CN114645207A - 一种后天抑制剂高磁感取向硅钢的制造方法 - Google Patents

一种后天抑制剂高磁感取向硅钢的制造方法 Download PDF

Info

Publication number
CN114645207A
CN114645207A CN202210286184.7A CN202210286184A CN114645207A CN 114645207 A CN114645207 A CN 114645207A CN 202210286184 A CN202210286184 A CN 202210286184A CN 114645207 A CN114645207 A CN 114645207A
Authority
CN
China
Prior art keywords
percent
temperature
silicon steel
oriented silicon
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210286184.7A
Other languages
English (en)
Inventor
刘朋成
王建钢
刘妍
宿成
胡强
陈�胜
贾生建
李钊
刘成龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baotou Iron and Steel Group Co Ltd
Original Assignee
Baotou Iron and Steel Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baotou Iron and Steel Group Co Ltd filed Critical Baotou Iron and Steel Group Co Ltd
Priority to CN202210286184.7A priority Critical patent/CN114645207A/zh
Publication of CN114645207A publication Critical patent/CN114645207A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1238Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

本发明公开了一种后天抑制剂高磁感取向硅钢的制造方法,本发明化学成分设计降低先天抑制剂的Al N和MnS含量,不添加抑制剂形成元素Cu,抑制剂主要依靠后续渗氮实现也就是后天抑制剂。本发明的目的是提供一种后天抑制剂高磁感取向硅钢的新的成分体系、热轧、常化、退火和渗氮控制工艺及方法,可以稳定生产磁性能满足且低成本的高磁感取向硅钢。

Description

一种后天抑制剂高磁感取向硅钢的制造方法
技术领域
本发明涉及一种后天抑制剂高磁感取向硅钢的制造方法。
背景技术
取向硅钢是电子电力及军事工业不可或缺的软磁材料,特别是高磁感取向硅钢生产工艺复杂、成分控制严格、杂质含量低,故称为钢铁材料中的“艺术品”,通常作为衡量企业管理和技术的标志之一。后天抑制剂高磁感取向硅钢不利用脱碳退火析出AlN作为抑制剂,即不采用“先天抑制剂”(也称固溶性抑制剂),而在脱碳退火后进行渗氮处理,使N与钢中Als形成抑制剂,即为“后天抑制剂”(也称获得抑制剂)。本发明采用以下工艺流程:高炉→铁水预处理→冶炼→精炼RH→连铸→铸坯加热→热轧→常化酸洗→冷轧→脱碳退火及渗氮处理及涂MgO→高温退火→热拉伸平整退火及涂绝缘层→剪切包装入库。本发明提供一种制造后天抑制剂高磁感取向硅钢的制造方法,可以实现批量稳定生产并且得到较高的磁性能合格率。
目前,申请号201910743291.8公布了一种高效生产高磁感取向硅钢及其制造方法。该发明通过化学元素Si 2.0~4.0%;C0.03~0.07%;Als0.015~0.035%; N0.003~0.010%;Nb0.0010~0.0500%;此外加入Cr、Cu、Sn合金元素,使得生产成本增加。通过工序控制参数的实施可以达到一定的成品磁性能,但磁性能控制稳定性差。
申请号201110033117.6公布了一种高磁感取向硅钢的生产方法。该发明公开的化学成分C0.05~0.10%;Si2.5~4.0%;S0.008~0.028%;Als0.008~0.040%; N0.004~0.012%;Mn0.08~0.20%;Cu0.08~0.30%,经不高于1250℃的温度保温后进行热轧,终轧温度850℃以上,退火、酸洗、一次冷轧或包含中间退火的两次冷轧、轧至成品厚度、脱碳退火、在湿的氮氢保护气氛中保温、涂布退火隔离剂后高温退火、渗氮处理、涂布绝缘涂层,并进行拉伸平整退火。该发明生产的成品铁损偏高,没有达到高磁感取向硅钢的铁损要求。
申请号201110008677.6公布了一种低温板坯加热高磁感取向硅钢及制造方法。该发明成分为:C0.035~0.06%;Si2.5~3.5%;Mn0.08~1.8%;S0.005~0.01%; A10.015~0.035%,N0.005~0.009%;Sn0.01~0.015%;P0.01~0.03%;Cu0.05~0.12%。铸坯加热温度降低到1100~1200℃,在经过热轧、常化、酸洗、冷轧后,进行脱碳退火和渗氮,最终高温退火后的成品钢带。该发明加入Cu导致成本增加且成品磁性能中铁损偏高没有达到标准中高磁感取向硅钢的要求。
发明内容
为了解决上述技术问题,本发明提供一种后天抑制剂高磁感取向硅钢的新的成分体系、热轧、常化、退火和渗氮控制工艺及方法,可以稳定生产磁性能满足且低成本的高磁感取向硅钢。
为解决上述技术问题,本发明采用如下技术方案:
本发明一种后天抑制剂高磁感取向硅钢的制造方法,所述后天抑制剂高磁感取向硅钢的质量百分比的化学成分为:C0.015~0.045%;Si2.80~3.35%; Mn0.05~0.20%;P0.005~0.035%;S0.002~0.020%;Als 0.010~0.035%; N0.0060~0.0110%;Sn0.02~0.07%,其余为Fe及不可避免夹杂,质量分数共计为100%;其具体的制造方法包括:
加热工艺:取向硅钢铸坯装入加热炉前的表面温度大于350℃,出炉温度 1100~1200℃,总在炉时间>250min;
轧制工艺:铸坯经过加热后进行粗轧,使用两架可逆式粗轧机轧制,共轧制4道次,轧制后中间坯厚度35~50mm;粗轧出口温度1000~1060℃之间;精轧入口温度980~1040℃精轧终轧温度910~980℃;层流却采用前部冷却,卷取温度500~650℃;热轧卷厚度2.0~3.0mm;
酸洗常化工艺:酸洗经过酸洗、刷洗和漂洗工序清除热轧钢带表层氧化铁皮,热轧板明火快速加热至1050~1200℃,钢带在该温度运行保温时间 1.0~3.0min,经过快速冷却段,冷却至900~1000℃,钢带在该温度运行保温时间0.5~1.5min;经过40~100℃的冷却水快速冷却至550~650℃,然后经过空气冷却至100℃以下;
冷轧工艺:常化后快速进行5~7道次冷轧,平均每道次压下率20~30%,总压下率80~90%之间;
脱碳退火、渗氮和MgO涂层:退火炉气氛由N2和H2组成,其中H2比例10~60%,混合气体通过加湿器温度50~80℃,脱碳退火温度800~880℃,退火时间2~5min;脱碳退火后进行渗氮处理,渗氮温度800~900℃,渗氮时间10~50s,渗氮炉内保护气氛N2和H2气组成,其中H2含量20~80%,渗氮介质NH3含量5~20%;渗氮后涂覆MgO涂层,在400~600℃烘干炉内烘干烧结;
高温退火:在保护气氛N2中以200℃/h速度加热至800℃,在N2和NH3气氛中以20~50℃/h速度加热至1100~1250℃,在H2气氛中保温度10~15h,然后自然冷却至500℃,最后在空气中冷却至室温;
热拉伸平整退火及涂绝缘层:高温退火后开卷在800~900℃退火炉中进行拉伸平整,然后进行涂覆SiO2和磷酸镁涂层,然后在400~650℃干燥烧结炉中形成涂层,最终制造出高磁感取向硅钢。
进一步的,所述后天抑制剂高磁感取向硅钢的质量百分比的化学成分为:C0.040%;Si3.0%;Mn0.080%;P0.032%;S0.003%;Als 0.018%;N0.0090%;Sn0.025%,其余为Fe及不可避免夹杂,质量分数共计为100%。
进一步的,所述后天抑制剂高磁感取向硅钢的质量百分比的化学成分为:C0.042%;Si2.95%;Mn0.075%;P0.035%;S0.004%;Als 0.020%;N0.0089%;Sn0.030%,其余为Fe及不可避免夹杂,质量分数共计为100%。
进一步的,所述后天抑制剂高磁感取向硅钢的质量百分比的化学成分为:C0.042%;Si2.95%;Mn0.070%;P0.030%;S0.003%;Als 0.018%;N0.0090%;Sn0.030%,其余为Fe及不可避免夹杂,质量分数共计为100%。
进一步的,所述后天抑制剂高磁感取向硅钢的质量百分比的化学成分为:C0.045%;Si3.00%;Mn0.075%;P0.030%;S0.004%;Als 0.019%;N0.0095%;Sn0.035%,其余为Fe及不可避免夹杂,质量分数共计为100%。
进一步的,所述后天抑制剂高磁感取向硅钢的质量百分比的化学成分为:C0.040%;Si2.90%;Mn0.069%;P0.032%;S0.005%;Als 0.020%;N0.0096%;Sn0.030%,其余为Fe及不可避免夹杂,质量分数共计为100%。
与现有技术相比,本发明的有益技术效果:
本发明采用后天抑制剂的设计思路,使用低成本的成分元素,通过控制过程工艺参数制造出低碳损高磁感的取向硅钢。
具体实施方式
一种后天抑制剂高磁感取向硅钢的制造方法,其质量百分比的化学成分: C0.15~0.45%;Si2.80~3.35%;Mn0.05~0.20%;P0.005~0.035%;S0.002~0.020%;Als0.010~0.035%;N0.0060~0.0110%;Sn0.02~0.07%。其余为Fe及不可避免夹杂,质量分数共计为100%。本发明化学成分设计降低先天抑制剂的AlN和MnS含量,不添加抑制剂形成元素Cu,抑制剂主要依靠后续渗氮实现也就是后天抑制剂。
加热工艺:取向硅钢铸坯装入加热炉前的表面温度大于350℃,出炉温度 1100~1200℃,总在炉时间>250min。
轧制工艺:铸坯经过加热后进行粗轧,使用两架可逆式粗轧机轧制,共轧制4道次,轧制后中间坯厚度35~50mm。粗轧出口温度1000~1060℃之间。精轧入口温度980~1040℃精轧终轧温度910~980℃。层流却采用前部冷却,卷取温度500~650℃。热轧卷厚度2.0~3.0mm。
酸洗常化工艺:酸洗经过酸洗、刷洗和漂洗工序清除热轧钢带表层氧化铁皮,热轧板明火快速加热至1050~1200℃,钢带在该温度运行保温时间 1.0~3.0min,经过快速冷却段,冷却至900~1000℃,钢带在该温度运行保温时间0.5~1.5min。经过40~100℃的冷却水快速冷却至550~650℃,然后经过空气冷却至100℃以下。
冷轧工艺:常化后快速进行5~7道次冷轧,平均每道次压下率20~30%,总压下率80~90%之间。
脱碳退火、渗氮和MgO涂层:退火炉气氛由N2和H2组成,其中H2比例10~60%,混合气体通过加湿器温度50~80℃,脱碳退火温度800~880℃,退火时间2~5min。脱碳退火后进行渗氮处理,渗氮温度800~900℃,渗氮时间10~50s,渗氮炉内保护气氛N2和H2气组成,其中H2含量20~80%,渗氮介质NH3含量5~20%。渗氮后涂覆MgO涂层,在400~600℃烘干炉内烘干烧结。
高温退火:在保护气氛N2中以200℃/h速度加热至800℃,在N2和NH3气氛中以20~50℃/h速度加热至1100~1250℃,在H2气氛中保温度10~15h,然后自然冷却至500℃,最后在空气中冷却至室温。
热拉伸平整退火及涂绝缘层:高温退火后开卷在800~900℃退火炉中进行拉伸平整,然后进行涂覆SiO2和磷酸镁涂层,在后400~650℃干燥烧结炉中形成涂层,最终制造出高磁感取向硅钢。
下面结合具体实施例对本发明作进一步详细的说明。
实施例1~5为采用本发明的要求具体情况,化学成分见表1,热轧工艺见表 2,常化温度和渗氮量及经过刻痕后的磁性能见表3。
表1化学成分
实施例 C Si Mn P S Als N Sn
1 0.040 3.00 0.080 0.032 0.003 0.018 0.0090 0.025
2 0.042 2.95 0.075 0.035 0.004 0.020 0.0089 0.030
3 0.042 2.95 0.070 0.030 0.003 0.018 0.0090 0.030
4 0.045 3.00 0.075 0.030 0.004 0.019 0.0095 0.035
5 0.040 2.90 0.069 0.032 0.005 0.020 0.0096 0.030
表2热轧和常化工艺
实施例 出炉温度℃ 终轧温度℃ 卷取温度 常化温度℃
1 1160 910 530 1150
2 1165 920 535 1160
3 1162 915 520 1160
4 1165 910 525 1165
5 1170 912 530 1155
表3渗氮量和成品性能
实施例 渗氮量ppm P1.7/50(W/kg) B800(T)
1 235 0.915 1.931
2 245 0.918 1.945
3 223 0.921 1.951
4 251 0.915 1.943
5 242 0.892 1.925
本发明可以稳定制造高磁感取向硅钢,并解决生产中的技术难点,在保证良好磁性能的前提下实现稳定生产,具有良好的应用前景。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (6)

1.一种后天抑制剂高磁感取向硅钢的制造方法,其特征在于:所述后天抑制剂高磁感取向硅钢的质量百分比的化学成分为:C0.015~0.045%;Si2.80~3.35%;Mn0.05~0.20%;P0.005~0.035%;S0.002~0.020%;Als0.010~0.035%;N0.0060~0.0110%;Sn0.02~0.07%,其余为Fe及不可避免夹杂,质量分数共计为100%;其具体的制造方法包括:
加热工艺:取向硅钢铸坯装入加热炉前的表面温度大于350℃,出炉温度1100~1200℃,总在炉时间>250min;
轧制工艺:铸坯经过加热后进行粗轧,使用两架可逆式粗轧机轧制,共轧制4道次,轧制后中间坯厚度35~50mm;粗轧出口温度1000~1060℃之间;精轧入口温度980~1040℃精轧终轧温度910~980℃;层流却采用前部冷却,卷取温度500~650℃;热轧卷厚度2.0~3.0mm;
酸洗常化工艺:酸洗经过酸洗、刷洗和漂洗工序清除热轧钢带表层氧化铁皮,热轧板明火快速加热至1050~1200℃,钢带在该温度运行保温时间1.0~3.0min,经过快速冷却段,冷却至900~1000℃,钢带在该温度运行保温时间0.5~1.5min;经过40~100℃的冷却水快速冷却至550~650℃,然后经过空气冷却至100℃以下;
冷轧工艺:常化后快速进行5~7道次冷轧,平均每道次压下率20~30%,总压下率80~90%之间;
脱碳退火、渗氮和MgO涂层:退火炉气氛由N2和H2组成,其中H2比例10~60%,混合气体通过加湿器温度50~80℃,脱碳退火温度800~880℃,退火时间2~5min;脱碳退火后进行渗氮处理,渗氮温度800~900℃,渗氮时间10~50s,渗氮炉内保护气氛N2和H2气组成,其中H2含量20~80%,渗氮介质NH3含量5~20%;渗氮后涂覆MgO涂层,在400~600℃烘干炉内烘干烧结;
高温退火:在保护气氛N2中以200℃/h速度加热至800℃,在N2和NH3气氛中以20~50℃/h速度加热至1100~1250℃,在H2气氛中保温度10~15h,然后自然冷却至500℃,最后在空气中冷却至室温;
热拉伸平整退火及涂绝缘层:高温退火后开卷在800~900℃退火炉中进行拉伸平整,然后进行涂覆SiO2和磷酸镁涂层,然后在400~650℃干燥烧结炉中形成涂层,最终制造出高磁感取向硅钢。
2.根据权利要求1所述的后天抑制剂高磁感取向硅钢的制造方法,其特征在于:所述后天抑制剂高磁感取向硅钢的质量百分比的化学成分为:C0.040%;Si3.0%;Mn0.080%;P0.032%;S0.003%;Als 0.018%;N0.0090%;Sn0.025%,其余为Fe及不可避免夹杂,质量分数共计为100%。
3.根据权利要求1所述的后天抑制剂高磁感取向硅钢的制造方法,其特征在于:所述后天抑制剂高磁感取向硅钢的质量百分比的化学成分为:C0.042%;Si2.95%;Mn0.075%;P0.035%;S0.004%;Als 0.020%;N0.0089%;Sn0.030%,其余为Fe及不可避免夹杂,质量分数共计为100%。
4.根据权利要求1所述的后天抑制剂高磁感取向硅钢的制造方法,其特征在于:所述后天抑制剂高磁感取向硅钢的质量百分比的化学成分为:C0.042%;Si2.95%;Mn0.070%;P0.030%;S0.003%;Als 0.018%;N0.0090%;Sn0.030%,其余为Fe及不可避免夹杂,质量分数共计为100%。
5.根据权利要求1所述的后天抑制剂高磁感取向硅钢的制造方法,其特征在于:所述后天抑制剂高磁感取向硅钢的质量百分比的化学成分为:C0.045%;Si3.00%;Mn0.075%;P0.030%;S0.004%;Als 0.019%;N0.0095%;Sn0.035%,其余为Fe及不可避免夹杂,质量分数共计为100%。
6.根据权利要求1所述的后天抑制剂高磁感取向硅钢的制造方法,其特征在于:所述后天抑制剂高磁感取向硅钢的质量百分比的化学成分为:C0.040%;Si2.90%;Mn0.069%;P0.032%;S0.005%;Als 0.020%;N0.0096%;Sn0.030%,其余为Fe及不可避免夹杂,质量分数共计为100%。
CN202210286184.7A 2022-03-22 2022-03-22 一种后天抑制剂高磁感取向硅钢的制造方法 Pending CN114645207A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210286184.7A CN114645207A (zh) 2022-03-22 2022-03-22 一种后天抑制剂高磁感取向硅钢的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210286184.7A CN114645207A (zh) 2022-03-22 2022-03-22 一种后天抑制剂高磁感取向硅钢的制造方法

Publications (1)

Publication Number Publication Date
CN114645207A true CN114645207A (zh) 2022-06-21

Family

ID=81994896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210286184.7A Pending CN114645207A (zh) 2022-03-22 2022-03-22 一种后天抑制剂高磁感取向硅钢的制造方法

Country Status (1)

Country Link
CN (1) CN114645207A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115747650A (zh) * 2022-11-14 2023-03-07 鞍钢股份有限公司 一种低温高磁感取向硅钢及提高其磁性能稳定性的方法
CN117702006A (zh) * 2024-02-06 2024-03-15 包头威丰新材料有限公司 一种稀土高磁感取向硅钢及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282142A (ja) * 1999-03-29 2000-10-10 Nippon Steel Corp 一方向性電磁鋼板の製造方法
CN101775548A (zh) * 2009-12-31 2010-07-14 武汉钢铁(集团)公司 低渗氮量高磁感取向硅钢带的生产方法
CN102758127A (zh) * 2011-04-28 2012-10-31 宝山钢铁股份有限公司 具有优异磁性能和良好底层的高磁感取向硅钢生产方法
US20130000786A1 (en) * 2010-03-17 2013-01-03 Kenichi Murakami Manufacturing method of grain-oriented electrical steel sheet
CN109136503A (zh) * 2018-09-03 2019-01-04 武汉钢铁有限公司 低温高磁感取向硅钢的制备方法
CN110791635A (zh) * 2019-09-30 2020-02-14 鞍钢股份有限公司 一种制备高磁感取向硅钢的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282142A (ja) * 1999-03-29 2000-10-10 Nippon Steel Corp 一方向性電磁鋼板の製造方法
CN101775548A (zh) * 2009-12-31 2010-07-14 武汉钢铁(集团)公司 低渗氮量高磁感取向硅钢带的生产方法
US20130000786A1 (en) * 2010-03-17 2013-01-03 Kenichi Murakami Manufacturing method of grain-oriented electrical steel sheet
CN102758127A (zh) * 2011-04-28 2012-10-31 宝山钢铁股份有限公司 具有优异磁性能和良好底层的高磁感取向硅钢生产方法
CN109136503A (zh) * 2018-09-03 2019-01-04 武汉钢铁有限公司 低温高磁感取向硅钢的制备方法
CN110791635A (zh) * 2019-09-30 2020-02-14 鞍钢股份有限公司 一种制备高磁感取向硅钢的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115747650A (zh) * 2022-11-14 2023-03-07 鞍钢股份有限公司 一种低温高磁感取向硅钢及提高其磁性能稳定性的方法
CN115747650B (zh) * 2022-11-14 2023-08-18 鞍钢股份有限公司 一种低温高磁感取向硅钢及提高其磁性能稳定性的方法
CN117702006A (zh) * 2024-02-06 2024-03-15 包头威丰新材料有限公司 一种稀土高磁感取向硅钢及其制备方法和应用
CN117702006B (zh) * 2024-02-06 2024-04-30 包头威丰新材料有限公司 一种稀土高磁感取向硅钢及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN100381598C (zh) 一种取向硅钢及其生产方法和装置
CN101545072B (zh) 一种高电磁性能取向硅钢的生产方法
CN103695619B (zh) 一种高磁感普通取向硅钢的制造方法
CN102041440B (zh) 一种高磁感取向硅钢的生产方法
CN110055393B (zh) 一种薄规格低温高磁感取向硅钢带生产方法
CN103255274B (zh) 一般取向硅钢由两次冷轧改为一次冷轧的生产方法
CN101845582B (zh) 一种高磁感取向硅钢产品的生产方法
CN102268516B (zh) 高碳含量中低牌号冷轧无取向硅钢脱碳退火工艺
CN114645207A (zh) 一种后天抑制剂高磁感取向硅钢的制造方法
CN102560235B (zh) 一种高磁感取向硅钢的制造方法
CN101768697A (zh) 用一次冷轧法生产取向硅钢的方法
CN102747291B (zh) 一种高频低铁损磁性优良的无取向硅钢薄带及生产方法
CN104018068A (zh) 一种厚度为0.18mm的高磁感取向硅钢的制备方法
CN103882289A (zh) 用一般取向钢原料制造高磁感冷轧取向硅钢的生产方法
CN106399819A (zh) 一种取向硅钢及其制备方法
CN108456767B (zh) 一种取向高硅钢极薄带材的制备方法
CN106702260A (zh) 一种高磁感低铁损无取向硅钢及其生产方法
CN111304518B (zh) 一种变频空调用无取向电工钢及其制造方法
CN103667874A (zh) 取向硅钢在高温退火期间缩短在炉时间的生产方法
CN102534363B (zh) 一种节能型高生产效率的普通取向硅钢制造方法
CN112626447A (zh) 一种磁性优良的高磁感取向硅钢的气氛控制工艺
CN101348854B (zh) 一种低温加热取向电工钢的生产方法
CN113403463A (zh) 一种提高取向硅钢冷轧加工性的生产方法
CN111719078B (zh) 一种消除瓦楞状缺陷的无取向硅钢生产方法
CN115505708B (zh) 一种降低取向硅钢铁损的平整拉伸退火方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination