CN114635447A - Offshore photovoltaic fixed multi-cylinder foundation structure and construction method thereof - Google Patents
Offshore photovoltaic fixed multi-cylinder foundation structure and construction method thereof Download PDFInfo
- Publication number
- CN114635447A CN114635447A CN202210361423.0A CN202210361423A CN114635447A CN 114635447 A CN114635447 A CN 114635447A CN 202210361423 A CN202210361423 A CN 202210361423A CN 114635447 A CN114635447 A CN 114635447A
- Authority
- CN
- China
- Prior art keywords
- suction
- connecting piece
- cylinder
- unit modules
- fixed multi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D27/00—Foundations as substructures
- E02D27/32—Foundations for special purposes
- E02D27/42—Foundations for poles, masts or chimneys
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D27/00—Foundations as substructures
- E02D27/32—Foundations for special purposes
- E02D27/52—Submerged foundations, i.e. submerged in open water
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Wind Motors (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于海洋工程基础结构技术领域,具体的说,是涉及一种用于支撑水上光伏发电系统的固定式基础结构及其施工方法。The invention belongs to the technical field of marine engineering infrastructure, and in particular relates to a fixed infrastructure for supporting an aquatic photovoltaic power generation system and a construction method thereof.
背景技术Background technique
长期以来,我国大型光伏项目大量依赖土地和水域资源,而目前陆地和内陆水域新建能源项目的空间已经非常有限,因此广阔的海洋空间为光伏项目的进一步发展提供了光明前景。For a long time, my country's large-scale photovoltaic projects have relied heavily on land and water resources. At present, the space for new energy projects on land and inland waters is very limited. Therefore, the vast ocean space provides a bright prospect for the further development of photovoltaic projects.
目前我国海洋光伏技术仍处于起步阶段。海上光伏基础面临包括风、浪、流等复杂的海洋环境,有着较大的承载风险。固定式多筒基础作为一种新型的海上光伏基础,具有重量轻,结构强度高,承载能力强,受浪流作用较小,施工简便、可回收等优势。At present, my country's marine photovoltaic technology is still in its infancy. The offshore photovoltaic foundation faces a complex marine environment including wind, waves, and currents, and has a greater bearing risk. As a new type of offshore photovoltaic foundation, the fixed multi-tube foundation has the advantages of light weight, high structural strength, strong bearing capacity, less affected by waves and currents, easy construction, and recyclability.
发明内容SUMMARY OF THE INVENTION
本发明要解决的是海上光伏基础面临的承载风险问题,提供了一种海上光伏固定式多筒基础结构及其施工方法,通过吸力筒和桁架结构的结合,实现了基础结构较高的强度和承载能力,同时受波浪作用较小;并且通过吸力筒下沉安装无需打桩设备,提高海上施工作业效率,保证安装和回收过程的安全稳定性。The invention aims to solve the bearing risk problem faced by the offshore photovoltaic foundation, and provides an offshore photovoltaic fixed multi-tube base structure and a construction method thereof. At the same time, it is less affected by waves; and through the sinking installation of the suction cylinder, no piling equipment is required, which improves the efficiency of offshore construction operations and ensures the safety and stability of the installation and recovery process.
为了解决上述技术问题,本发明通过以下的技术方案予以实现:In order to solve the above-mentioned technical problems, the present invention is realized through the following technical solutions:
根据本发明的一个方面,提供了一种海上光伏固定式多筒基础结构,由多个单元模块构成,每个单元模块包括桁架结构、吸力筒、光伏板支柱、第一连接杆和第二连接杆;According to one aspect of the present invention, there is provided an offshore photovoltaic fixed multi-cylinder infrastructure, which is composed of a plurality of unit modules, each unit module includes a truss structure, a suction cylinder, a photovoltaic panel pillar, a first connecting rod and a second connecting rod rod;
所述桁架结构包括通长布置的上弦杆和下弦杆,两根所述下弦杆对称布置在上弦杆下方,两根所述下弦杆之间焊接有多个间隔布置的下弦横杆,所述上弦杆与每条所述下弦杆之间焊接有多个间隔布置的竖向腹杆,相邻所述竖向腹杆之间焊接有斜腹杆;每根所述斜腹杆一端焊接于所述竖向腹杆与所述上弦杆的交汇处,另一端焊接于所述竖向腹杆与所述下弦杆的交汇处,所述上弦杆与同根所述下弦杆之间的每相邻两根斜腹杆均具有不同的倾斜方向;The truss structure includes an upper chord and a lower chord that are arranged in a full length, the two lower chords are symmetrically arranged below the upper chord, and a plurality of lower chord transverse bars arranged at intervals are welded between the two lower chords. A plurality of vertical web rods arranged at intervals are welded between the rod and each of the lower chord rods, and inclined web rods are welded between the adjacent vertical web rods; one end of each of the diagonal web rods is welded to the The intersection of the vertical web rod and the upper chord, the other end is welded at the intersection of the vertical web rod and the lower chord, and each adjacent two between the upper chord and the same lower chord The inclined abdominal rods all have different inclination directions;
两根所述下弦杆分别固定连接多个间隔设置的所述吸力筒,两根所述下弦杆所连接的吸力筒两两成对设置;每个吸力筒通过所述第一连接杆与所述下弦杆连接;所述吸力筒的顶盖设置有阀门,所述阀门与所述吸力筒内部连通;The two lower chords are respectively fixedly connected to a plurality of the suction cylinders arranged at intervals, and the suction cylinders connected to the two lower chords are arranged in pairs; The lower chord is connected; the top cover of the suction cylinder is provided with a valve, and the valve communicates with the inside of the suction cylinder;
相邻两组成对的吸力筒之间布置所述光伏板支柱,所述光伏板支柱的底部与所述上弦杆焊接,所述光伏板支柱的顶部伸出于水面且用于安装光伏板;The photovoltaic panel pillars are arranged between two adjacent pairs of suction cylinders, the bottoms of the photovoltaic panel pillars are welded with the upper chord, and the tops of the photovoltaic panel pillars protrude from the water surface and are used for installing photovoltaic panels;
多个单元模块之间通过所述第二连接件和所述纵向连接件进行连接;所述第二连接件下部与所述吸力筒或所述桁架结构焊接,所述第二连接件上部设置有锁紧机构第一组件;所述纵向连接件位于所述桁架结构上方,所述纵向连接件正对于所述第二连接件所在位置设置有锁紧机构第二组件;所述锁紧机构第一组件与所述锁紧机构第二组件能够配合实现锁紧固定。A plurality of unit modules are connected through the second connector and the longitudinal connector; the lower part of the second connector is welded with the suction cylinder or the truss structure, and the upper part of the second connector is provided with a first component of a locking mechanism; the longitudinal connecting piece is located above the truss structure, and a second component of a locking mechanism is provided on the longitudinal connecting piece just opposite to the position of the second connecting piece; the locking mechanism is a first component The assembly can cooperate with the second assembly of the locking mechanism to realize locking and fixing.
进一步地,所述上弦杆与所述下弦杆之间的垂直距离为1.5~3.0m,两根所述下弦杆的中心距为2~6m;所述下弦横杆与两条所述下弦杆均相垂直;所述竖向腹杆与所述上弦杆和所连接的所述下弦杆均相垂直。Further, the vertical distance between the upper chord and the lower chord is 1.5-3.0m, and the center distance of the two lower chords is 2-6m; the lower chord and the two lower chords are both are perpendicular to each other; the vertical web is perpendicular to the upper chord and the connected lower chord.
进一步地,每根所述下弦杆所连接的吸力筒数量为3~5个,且同根下弦杆的相邻所述吸力筒中心距为20~50m;成对设置的两个所述吸力筒中心距与两根所述下弦杆的中心距相等。Further, the number of suction cylinders connected to each of the lower chords is 3 to 5, and the center distance of the adjacent suction cylinders of the same lower chord is 20 to 50m; the centers of the two suction cylinders arranged in pairs The distance is equal to the distance between the centers of the two lower chords.
进一步地,光伏板支柱连接于所述上弦杆、所述斜腹杆、所述竖向腹杆的交汇处。Further, the photovoltaic panel pillar is connected to the intersection of the upper chord, the inclined web rod and the vertical web rod.
进一步地,所述桁架结构两端可以通过所述吸力筒形成固支,也可以留出悬挑段并在所述悬挑段下部连接防沉板;所述防沉板包括由顶板和肋板组成,所述肋板连接于所述顶板下部并形成多个分舱。Further, the two ends of the truss structure can be fixedly supported by the suction cylinder, or a cantilevered section can be reserved and an anti-sinking plate can be connected at the lower part of the cantilevered section; the anti-sinking plate includes a top plate and a rib plate. The rib is connected to the lower part of the top plate and forms a plurality of compartments.
更进一步地,每个所述分舱内布置气囊。Further, airbags are arranged in each of the sub-compartments.
进一步地,横向相邻的两个单元模块之间通过横向连接件连接,所述横向连接件焊接于所述单元模块最外端的所述纵向连接件上。Further, two laterally adjacent unit modules are connected by a lateral connector, and the lateral connector is welded on the longitudinal connector at the outermost end of the unit module.
更进一步地,所述纵向连接件和/或横向连接件为可伸缩形式,包括连接件外部套管、内部伸缩段和螺栓,所述内部伸缩段套接在两个所述连接件外部套之间,并通过所述螺栓固定所述内部伸缩段在所述连接件外部套管的位置。Further, the longitudinal connecting piece and/or the transverse connecting piece are in a telescopic form, including an outer sleeve of the connecting piece, an inner telescopic section and a bolt, and the inner telescopic section is sleeved between the outer sleeves of the two connecting pieces. and fix the position of the inner telescopic section on the outer sleeve of the connector by the bolts.
进一步地,所述锁紧机构第一组件为卡扣公扣,所述锁紧机构第二组件为卡扣母扣,所述卡扣公扣和所述卡扣母扣通过卡扣连接。Further, the first component of the locking mechanism is a male buckle, the second component of the locking mechanism is a female buckle, and the male buckle and the female buckle are connected by a buckle.
进一步地,所述锁紧机构第一组件为漏斗形接口,所述锁紧机构第二组件为楔形块,所述漏斗形接口与所述楔形块通过静摩擦力锁紧固定。Further, the first component of the locking mechanism is a funnel-shaped interface, the second component of the locking mechanism is a wedge-shaped block, and the funnel-shaped interface and the wedge-shaped block are locked and fixed by static friction.
根据本发明的另一个方面,提供了上述海上光伏固定式多筒基础结构的施工方法,包括如下步骤:According to another aspect of the present invention, a construction method for the above-mentioned offshore photovoltaic fixed-type multi-cylinder infrastructure is provided, comprising the following steps:
(1)通过湿拖法或干拖法将所述海上光伏固定式多筒基础结构浮运至安装海域;(1) Float the offshore photovoltaic fixed multi-cylinder infrastructure to the installation sea area by wet towing method or dry towing method;
(2)若步骤(1)为湿拖法,打开所述吸力筒的顶盖阀门,使所述单元模块在自重作用下开始下沉;(2) if step (1) is a wet drag method, open the top cover valve of the suction cylinder, so that the unit module starts to sink under the action of its own weight;
其中,若所述桁架结构两端布置有所述防沉板和所述气囊;则打开所述吸力筒的顶盖阀门和所述气囊的排气口,排出所述吸力筒和所述气囊内的气体;Wherein, if the anti-sinking plate and the air bag are arranged at both ends of the truss structure; then open the top cover valve of the suction cylinder and the exhaust port of the air bag, and discharge the suction cylinder and the air bag gas;
若步骤(1)为干拖法,在顶盖阀门保持关闭状态下将所述单元模块吊起入水,通过吊缆调整好所述单元模块的竖直度后打开所述吸力筒的顶盖阀门,使所述单元模块在自重作用下开始下沉;If step (1) is the dry drag method, lift the unit module into the water while the top cover valve is kept closed, adjust the verticality of the unit module through the hanging cable, and then open the top cover valve of the suction cylinder , so that the unit module starts to sink under the action of its own weight;
(3)待所述单元模块保持匀速下沉后,关闭所述单元模块中所有吸力筒的顶盖阀门;(3) After the unit module keeps sinking at a constant speed, close the top cover valves of all suction cylinders in the unit module;
优选地,所述单元模块在下沉的过程中保持1~2m/h的速度。Preferably, the unit module maintains a speed of 1-2 m/h during the sinking process.
其中,若下沉速度过快,则向所述吸力筒内打入气体增加浮力,减缓下沉的速度,保证单元模块的下沉安全;Wherein, if the sinking speed is too fast, the gas is injected into the suction cylinder to increase the buoyancy, slow down the sinking speed, and ensure the sinking safety of the unit module;
优选地,自重下沉过程中通过向不同的所述吸力筒抽气或打气随时调整所述单元模块的竖直度;Preferably, the verticality of the unit modules can be adjusted at any time by pumping or pumping air to different suction cylinders during the sinking process of self-weight;
(4)所述单元模块中的吸力筒底端入泥后,当单元模块不能继续下沉,通过所述吸力筒进行吸力下沉至所述吸力筒的顶盖接触泥面;(4) After the bottom end of the suction cylinder in the unit module enters the mud, when the unit module cannot continue to sink, the suction cylinder is used for suction to sink until the top cover of the suction cylinder contacts the mud surface;
优选地,负压下沉过程中也通过调整不同的所述吸力筒内气压随时调整所述单元模块的竖直度。Preferably, the verticality of the unit module can be adjusted at any time by adjusting different air pressures in the suction cylinder during the negative pressure sinking process.
(5)将所述纵向连接件起吊下放至对应所述第二连接杆的位置,将第二连接杆的锁紧机构第一组件和纵向连接件的锁紧机构第二组件锁紧固定,实现多个单元模块在所述纵向连接件的作用下形成整体。(5) Lifting and lowering the longitudinal connecting piece to the position corresponding to the second connecting rod, locking and fixing the first component of the locking mechanism of the second connecting rod and the second component of the locking mechanism of the longitudinal connecting piece to achieve A plurality of unit modules are integrally formed under the action of the longitudinal connecting piece.
其中,当横向相邻的两个单元模块之间通过横向连接件连接,还包括所述横向连接件的起吊下放和所述横向连接件对所述单元模块的连接。Wherein, when two laterally adjacent unit modules are connected by a lateral connecting piece, it also includes the lifting and lowering of the lateral connecting piece and the connection of the lateral connecting piece to the unit module.
进一步地,步骤(1)的湿拖法包括如下操作:Further, the wet drag method of step (1) comprises the following operations:
a.将多个单元模块通过临时固定连接为整体结构;a. Connect multiple unit modules into an overall structure through temporary fixing;
b.将临时连接完成的整体结构吊起放入水中,向所述吸力筒内打气,直到整体结构能够达到自浮状态并调节吃水达到设计吃水,通过调节各个所述吸力筒内部气压保证整体结构姿态竖直;b. Lift the temporarily connected overall structure into the water, and pump air into the suction cylinder until the overall structure can reach a self-floating state and adjust the draft to reach the design draft, and ensure the overall structure by adjusting the internal air pressure of each of the suction cylinders upright posture
其中,若所述桁架结构两端布置有所述防沉板和所述气囊;则将临时连接完成的整体结构吊起放入水中后,向所述吸力筒和所述气囊内打气,直到整体结构能够达到自浮状态并调节吃水达到设计吃水。Wherein, if the anti-sinking plates and the airbags are arranged at both ends of the truss structure; after the temporarily connected integral structure is hoisted into the water, the suction cylinder and the airbag are inflated until the whole The structure can achieve a self-floating state and adjust the draft to the design draft.
c.将整体结构浮运至安装海域,浮运过程中随时调节各个所述吸力筒内部气压保证整体结构姿态竖直;c. Float the overall structure to the installation sea area, and adjust the internal air pressure of each of the suction cylinders at any time during the floating process to ensure that the overall structure is vertical;
d.解除整体结构之间的临时连接,待所述单元模块依次进行下沉。d. Release the temporary connection between the overall structures, and wait for the unit modules to sink in sequence.
本发明的有益效果是:The beneficial effects of the present invention are:
(一)本发明的海上光伏固定式多筒基础结构及施工方法,利用吸力筒为海上光伏固定式基础提供了解决方案,相比于传统的桩基础,减少了打桩设备的使用,节约了施工成本,也加快了海上施工速度;(1) The offshore photovoltaic fixed multi-cylinder foundation structure and construction method of the present invention provide a solution for the offshore photovoltaic fixed foundation by using suction cylinders, which reduces the use of piling equipment and saves construction compared with the traditional pile foundation. cost, but also accelerated the speed of offshore construction;
(二)本发明的海上光伏固定式多筒基础结构及施工方法,通过吸力筒和桁架结构的结合,实现了基础结构较高的强度和承载能力,同时由于主体结构基本在水面以下,受到的波浪作用较小,能够减少用钢量,适用于海上光伏的建设。(2) The offshore photovoltaic fixed multi-tube base structure and construction method of the present invention realizes the high strength and bearing capacity of the base structure through the combination of the suction tube and the truss structure. The wave effect is small, which can reduce the amount of steel used, and is suitable for the construction of offshore photovoltaics.
(三)本发明的海上光伏固定式多筒基础结构及施工方法,通过连接件将多个单元模块连接为一个整体,有效减小了结构在环境荷载作用下的运动响应,提高了结构整体的稳定性。(3) In the offshore photovoltaic fixed multi-tube base structure and construction method of the present invention, a plurality of unit modules are connected into a whole through connecting pieces, which effectively reduces the motion response of the structure under the action of environmental loads, and improves the overall structure of the structure. stability.
附图说明Description of drawings
图1为实施例1所提供海上光伏固定式多筒基础结构中单元模块的结构示意图;FIG. 1 is a schematic structural diagram of a unit module in the offshore photovoltaic fixed multi-cylinder infrastructure provided in Example 1;
图2为实施例1所提供海上光伏固定式多筒基础结构中单元模块的连接示意图;2 is a schematic diagram of the connection of the unit modules in the offshore photovoltaic fixed multi-cylinder infrastructure provided in
图3为实施例1所提供海上光伏固定式多筒基础结构中第二连接杆的结构示意图;3 is a schematic structural diagram of a second connecting rod in the offshore photovoltaic fixed multi-tube base structure provided in Example 1;
图4为实施例1所提供海上光伏固定式多筒基础结构中套管的结构示意图;FIG. 4 is a schematic structural diagram of the casing in the offshore photovoltaic fixed multi-tube infrastructure provided in Example 1;
图5为实施例1所提供海上光伏固定式多筒基础结构中卡扣母扣与卡扣公扣的连接示意图;5 is a schematic diagram of the connection between the snap female buckle and the snap male buckle in the offshore photovoltaic fixed multi-tube infrastructure provided in
图6为实施例1所提供海上光伏固定式多筒基础结构中矩形连接件的结构示意图;6 is a schematic structural diagram of a rectangular connector in the offshore photovoltaic fixed multi-cylinder infrastructure provided in Example 1;
图7为实施例2所提供海上光伏固定式多筒基础结构中单元模块的结构示意图;7 is a schematic structural diagram of a unit module in the offshore photovoltaic fixed multi-cylinder infrastructure provided in
图8为实施例2所提供海上光伏固定式多筒基础结构中防沉板的结构示意图;8 is a schematic structural diagram of an anti-sinking plate in an offshore photovoltaic fixed multi-cylinder infrastructure structure provided in Example 2;
图9为实施例2所提供海上光伏固定式多筒基础结构中气囊的结构示意图;9 is a schematic structural diagram of an airbag in the offshore photovoltaic fixed multi-tube base structure provided in
图10为实施例2所提供海上光伏固定式多筒基础结构中单元模块的连接示意图;10 is a schematic diagram of the connection of the unit modules in the offshore photovoltaic fixed multi-cylinder infrastructure provided in
图11为实施例1所提供海上光伏固定式多筒基础结构中楔形块与漏斗形接口的连接示意图;11 is a schematic diagram of the connection between the wedge-shaped block and the funnel-shaped interface in the offshore photovoltaic fixed multi-cylinder infrastructure provided in Example 1;
图12为实施例1所提供海上光伏固定式多筒基础结构的500m×480m场地整体布置示意图;12 is a schematic diagram of the overall layout of the 500m×480m site of the offshore photovoltaic fixed multi-tube infrastructure provided in Example 1;
图13为实施例2所提供海上光伏固定式多筒基础结构的500m×480m场地整体布置示意图。13 is a schematic diagram of the overall layout of the 500m×480m site of the offshore photovoltaic fixed-type multi-tube infrastructure provided in Example 2.
上述图中:1、吸力筒;2、上弦杆;3、下弦杆;4、下弦横杆;5、斜腹杆;6、竖向腹杆;7、光伏板支柱;8、第一连接杆;9、第二连接杆;10、连接杆套管;11、横向连接件;12、纵向连接件;13、卡扣母扣;14、卡扣公扣;15、连接件外部套管;16、内部伸缩段;17、螺栓;18、漏斗形接口;19、防沉板;20、气囊;21、楔形块。In the above figure: 1. Suction cylinder; 2. Upper chord; 3. Lower chord; 4. Lower chord; 5. Oblique web; 6. Vertical web; 7. Photovoltaic panel pillar; ; 9, the second connecting rod; 10, the connecting rod sleeve; 11, the transverse connecting piece; 12, the longitudinal connecting piece; , Internal telescopic section; 17, bolts; 18, funnel-shaped interface; 19, anti-sinking plate; 20, air bag; 21, wedge block.
具体实施方式Detailed ways
为能进一步了解本发明的发明内容、特点及效果,兹例举以下实施例,并配合附图详细说明如下:In order to further understand the content, characteristics and effects of the present invention, the following embodiments are exemplified and described in detail with the accompanying drawings as follows:
本发明提供了一种海上光伏固定式多筒基础结构,由多个相同的单元模块构成,每个单元模块包括一个桁架结构、若干吸力筒1、若干光伏板支柱7、若干第一连接杆8和若干第二连接杆9。The present invention provides an offshore photovoltaic fixed multi-cylinder basic structure, which is composed of a plurality of identical unit modules, and each unit module includes a truss structure, a plurality of
桁架结构由上弦杆2、下弦杆3、下弦横杆4、斜腹杆5、竖向腹杆6焊接而成,其中上弦杆2和下弦杆3为通长横杆。两根下弦杆3对称布置在上弦杆2下方,与上弦杆2构成竖向截面为等腰三角形的主体框架,上弦杆2与下弦杆3之间的垂直距离以1.5~3.0m为佳,两根下弦杆3的中心距以2~6m为佳。两根下弦杆3之间连接有多个间隔布置的下弦横杆4,下弦横杆4与两条下弦杆3均相垂直。上弦杆2与每条下弦杆3之间连接有多个间隔布置的竖向腹杆6,竖向腹杆6与上弦杆2和所连接的下弦杆3均相垂直。每根斜腹杆5一端连接于竖向腹杆6与上弦杆2的交汇处,另一端连接于竖向腹杆6与下弦杆3的交汇处。斜腹杆5在上弦杆2与每根下弦杆3之间交错式布置,即上弦杆2与同根下弦杆3之间的每相邻两根斜腹杆5均具有不同的倾斜方向。The truss structure is welded by the
优选地,上弦杆2、下弦杆3、下弦横杆4、斜腹杆5、竖向腹杆6均由圆形钢管制成,其中上弦杆2、下弦杆3、下弦横杆4、竖向腹杆6的直径均为40~60cm,壁厚均为15~30mm;斜腹杆5的直径为25~45cm,壁厚为10~25mm。Preferably, the
桁架结构的两根下弦杆3分别连接有多个间隔设置的吸力筒1,每根下弦杆3所连接吸力筒1数量优选为3~5个,中心距优选为20~50m。两根下弦杆3所连接的吸力筒1两两成对设置,成对设置的两个吸力筒1中心距与两根下弦杆3的中心距相等,均为2~6m。The two
吸力筒1的顶面与下弦杆3的净距离优选为0.3~0.8m。每个吸力筒1通过第一连接杆8与桁架结构连接,第一连接杆8的一端焊接于吸力筒1的顶盖中心,另一端焊接于下弦杆3。优选地,连接杆8的直径为40~60cm,壁厚为15~30mm,高度为2.5~4.0m。The clear distance between the top surface of the
吸力筒1为顶面封闭、底面开口的钢制圆筒结构;优选地,其外径为1.5~4.0m,高度为3.0~8.0m,顶盖厚度为20~35mm,侧壁厚度为10~25mm。吸力筒1的顶盖处设置有阀门,在吸力筒1负压下沉过程中,泵系统通过阀门对吸力筒1抽水抽气形成舱内负压保证吸力筒1下沉。以单元模块来讲,由于多个吸力筒1横纵阵列布置,使得单元模块的下沉调平得以实现。The
相邻两组成对吸力筒1之间布置1~4个光伏板支柱7,并且相邻两个光伏板支柱7的间距为10~25m。光伏板支柱7的底部与桁架结构的上弦杆2焊接,光伏板支柱7的顶端应伸出水面以上2~4m,用于安装光伏板。光伏板支柱7可以位于吸力筒1上方,也可以错开吸力筒1布置。作为一种优选的实施方式,光伏板支柱7位于上弦杆2、斜腹杆5、竖向腹杆6的交汇处,这样可以更好地将光伏板支柱7受到的荷载作用通过桁架结构传递至吸力筒1。优选地,光伏板支柱7为圆形钢管,其直径为40~60cm,壁厚为15~30mm。One to four
桁架结构两端可以通过吸力筒1形成固支,也可以在桁架结构两端留出一定距离的悬挑段。当桁架结构两端留有悬挑段时,可以在桁架结构的悬挑部分下部焊接防沉板19,起到支撑和减少沉降的作用。防沉板19由顶板和肋板组成,顶板为矩形钢板,其长和宽优选为4~12m,壁厚为10~30mm;多块肋板分别沿顶板的长度方向和宽度方向布置形成多个矩形分舱,肋板也为矩形钢板,其由顶板向下延伸0.5~3.0m高度,壁厚为5~20mm。Both ends of the truss structure can be fixedly supported by the
海上光伏固定式多筒基础结构由多个单元模块纵向连接构成,纵向上相邻两个单元模块之间净间距为15~25m;在纵向连接的基础上还可以增加横向连接,横向上相邻两个单元模块之间净间距为1.0~3.0m。纵向连接和横向连接后的多个单元模块,其下弦杆3的轴线均在同一平面。其中,横向连接是沿下弦杆3轴向连接,纵向连接是沿垂直于下弦杆3轴向的方向连接。The offshore photovoltaic fixed multi-cylinder infrastructure is composed of a plurality of unit modules connected vertically, and the clear distance between two adjacent unit modules in the vertical direction is 15-25m; on the basis of the vertical connection, a horizontal connection can also be added, and the horizontally adjacent ones can be connected. The clear distance between two unit modules is 1.0-3.0m. The axes of the
多个单元模块通过第二连接杆9和纵向连接件12形成纵向连接。第二连接杆9底部与吸力筒1或桁架结构焊接,第二连接杆9上部设置有锁紧机构第一组件。第二连接杆9可以与第一连接件8一体成型设置,也可以与第一连接件8分别单独设置。纵向连接件12位于桁架结构上方,其轴线与桁架结构的上弦杆2、下弦杆3和吸力筒1轴线均垂直。纵向连接件12正对于第二连接杆9所在位置设置有锁紧机构第二组件。锁紧机构第一组件和锁紧机构第二组件相配合,能够实现纵向连接件12与第二连接杆9的锁紧固定。纵向连接件12的长度根据纵向上所连接单元模块的数量进行加长。A plurality of unit modules are longitudinally connected by the second connecting
横向相邻的单元模块可以不进行连接,也可以通过横向连接件11形成横向连接。横向连接件11设置在横向连接的相邻两个单元模块之间,与单元模块最外端的纵向连接件12焊接为整体的矩形连接件。横向连接件11的轴线与桁架结构的上弦杆2、下弦杆3均平行。Horizontally adjacent unit modules may not be connected, or may be connected horizontally through the horizontal connecting
纵向连接件12和横向连接件11均可选用钢制圆管制成,管径为30~60cm,壁厚为10~30mm。Both the longitudinal connecting
纵向连接件12和横向连接件11均可设计为可伸缩形式,即包括连接件外部套管15、内部伸缩段16和螺栓17,内部伸缩段16套接在两个连接件外部套管15之间,并通过螺栓17固定内部伸缩段16在连接件外部套管15的位置,从而实现纵向连接件12和横向连接件11的长度可调,进而解决沉放单元模块过程中产生的位置偏差导致定位困难的问题。优选地,连接件外部套管15和内部伸缩段16均为圆形钢管,连接件外部套管15管径为40~80cm,壁厚15~30mm,内部伸缩段16管径为30~60cm,壁厚10~25mm。Both the
本发明的海上光伏固定式多筒基础结构,运输过程可分为干拖法和湿拖法,干拖法即为运输船直接运输,在此不再赘述;湿拖法是通过气浮原理将基础结构浮运至安装海域,为了增加基础结构自身的浮力,在防沉板19的分舱内可以布置气囊20。For the offshore photovoltaic fixed multi-tube base structure of the present invention, the transportation process can be divided into dry towing method and wet towing method. The base structure is floated to the installation sea area. In order to increase the buoyancy of the base structure itself, an
湿拖法具体可以按照以下步骤进行:The wet mopping method can be carried out according to the following steps:
(1)陆上预制单元模块,并通过绑扎的方式将多个单元模块通过临时固定连接为整体结构。(1) The unit modules are prefabricated on land, and a plurality of unit modules are temporarily fixed and connected to form an integral structure by means of binding.
(2)将临时连接完成的整体结构吊起放入水中,向吸力筒1和气囊20内打气,直到整体结构能够达到自浮状态并调节吃水达到设计吃水,通过调节各吸力筒1内部气压保证整体结构姿态竖直。(2) Lift the temporarily connected integral structure into the water, and inflate the
(3)将整体结构浮运至安装海域,浮运过程中随时调节各吸力筒1内部气压保证整体结构姿态竖直。(3) Float the overall structure to the installation sea area, and adjust the internal air pressure of each
(4)解除整体结构之间的临时连接,待单元模块依次进行下沉。(4) Release the temporary connection between the overall structures, and wait for the unit modules to sink in sequence.
湿拖法运输后,基础结构的下沉安装施工方法具体可以按照以下步骤进行:After the wet dragging method, the sinking installation and construction method of the foundation structure can be carried out according to the following steps:
(1)打开吸力筒1的顶盖阀门和气囊20的排气口,排出吸力筒1和气囊20内的气体,单元模块在自重作用下开始下沉。(1) Open the top cover valve of the
(2)单元模块在下沉的过程中尽量保证1~2m/h的速度。当单元模块自重与浮力相等时,单元模块保持匀速下沉,此时可以关闭吸力筒1的顶盖阀门和气囊20的排气口。如果此时下沉速度过快,可以向吸力筒1或气囊20内打入气体增加浮力,减缓下沉的速度,保证单元模块的下沉安全。自重下沉过程中应通过向不同吸力筒1抽气或打气随时调整单元模块的竖直度。(2) The unit module should try to ensure a speed of 1-2m/h during the sinking process. When the self-weight of the unit module is equal to the buoyancy, the unit module keeps sinking at a constant speed. At this time, the top cover valve of the
(3)当吸力筒1底端入泥后,单元模块受到的阻力增加,当阻力大于重力时,单元模块不能继续下沉,此时应进行吸力下沉。打开顶盖阀门向吸力筒1施加负压,通过抽气抽水的方式提供下沉动力,使单元模块进一步下沉,直至吸力筒1顶盖接触泥面,认为沉放到位。负压下沉过程中也应通过调整不同吸力筒1内气压随时调整单元模块的竖直度。(3) When the bottom end of the
(4)将纵向连接件12和横向连接件11起吊下放至对应第二连接杆9的位置,使第二连接杆9的锁紧机构第一组件和纵向连接件12的锁紧机构第二组件锁紧固定,实现单元模块在纵向连接件12和横向连接件11的作用下形成一个整体。(4) Lift and lower the
干拖法运输后,基础结构的下沉施工方法具体可以按照以下步骤进行:After the dry dragging method, the subsidence construction method of the foundation structure can be carried out according to the following steps:
(1)运输至安装海域后首先将单元模块吊起入水,单元模块中吸力筒1的顶盖阀门开始时保持关闭,通过吊缆调整好单元模块的竖直度后打开吸力筒1的顶盖阀门开始下沉。(1) After transporting to the installation sea area, first lift the unit module into the water. The top cover valve of the
(2)单元模块在下沉的过程中尽量保证1~2m/h的速度。当结构自重与浮力相等时,结构保持匀速下沉,此时可以关闭所有吸力筒1的顶盖阀门。如果此时下沉速度过快,可以向吸力筒1内打入气体增加浮力,减缓下沉的速度,保证单元模块的下沉安全。自重下沉过程中应通过向不同吸力筒1抽气或打气随时调整单元模块的竖直度。(2) The unit module should try to ensure a speed of 1-2m/h during the sinking process. When the self-weight of the structure is equal to the buoyancy, the structure keeps sinking at a constant speed, and the top cover valves of all
(3)当吸力筒1底端入泥后,单元模块受到的阻力增加,当阻力大于重力时,单元模块不能继续下沉,此时应进行吸力下沉。打开顶盖阀门向吸力筒1施加负压,通过抽气抽水的方式提供下沉动力,使单元模块进一步下沉,直至吸力筒1顶盖接触泥面,认为沉放到位。负压下沉过程中也应通过调整不同吸力筒1内气压随时调整单元模块的竖直度。(3) When the bottom end of the
(4)将纵向连接件12和横向连接件11起吊下放至对应第二连接杆9的位置,使第二连接杆9的锁紧机构第一组件和纵向连接件12的锁紧机构第二组件锁紧固定,实现单元模块在纵向连接件12和横向连接件11的作用下形成一个整体。(4) Lift and lower the
实施例1Example 1
如图1和图2,本实施例提供了一种海上光伏固定式多筒基础结构,主要由吸力筒1、桁架结构、光伏板支柱7、第一连接杆8、第二连接杆9组成单元模块,并通过套管10、横向连接件11、纵向连接件12、卡扣母扣13、卡扣公扣14等将多个相同的单元模块连接。As shown in FIG. 1 and FIG. 2 , this embodiment provides an offshore photovoltaic fixed multi-cylinder base structure, which is mainly composed of a
吸力筒1是顶部封闭、下部开口的钢制圆筒结构,筒径2.0m,筒高4.0m,其顶盖厚度为25mm,侧壁厚度为15mm。每个单元模块包含六个吸力筒1,横向排列三个,纵向排列两个;横向上相邻两个吸力筒1中心距离为40m,纵向上相邻两个吸力筒1中心距离为4m。所有吸力筒1均通过第一连接杆8与桁架结构相连。The
第一连接杆8和第二连接杆9均为竖向钢制圆管,圆管直径为0.5m,壁厚为25mm。第一连接杆8高度为0.5m,每根第一连接杆8的底部与吸力筒1的顶盖中心焊接,顶端焊接于桁架结构的下弦杆3;第二连接杆9高度为2.0m,由下弦杆3向上伸出。本实施例中,第一连接杆8与第二连接杆9为一体成型。The first connecting
桁架结构由上弦杆2、下弦杆3、下弦横杆4、斜腹杆5、竖向腹杆6组成。其中上弦杆2、下弦杆3、下弦横杆4和竖向腹杆6均为直径0.5m、壁厚25mm的圆形钢管,桁架斜腹杆5为直径0.35m、壁厚18mm的圆形钢管。上弦杆2、下弦杆3、下弦横杆4和竖向腹杆6之间均通过焊接相连。The truss structure consists of an
光伏板支柱7为圆形钢制竖杆,直径为0.5m,壁厚为25mm,光伏板支柱7下部与上弦杆2和竖向腹杆6交汇处相连,能够将上部荷载通过桁架结构传递至下部吸力筒1,光伏板支柱7上部伸出水面2m,用于与光伏板支架相接。The
多个单元模块之间通过横向连接件11和纵向连接件12相连,纵向单元模块之间连接三个纵向连接件12,横向相邻的两个单元模块之间连接两个横向连接件11。如图3至图5所示,第二连接杆9上部设置的锁紧机构第一组件具体选用卡扣公扣14,纵向连接件12的两端向下延伸0.5~1.5m为套管10,套管10内部设置的锁紧机构第二组件具体选用卡扣母扣13,卡扣母扣13与卡扣公扣14进行卡扣连接后锁紧固定。A plurality of unit modules are connected by
本实施例将纵向连接件12设计为可伸缩形式,即包括连接件外部套管15、内部伸缩段16和螺栓17,实现纵向连接件12的长度调节,能够解决沉放单元模块过程中产生的位置偏差导致纵向连接件12杆定位不一致的问题。连接件外部套管15和内部伸缩段16均为圆形钢管,外部套管管径为50cm,壁厚20mm,内部伸缩段管径为40cm,壁厚15mm。横向连接件11设置在横向连接的相邻两个单元模块之间,与单元模块最外端的纵向连接件12焊接为整体的矩形连接件,如图6所示。In this embodiment, the
图12为本实施例基础结构的500m×480m场地整体布置示意图,横向上共有六个单元模块,间距为4m;纵向上共有25个单元模块,间距为20m。12 is a schematic diagram of the overall layout of the 500m×480m site of the basic structure of this embodiment. There are six unit modules in the horizontal direction, and the spacing is 4m; there are 25 unit modules in the vertical direction, and the spacing is 20m.
本发明的海上光伏固定式多筒基础结构可以在陆地上预制,整体运输到制定海域,运输方式为干拖法,运输到位后进行自重下沉和负压下沉。具体步骤如下:The offshore photovoltaic fixed multi-tube base structure of the present invention can be prefabricated on land, and transported to the designated sea area as a whole. Specific steps are as follows:
(1)陆上预制好吸力筒1、第二连接杆9(也即第一连接杆8)、桁架结构、光伏板支柱7、横向连接件11和纵向连接件12,并将光伏板支柱7与桁架结构、第二连接杆9和筒型基础1焊接为单元模块,横向连接件11与相邻的纵向连接件12焊接为整体的矩形连接件。(1) Prefabricate the
(2)将单元模块和纵向连接件12及横向连接件11干拖运输至目标海域。(2) Dry towing the unit modules, the
(3)将单元模块起吊下放至水中,先使单元模块自重下沉,待下沉阻力大于自重时,利用泵系统抽取负压对单元模块进行负压下沉,直至单元模块下沉到指定位置。下沉过程如果出现倾斜,可以通过调节各吸力筒1对单元模块进行精细调平。自重下沉过程中应通过向不同吸力筒1抽气或打气随时调整单元模块的竖直度。(3) Lift and lower the unit module into the water, first sink the unit module by its own weight, and when the sinking resistance is greater than its own weight, use the pump system to extract negative pressure to sink the unit module under negative pressure until the unit module sinks to the designated position . If there is an inclination during the sinking process, the unit modules can be finely leveled by adjusting each
(4)将纵向连接件12及横向连接件11起吊下放至对应第二连接杆9的位置,使用液压机等设备施加推力使套管10内的卡扣公扣14与第二连接杆9上的卡扣母扣13扣紧,多个单元模块即在纵向连接件12及横向连接件11的作用下形成一个整体。(4) Lift and lower the
如果施工过程中不同单元模块沉放位置出现偏差导致纵向连接件12及横向连接件11与第二连接杆9之间无法对准,可以通过调节螺栓17调节可伸缩形式的纵向连接件12的长度进行对应。If there is a deviation in the placement position of different unit modules during the construction process, the longitudinal connecting
实施例2Example 2
本实施例提供了一种海上光伏固定式多筒基础结构,主要由吸力筒1、桁架结构、光伏板支柱7、第一连接杆8、第二连接杆9、防沉板19、气囊20组成单元模块,并通过纵向连接件12、漏斗形接口18、楔形块21等将多个相同的单元模块连接。This embodiment provides an offshore photovoltaic fixed multi-cylinder base structure, which is mainly composed of a
如图7所示,与实施例1不同,每个单元模块共有8个吸力筒1,横向上相邻两个吸力筒1中心距离为20m。桁架结构由上弦杆2、下弦杆3、下弦横杆4、斜腹杆5、竖向腹杆6组成。桁架结构两端各相对于吸力筒1伸出10m悬挑段,悬挑段下方连接有防沉板19,防沉板尺寸为长×宽×高=8m×8m×1.5m,防沉板19内部有6块肋板将其分为16个分舱,每个分仓内放置有气囊20,防沉板19顶板为钢板,壁厚为20mm,肋板壁厚为10mm,如图8和图9所示。通过防沉板19的设计解决了悬挑段桁架缺乏支撑的问题,同时防沉板19内气囊20的设计实现了运输过程中的湿拖,降低了施工成本。As shown in FIG. 7 , different from
本实施例中,第一连接杆8与第二连接杆9为分开设置。第一连接杆8高度为0.5m,每根第一连接杆8的底部与吸力筒1的顶盖中心焊接,顶端焊接于桁架结构的下弦杆3;第二连接杆9高度为2.0m,其底端焊接于桁架结构的上弦杆2,并由上弦杆2向上伸出。每个单元模块设置有一个第二连接杆9,第二连接杆9位于上弦杆2的中间位置。In this embodiment, the first connecting
如图10所示,与实施例1不同,横向的相邻两个单元模块之间不进行连接,仅纵向的单元模块之间进行连接。纵向相邻的两个单元模块之间连接一个纵向连接件12。第二连接杆9上部设置的锁紧机构第一组件具体选用漏斗形接口18,纵向连接件12的两端向下延伸有锁紧机构第二组件,锁紧机构第二组件具体选用楔形块21,楔形块21与漏斗形接口18之间依靠静摩擦力锁紧固定,如图11所示。楔形块21与漏斗形接口18对于纵向连接件12的定位更加方便,可以降低施工难度。As shown in FIG. 10 , unlike the first embodiment, the connection between two adjacent unit modules in the horizontal direction is not performed, and only the connection between the unit modules in the vertical direction is performed. A
图13为本实施例基础结构的500m×480m场地整体布置示意图,横向上共有六个单元模块,间距为4m;纵向上共有25个单元模块,间距为20m。13 is a schematic diagram of the overall layout of the 500m×480m site of the basic structure of this embodiment. There are six unit modules in the horizontal direction, and the spacing is 4m; there are 25 unit modules in the vertical direction, and the spacing is 20m.
本实施例的海上光伏固定式多筒基础结构可以在陆地上预制,整体运输到制定海域,与实施例1不同的是,实施例2的运输方式为湿拖法,运输到位后进行自重下沉和负压下沉。The offshore photovoltaic fixed multi-tube base structure of this embodiment can be prefabricated on land and transported to the designated sea area as a whole. Unlike
本实施例的海上光伏固定式多筒基础结构的湿拖法按以下步骤进行:The wet dragging method of the offshore photovoltaic fixed-type multi-cylinder infrastructure in this embodiment is performed according to the following steps:
(1)陆上预制好单元模块,并通过绑扎的方式将多个单元模块通过临时固定连接为整体结构。(1) The unit modules are prefabricated on land, and multiple unit modules are temporarily fixed to form an integral structure by binding.
(2)将临时连接完成的整体结构吊起放入水中,向吸力筒1和气囊20内打气,直到整体结构能够达到自浮状态并调节吃水达到设计吃水,通过调节吸力筒1内部气压调节结构姿态保持竖直。(2) Lift the temporarily connected integral structure into the water, and inflate the
(3)将整体结构浮运至安装海域,浮运过程中随时调节各吸力筒1内部气压保证整体结构姿态竖直。(3) Float the overall structure to the installation sea area, and adjust the internal air pressure of each
(4)解除整体结构之间的临时连接,将单元模块依次进行下沉安装。(4) Release the temporary connection between the overall structures, and install the unit modules down in sequence.
本实施例的海上光伏固定式多筒基础结构的下沉施工方法按以下步骤进行:The subsidence construction method of the offshore photovoltaic fixed multi-tube base structure of the present embodiment is performed according to the following steps:
(1)打开吸力筒1的顶盖阀门和气囊20的排气口,排出筒1和气囊20内的气体,单元模块在自重作用下开始下沉。(1) Open the top cover valve of the
(2)单元模块在下沉的过程中尽量保证1~2m/h的速度。当单元模块自重与浮力相等时,单元模块保持匀速下沉,此时可以关闭吸力筒1的顶盖阀门和气囊20的排气口。如果此时下沉速度过快,可以向吸力筒1或气囊20内打入气体增加浮力,减缓下沉的速度,保证结构的下沉安全。自重下沉过程中应通过向不同吸力筒1抽气或打气随时调整单元模块的竖直度。(2) The unit module should try to ensure a speed of 1-2m/h during the sinking process. When the self-weight of the unit module is equal to the buoyancy, the unit module keeps sinking at a constant speed. At this time, the top cover valve of the
(3)当吸力筒1底端入泥后,单元模块受到的阻力增加,当阻力大于结构重力时,结构不能继续下沉,此时应进行吸力下沉。打开筒顶盖阀门向吸力筒1施加负压,通过抽气抽水的方式提供下沉动力,使结构进一步下沉,直至筒顶盖接触泥面,认为沉放到位。负压下沉过程中也应通过调整不同吸力筒1内气压随时调整单元模块的竖直度。(3) When the bottom end of the
(4)将纵向连接件12起吊下放至对应第二连接杆9的位置,使楔形块21与漏斗形接口18之间锁紧固定,多个基础结构单元即在连接件的作用下形成一个整体。(4) Lift and lower the
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以作出很多形式的具体变换,这些均属于本发明的保护范围之内。Although the preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to the above-mentioned specific embodiments. Under the inspiration of the present invention, without departing from the scope of the present invention and the protection scope of the claims, personnel can also make many specific transformations, which all fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210361423.0A CN114635447B (en) | 2022-04-07 | 2022-04-07 | A kind of offshore photovoltaic fixed multi-tube foundation structure and construction method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210361423.0A CN114635447B (en) | 2022-04-07 | 2022-04-07 | A kind of offshore photovoltaic fixed multi-tube foundation structure and construction method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114635447A true CN114635447A (en) | 2022-06-17 |
CN114635447B CN114635447B (en) | 2024-04-09 |
Family
ID=81952577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210361423.0A Active CN114635447B (en) | 2022-04-07 | 2022-04-07 | A kind of offshore photovoltaic fixed multi-tube foundation structure and construction method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114635447B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024002133A1 (en) * | 2022-06-29 | 2024-01-04 | 中交第三航务工程勘察设计院有限公司 | Offshore photovoltaic power generation foundation structure and construction method therefor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204998723U (en) * | 2015-08-26 | 2016-01-27 | 浙江精工能源科技集团有限公司 | Flexible surface of water floats photovoltaic power plant installing the system |
US20170321414A1 (en) * | 2011-12-07 | 2017-11-09 | Cpi Technologies, Llc | Solar panel truss deployable from moving carrier |
CN207530747U (en) * | 2017-12-13 | 2018-06-22 | 江苏中信博新能源科技股份有限公司 | Split type photovoltaic plate truss structure |
CN207603505U (en) * | 2017-11-09 | 2018-07-10 | 杭州鸿晟电力设计咨询有限公司 | A kind of large span photovoltaic bracket |
CN207931940U (en) * | 2017-08-18 | 2018-10-02 | 郭其秀 | A kind of floatation type solar absorption platform |
CN110468817A (en) * | 2019-08-30 | 2019-11-19 | 天津大学 | A kind of fixed offshore photovoltaic power generation platform structure and its construction method |
CN210555481U (en) * | 2019-08-30 | 2020-05-19 | 天津大学 | A floating offshore photovoltaic power generation platform |
-
2022
- 2022-04-07 CN CN202210361423.0A patent/CN114635447B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170321414A1 (en) * | 2011-12-07 | 2017-11-09 | Cpi Technologies, Llc | Solar panel truss deployable from moving carrier |
CN204998723U (en) * | 2015-08-26 | 2016-01-27 | 浙江精工能源科技集团有限公司 | Flexible surface of water floats photovoltaic power plant installing the system |
CN207931940U (en) * | 2017-08-18 | 2018-10-02 | 郭其秀 | A kind of floatation type solar absorption platform |
CN207603505U (en) * | 2017-11-09 | 2018-07-10 | 杭州鸿晟电力设计咨询有限公司 | A kind of large span photovoltaic bracket |
CN207530747U (en) * | 2017-12-13 | 2018-06-22 | 江苏中信博新能源科技股份有限公司 | Split type photovoltaic plate truss structure |
CN110468817A (en) * | 2019-08-30 | 2019-11-19 | 天津大学 | A kind of fixed offshore photovoltaic power generation platform structure and its construction method |
CN210555481U (en) * | 2019-08-30 | 2020-05-19 | 天津大学 | A floating offshore photovoltaic power generation platform |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024002133A1 (en) * | 2022-06-29 | 2024-01-04 | 中交第三航务工程勘察设计院有限公司 | Offshore photovoltaic power generation foundation structure and construction method therefor |
Also Published As
Publication number | Publication date |
---|---|
CN114635447B (en) | 2024-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110450917B (en) | Floating type offshore photovoltaic power generation platform | |
CN110450916A (en) | A kind of wind and wave resistance floatation type sea photovoltaic power generation platform | |
CN214493276U (en) | Offshore floating type wind power combined semi-submersible platform foundation | |
CN114932983B (en) | A floating photovoltaic platform at sea | |
CN106759430A (en) | A kind of wind-powered electricity generation whole machine construction method of three bucket foundations and concrete support structure | |
CN103255752A (en) | Buoyancy support fixing platform for supporting offshore wind turbine, bridge and marine structure | |
CN113047175A (en) | Steel box girder assembling and sliding platform and floating transportation method | |
CN114735149A (en) | Wave dissipation and wave resistance integrated floating photovoltaic device capable of resisting severe sea conditions | |
CN210555481U (en) | A floating offshore photovoltaic power generation platform | |
CN114635447A (en) | Offshore photovoltaic fixed multi-cylinder foundation structure and construction method thereof | |
CN110453715A (en) | Combined cylindrical jacket foundation structure capable of gas-liquid replacement and its construction method | |
CN201991011U (en) | Hoisting and releasing system for construction of underwater pier bearing platform double-wall steel cofferdam | |
CN114232672B (en) | Five-cylinder jacket structure for offshore wind power | |
CN106522263A (en) | Construction method for wind power complete machine of structure composed of four barrel-type foundations and supported by concrete | |
WO2017171275A2 (en) | Offshore photovoltaic generation facility and method for installing same | |
CN111101497B (en) | Marine booster station structure capable of being integrally transported and installed | |
CN112663583B (en) | Construction method for total assembly and closure of pile stabilizing platform | |
CN212290248U (en) | Large-span light deck triangular ocean production platform upper module | |
CN210887174U (en) | A fixed offshore photovoltaic power generation platform support structure | |
WO2024245185A1 (en) | Transportation, in-place and disassembly method for offshore large facility | |
CN219499262U (en) | Photovoltaic system with floating rope structure | |
CN110397065A (en) | A multi-tube jacket wind power foundation structure and its construction method | |
CN216428338U (en) | Supporting structure of pipe well pipeline | |
CN114435552B (en) | Large-scale three stand semi-submerged formula oil storage production platform of high performance | |
CN216072714U (en) | Hoisting device of three-leg jacket of offshore wind power foundation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |