis bags for dialysis, and impurities such as unreacted monomers and emulsifiers are removed, and the desired capsule wall material is obtained after one week.
添加去离子水,调节胶体颗粒水分散体的固含量为0.5wt%。取其2mL与200mL紫苏油,与失水山梨醇油酸酯分别为3mL、4mL、5mL混合,将此混合物输送至旋转填充床中进行混合强化,调节旋转填充床转速分别为1500rpm,循环45min。将得到的乳液在48℃水浴下加热15min。离心,去离子水洗涤后,得到分散于水中的自组装型微胶囊。Deionized water was added to adjust the solid content of the colloidal particle aqueous dispersion to 0.5 wt%. Take 2mL and 200mL of perilla oil, mix with 3mL, 4mL, and 5mL of sorbitan oleate, respectively, and transfer the mixture to the rotating packed bed for mixing and strengthening, adjust the rotating speed of the rotating packed bed to be 1500rpm respectively, and circulate for 45min. . The resulting emulsion was heated in a 48°C water bath for 15 min. After centrifugation and washing with deionized water, self-assembled microcapsules dispersed in water were obtained.
实施例5Example 5
一种制备自组装型微胶囊的方法A kind of method for preparing self-assembled microcapsules
将十二烷基氯化铵0.4g溶解在180mL去离子水中;将丙烯酰胺6.4g、甲基丙烯酸二甲暗记乙酯33.2g和丙烯酸0.4g单体混合;开启超重力旋转装置,调节转速至800rpm;开启进料泵,将表面活性剂溶液和单体混合物一起输送至旋转填充床中,循环60min,得到预乳化液。将偶氮二异丙基咪唑啉0.4g溶解在20mL去离子水中,并将其加入到预乳化液中,引发聚合反应,反应温度控制在70℃,反应时间为4h,反应过程中一直处于氮气氛围下并开启3℃循环冷凝水。将制得的胶体颗粒水分散体分装到透析袋中进行透析,除去未应完的单体与乳化剂等杂质,一周后,得到所需的囊壁材料。Dissolve 0.4 g of dodecyl ammonium chloride in 180 mL of deionized water; mix 6.4 g of acrylamide, 33.2 g of dimethyl methacrylate, and 0.4 g of acrylic acid monomers; turn on the supergravity rotating device, and adjust the speed to 800rpm; turn on the feed pump, transport the surfactant solution and the monomer mixture together into the rotating packed bed, and circulate for 60min to obtain a pre-emulsion. Dissolve 0.4 g of azodiisopropyl imidazoline in 20 mL of deionized water, and add it to the pre-emulsion to initiate the polymerization reaction. The reaction temperature is controlled at 70 ° C, the reaction time is 4 h, and the reaction process is always in nitrogen. Under the atmosphere and turn on the circulating condensed water at 3 °C. The prepared colloidal particle aqueous dispersion is divided into dialysis bags for dialysis, and impurities such as unfinished monomers and emulsifiers are removed, and the desired capsule wall material is obtained after one week.
添加去离子水,调节胶体颗粒水分散体的固含量为4wt%。取其2mL与200mL橄榄油、5mL卵磷脂混合,将此混合物输送至旋转填充床中进行混合强化,调节旋转填充床转速分别为1500rpm,循环30min。将得到的乳液分为四份,分别在40℃、44℃、52℃、56℃水浴下加热15min。离心,去离子水洗涤后,得到分散于水中的自组装型微胶囊。随着乳液的加热温度的升高,微胶囊表面胶体颗粒的熔化程度越高,进而微胶囊的孔隙率在降低。Deionized water was added to adjust the solid content of the colloidal particle aqueous dispersion to 4 wt%. Take 2 mL of it and mix it with 200 mL of olive oil and 5 mL of lecithin, transfer the mixture to a rotating packed bed for mixing and strengthening, adjust the rotational speed of the rotating packed bed to 1500 rpm, and circulate for 30 min. The obtained emulsion was divided into four parts and heated for 15 min in a water bath at 40°C, 44°C, 52°C, and 56°C, respectively. After centrifugation and washing with deionized water, self-assembled microcapsules dispersed in water were obtained. As the heating temperature of the emulsion increases, the degree of melting of the colloidal particles on the surface of the microcapsules increases, and the porosity of the microcapsules decreases.
对比例1Comparative Example 1
重复实施例1:不同之处仅在于,添加去离子水调节胶体颗粒水分散体固含量为5.6wt%,本对比例的微胶囊产品产率低于50%,还存在许多未进行自组装的散落胶体颗粒。分散体固含量为5.6wt%制备出的微胶囊扫描电镜图如图7所示。Example 1 was repeated: the only difference was that deionized water was added to adjust the solid content of the colloidal particle aqueous dispersion to 5.6 wt%, the yield of the microcapsule product of this comparative example was less than 50%, and there were still many non-self-assembled microcapsules. Scatter colloidal particles. The SEM image of the microcapsules prepared with the dispersion solid content of 5.6 wt% is shown in Fig. 7 .
对比例2Comparative Example 2
重复实施例1:不同之处仅在于,添加去离子水调节胶体颗粒水分散体固含量为0.4wt%,本对比例的微胶囊产品产率低于20%,囊壁材料的添加量过少。Repeat Example 1: the only difference is that adding deionized water to adjust the solid content of the colloidal particle aqueous dispersion to 0.4wt%, the yield of the microcapsule product of this comparative example is less than 20%, and the addition amount of the capsule wall material is too small .
对比例3Comparative Example 3
重复实施例1:不同之处仅在于,使用乳化剂失水山梨醇油酸酯为6mL,用量过多,难以洗净,制备出的微胶囊产品大部分不是规则球形,扫描电镜图如图8所示。Repeat Example 1: the difference is only that the emulsifier sorbitan oleate is 6mL, the dosage is too much, it is difficult to wash, and most of the prepared microcapsule products are not regular spherical, and the scanning electron microscope image is as shown in Figure 8 shown.
对比例4Comparative Example 4
重复实施例1:不同之处仅在于,使用乳化剂失水山梨醇油酸酯为1mL,用量过少,难以形成稳定的Pickering乳液,制备出的微胶囊产品产率极低。Repeat Example 1: the only difference is that the emulsifier sorbitan oleate is 1 mL, the dosage is too small, it is difficult to form a stable Pickering emulsion, and the yield of the prepared microcapsule product is extremely low.
对比例5Comparative Example 5
重复实施例1:不同之处仅在于,使用表面活性剂十二烷基硫酸钠为1.6g即单体总质量的4wt%,制备出的胶体颗粒形貌较差,分散性不好。产品扫描电镜图如图9所示。Example 1 was repeated: the only difference was that the amount of the surfactant sodium lauryl sulfate was 1.6 g, that is, 4 wt % of the total monomer mass, the prepared colloidal particles had poor morphology and poor dispersibility. The scanning electron microscope image of the product is shown in Figure 9.
对比例6Comparative Example 6
重复实施例1:不同之处仅在于,单体总质量为5g,制备出的胶体颗粒水分散体固含量过低,后续制备微胶囊需要繁杂的提浓过程。Repeat Example 1: the only difference is that the total mass of the monomer is 5 g, the solid content of the prepared colloidal particle aqueous dispersion is too low, and the subsequent preparation of microcapsules requires a complicated concentration process.
对比例7Comparative Example 7
重复实施例1:不同之处仅在于,预乳化过程的混合循环时间为150min,过多杂质进入样品中,制备出的胶体颗粒水分散体固含量过低。Example 1 was repeated: the only difference was that the mixing cycle time of the pre-emulsification process was 150 min, too much impurities entered the sample, and the solid content of the prepared colloidal particle aqueous dispersion was too low.
对比例8Comparative Example 8
重复实施例1:不同之处仅在于,制备囊壁材料的过程中,未使用超重力旋转填充床,聚合反应在传统搅拌釜中进行。聚合反应在4h时反应结束,无法在2h内反应完全,且制备的胶体颗粒粒径偏大,粒径分布范围较宽,扫描电镜图如图10所示。Example 1 was repeated: the only difference was that in the process of preparing the capsule wall material, the supergravity rotating packed bed was not used, and the polymerization reaction was carried out in a traditional stirred tank. The polymerization reaction ended at 4 h, and the reaction could not be completed within 2 h, and the prepared colloidal particles had a large particle size and a wide particle size distribution range. The scanning electron microscope image is shown in Figure 10.
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。Obviously, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, and are not intended to limit the embodiments of the present invention. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. Not all implementations can be exhaustive here. Any obvious changes or changes derived from the technical solutions of the present invention are still within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011538862.1A CN114653314B (en) | 2020-12-23 | 2020-12-23 | A method for preparing self-assembled microcapsules |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011538862.1A CN114653314B (en) | 2020-12-23 | 2020-12-23 | A method for preparing self-assembled microcapsules |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114653314A true CN114653314A (en) | 2022-06-24 |
CN114653314B CN114653314B (en) | 2022-11-25 |
Family
ID=82025375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011538862.1A Active CN114653314B (en) | 2020-12-23 | 2020-12-23 | A method for preparing self-assembled microcapsules |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114653314B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119318735A (en) * | 2024-12-17 | 2025-01-17 | 宁波慈北医疗器械有限公司 | Organic-inorganic composite microsphere and preparation method thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1816389A (en) * | 2003-07-03 | 2006-08-09 | Lg化学株式会社 | Method for preparing microcapsule by miniemulsion polymerization |
CN101513394A (en) * | 2009-03-30 | 2009-08-26 | 浙江新和成股份有限公司 | Continuous preparation method for nanometer dispersed vitamin A microcapsule |
CN101717618A (en) * | 2009-11-10 | 2010-06-02 | 天津工业大学 | Preparation method of phase-change material microcapsule |
CN104592803A (en) * | 2014-12-29 | 2015-05-06 | 三棵树涂料股份有限公司 | Organosilicone modified phase-changing microcapsule and preparation method of microcapsule |
CN104592434A (en) * | 2014-12-29 | 2015-05-06 | 三棵树涂料股份有限公司 | High-solid content environment-friendly phase transition microcapsule and preparation method thereof |
CN105127439A (en) * | 2014-05-27 | 2015-12-09 | 北京化工大学 | Preparation method for oil-phase silver nanoparticles |
CN107337745A (en) * | 2017-08-04 | 2017-11-10 | 西北工业大学 | A kind of preparation method of water-in-oil type polymer microcapsule |
CN108276854A (en) * | 2017-12-08 | 2018-07-13 | 西能化工科技(上海)有限公司 | Phase-change microcapsule and its preparation method and application |
US20190001294A1 (en) * | 2015-06-19 | 2019-01-03 | Universidad De Antioquia (Udea) | Method for Producing Colloidosome Microcapsules |
US20200360889A1 (en) * | 2019-05-16 | 2020-11-19 | Gem Innov | Method for preparing biodegradable microcapsules and microcapsules thus obtained |
-
2020
- 2020-12-23 CN CN202011538862.1A patent/CN114653314B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1816389A (en) * | 2003-07-03 | 2006-08-09 | Lg化学株式会社 | Method for preparing microcapsule by miniemulsion polymerization |
CN101513394A (en) * | 2009-03-30 | 2009-08-26 | 浙江新和成股份有限公司 | Continuous preparation method for nanometer dispersed vitamin A microcapsule |
CN101717618A (en) * | 2009-11-10 | 2010-06-02 | 天津工业大学 | Preparation method of phase-change material microcapsule |
CN105127439A (en) * | 2014-05-27 | 2015-12-09 | 北京化工大学 | Preparation method for oil-phase silver nanoparticles |
CN104592803A (en) * | 2014-12-29 | 2015-05-06 | 三棵树涂料股份有限公司 | Organosilicone modified phase-changing microcapsule and preparation method of microcapsule |
CN104592434A (en) * | 2014-12-29 | 2015-05-06 | 三棵树涂料股份有限公司 | High-solid content environment-friendly phase transition microcapsule and preparation method thereof |
US20190001294A1 (en) * | 2015-06-19 | 2019-01-03 | Universidad De Antioquia (Udea) | Method for Producing Colloidosome Microcapsules |
CN107337745A (en) * | 2017-08-04 | 2017-11-10 | 西北工业大学 | A kind of preparation method of water-in-oil type polymer microcapsule |
CN108276854A (en) * | 2017-12-08 | 2018-07-13 | 西能化工科技(上海)有限公司 | Phase-change microcapsule and its preparation method and application |
US20200360889A1 (en) * | 2019-05-16 | 2020-11-19 | Gem Innov | Method for preparing biodegradable microcapsules and microcapsules thus obtained |
Non-Patent Citations (1)
Title |
---|
李博鑫等: "单分散聚合物微球稳定Pickering乳液法制备大粒径微胶囊相变材料", 《高等学校化学学报》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119318735A (en) * | 2024-12-17 | 2025-01-17 | 宁波慈北医疗器械有限公司 | Organic-inorganic composite microsphere and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114653314B (en) | 2022-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4704039B2 (en) | Porous beads and method for producing the same | |
DE69817896T2 (en) | Precipitation polymerization process for the preparation of an oil-absorbent polymer suitable for the inclusion of solid particles and liquids, and products produced by this process | |
Barton | Free-radical polymerization in inverse microemulsions | |
JP4031362B2 (en) | Core-shell particles and methods for producing them | |
CN103341172A (en) | Dual-hole polysaccharide microspheres, preparation method and purpose thereof | |
CN104624124A (en) | Liquid crystal microcapsule and preparation method thereof | |
CN105832704A (en) | Non-spherical polymer particles uniform in particle size as well as preparation method and application of non-spherical polymer particles | |
CN113105650B (en) | Pickering emulsion taking hairbrush-shaped microspheres as stable emulsifier and preparation method thereof | |
CN103980506B (en) | A kind of preparation method of the magnetic microsphere based on PLEG | |
CN104262645A (en) | A method for preparing narrow-distribution polymer micro-nanospheres with controllable particle size | |
CN114653314B (en) | A method for preparing self-assembled microcapsules | |
JPS61215602A (en) | Production of polymer particle | |
CN112851869B (en) | Method for preparing morphology-adjustable polyion liquid-based anisotropic composite particles based on seed polymerization method | |
JPS61215603A (en) | Production of polymer particle | |
CN113773521B (en) | Method for preparing emulsion and polymer particles with size less than 10 nanometers based on droplet self-breaking phenomenon | |
CN111087513A (en) | A kind of preparation method of amphiphilic surfactant and controllable preparation method of zwitterionic nano hollow capsule | |
CN114249909B (en) | Micro-nano magnetic polymer microsphere with surface topological structure and preparation method thereof | |
CN108503855A (en) | A kind of Pickering emulsion emulsifiers agent and its preparation method and application | |
Ao et al. | Colloidosomes formation by controlling the solvent extraction from particle-stabilized emulsions | |
CN1669629A (en) | Method for preparing organic-inorganic hybrid nanocapsules with polymer as core | |
EP2808356A1 (en) | Method for the generation of semi-crystalline hybrid particles by liquid-solid assembly | |
CN115232234B (en) | Preparation method of spherical pore-forming agent for fluorescent ceramics and spherical pore-forming agent obtained by preparation method | |
Ma | Control of polymer particle size using porous glass membrane emulsification: a review | |
CN108888780B (en) | A kind of preparation method of superparamagnetic carboxylated chitosan/Fe3O4 particle nano-aggregates | |
CN114100538B (en) | A kind of preparation method of self-assembled microcapsule |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |