CN114634193B - 利用海水电解槽中产生的副产物的能源系统 - Google Patents

利用海水电解槽中产生的副产物的能源系统 Download PDF

Info

Publication number
CN114634193B
CN114634193B CN202111083639.7A CN202111083639A CN114634193B CN 114634193 B CN114634193 B CN 114634193B CN 202111083639 A CN202111083639 A CN 202111083639A CN 114634193 B CN114634193 B CN 114634193B
Authority
CN
China
Prior art keywords
hydrogen
seawater
hydrogen storage
fuel cell
byproduct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111083639.7A
Other languages
English (en)
Other versions
CN114634193A (zh
Inventor
权纯杓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cowatkraft LLC
Original Assignee
Cowatkraft LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cowatkraft LLC filed Critical Cowatkraft LLC
Publication of CN114634193A publication Critical patent/CN114634193A/zh
Application granted granted Critical
Publication of CN114634193B publication Critical patent/CN114634193B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/081Supplying products to non-electrochemical reactors that are combined with the electrochemical cell, e.g. Sabatier reactor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • C01F5/08Magnesia by thermal decomposition of magnesium compounds by calcining magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/083Separating products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及利用海水电解槽中产生的副产物的能源系统,其包括:海水电解槽,通过电解海水来生成含氯物质;储氢部,用于对上述海水电解槽中通过上述电解过程产生的副产氢进行捕集、纯化和储存;燃料电池,将上述储氢部中所储存的副产氢用作燃料;氧化镁获取部,将在上述海水电解槽中从上述海水产生的氢氧化镁转化为氧化镁;集氢管,一侧与海水电解槽连接且另一侧与储氢部连接以输送副产氢;以及氢氧化镁输送管,一侧与海水电解槽连接且另一侧与氧化镁获取部连接以输送氢氧化镁。并且,还可以包括一侧与储氢部连接且另一侧与燃料电池连接来将副产氢从储氢部输送至燃料电池的供氢管。

Description

利用海水电解槽中产生的副产物的能源系统
技术领域
本发明涉及一种通过捕集、纯化和储存海水电解槽中产生的副产氢来将其用于能源系统并利用海水电解后产生的碱性副产物生产高纯度氧化镁的技术。
背景技术
在核能发电和火力发电系统中,引入海水来冷却通过涡轮机的高温水或冷却换热器,并将废冷却水的温度降低至比周围海水不高于规定温度以上的程度后排放至大海。此时,海水流入口具有鱼贝类、海藻类等附着性海洋生物生长的理想条件。这些海洋生物导致海水通道内壁或冷却水取水设备的破坏,从而降低冷却水泵的效率和换热器等相关设备的运行效率。为了解决这一问题,在核能发电和火力发电系统中安装海水电解设备,通过电解海水中的氯化钠(NaCl)生产次氯酸钠(NaOCl,以下简称含氯物质),其设置在海水流入口,以防止在管路、换热器的管道等相关设施中附着性海洋生物的生长。海水电解设备将通过整流器转换的DC电源分别连接至阳极和阴极并使海水通过,使海水的NaCl和H2O被电解,从而生成Na、Cl、H以及OH离子,此时高反应性的Na和OH离子结合形成NaOH。Cl移动至阳极生成氯气(Cl2),H移动至阴极生成氢气(H2)。所生成的氢氧化钠(NaOH)与氯(Cl2)反应生成含氯物质(NaOCl)。可以通过DC电流的大小调节电解量来调节含氯物质的浓度。此时,海水电解设备中产生的含氯物质和副产氢经过止回阀移动至储罐并排放到大气中。
根据韩国产业部2015年的报告,在发电厂生产氯的海水电解设备的电解过程中会产生副产物—氢(副产氢),2010年韩国发电厂的海水电解设备的产氢率为420.0m3/hr,如果将其用于燃料电池,则相当于约503kW的功率。
另一方面,海水中含有大量的镁和钙,当电解时会生成碱金属氧化物,处理这些氧化物需要大量的维护成本。如果从这些碱金属氧化物中去除杂质并回收氢氧化镁,则可以降低这些费用,并且可以将所生产的氢氧化镁用作能源。通常,通过将高温制成的熟石灰(CaCO3)或白云石(MgCO3·CaCO3)加入含有约1300ppm(mg/L)的镁离子(Mg)的海水中,海水中的镁离子以2+形式溶解,海水中的溶解镁以低溶解度的氢氧化镁(magnesiumhydroxide,Mg(OH)2)形式沉淀和回收。此外,当将Ca(OH)2、NaOH、KOH、NH4OH、Na2CO3、K2CO3等直接加入海水中时,在pH为10以上时以氢氧化镁形式沉淀。然而,从海水提取的镁的纯度约为95%~97%,并且钙等主要杂质以CaCO3、Ca(OH)2形式共沉淀,因此需要一种能够回收99%以上的高纯度氧化镁的技术。
现有技术文献
专利文献
专利文献1:韩国授权专利第1577525号
发明内容
技术问题
本发明的一目的在于,提供一种系统,该系统通过捕集和纯化海水电解槽中产生的副产氢,将其用作燃料电池等的能源,而不会被释放到大气中耗散。
并且,本发明的再一目的在于,提供一种包括可以利用单位体积储氢效率高的储氢合金以高密度储氢的大容量储氢装置的能源系统。
并且,本发明的另一目的在于,提供一种通过从海水电解反应后生成的碱性副产物获取高纯度的氧化镁来降低处理成本并提高海水电解槽的运行效率的能源系统。
技术方案
根据本发明的一方面,提供一种利用海水电解槽中产生的副产物的能源系统,包括:海水电解槽,通过电解海水来生成含氯物质;储氢部,用于对上述海水电解槽中通过上述电解过程产生的副产氢进行捕集、纯化和储存;燃料电池,将上述储氢部中所储存的上述副产氢用作燃料;以及氧化镁获取部,将上述海水电解槽中从上述海水产生的氢氧化镁转化为氧化镁。
发明的效果
根据如上所述的本发明的一实施例,在用于生产氯的海水电解槽中,将作为副产物的氢可以用作燃料电池等的能源,而不会被释放到大气中废弃。
并且,根据本发明,通过在海水电解槽中从作为杂质处理而需要额外处理成本的碱性副产物获取氧化镁,可以降低副产物的处理成本并用作资源。
并且,根据本发明,通过提供引入可以以金属氢化物形式储存的储氢合金的储氢部,可以比以往储存更大体积的氢,从而可以减少能源系统的占地面积。
并且,根据本发明,可以针对海水电解设施中产生并含有大量杂质的碱性副产物,通过热分解反应进行纯化来获取高纯度的氧化镁。
附图说明
图1为示出本发明一实施例的能源系统的结构图。
图2为示出本发明另一实施例的能源系统的结构图。
附图标记
100:能源系统
110:海水电解槽
120:储氢部
130:燃料电池
140:氢氧化镁获取部
150:集氢管
160:供氢管
170:氢氧化镁输送管
具体实施方式
下面结合附图详细说明本发明的实施例。下面将要描述的本发明实施例涉及包括海水电解槽、储氢部、氧化镁获取部以及燃料电池的能源系统。
图1为示出本发明一实施例的能源系统的结构图。参照图1,本发明一实施例的能源系统100包括:海水电解槽110,通过电解海水来生成含氯物质;储氢部120,用于对上述海水电解槽中通过上述电解过程产生的副产氢进行捕集、纯化和储存;燃料电池130,将上述储氢部中所储存的副产氢用作燃料;以及氧化镁获取部140,将在上述海水电解槽中从上述海水产生的氢氧化镁转化为氧化镁。
氧化镁获取部140通过热分解反应将上述氢氧化镁Mg(OH)2转化为氧化镁MgO。例如,热分解反应在350℃至450℃的温度下进行。
在本发明中,海水电解槽110对海水进行电解,即通过电解海水来生成氯等含氯物质。每模块的海水电解槽对海水进行电解而生成的氯为1100ppm,以摩尔/小时表示,如下:
NaOCl:1100ppm(mg/L)×30ton/hr
=(33kg/hr,Cl2)/(1mol/35g)=1155mol/hr
另一方面,在电解海水的过程中,作为副产物生成的副产氢以与氯相同的摩尔数生成,每模块的海水电解槽通过海水电解生成的副产氢的量约为H2:1155mol/hr×22.4L/1M=26m3/hr。在本发明中,通过捕集和储存以与经海水电解形成的氯量等量生成的副产氢,而不释放到大气中,可以将其作为燃料电池等的能源来提供。作为一例,在聚合物电解质燃料电池(PEMFC)的情况下,利用1m3/hr的氢作为燃料可生产约1kW(AC)的电,因此在本发明一实施例的能源系统的情况下,在每模块的海水电解槽中每小时可以生产约26kW的电。
在本发明中,储氢部120对海水电解槽110中通过海水的电解过程产生的副产氢进行捕集、纯化和储存,并以金属氢化物的形式储存副产氢,从而可以显著减少储存体积。为了以金属氢化物的形式储存副产氢,而可以利用储氢合金,储氢合金可以为选自LaNi3BH3、Li2NH、LiNH2-LiH、TiCl3、Li2O-Li3N、Li2MgN2H2、Li3N、Li2NH、Li3BN2H8以及LiB4-1/2MgH2-2mol%(或LiB4-1/2MgH2)中的任一种。
当储氢合金与副产氢反应时,会在生成金属氢化物的同时产生热量,氢气的压力因反应热而可能下降,相反,可以通过对金属氢化物加热以释放氢气来提高氢气的压力。此时,具有可以将所产生的氢气压力差转换为动力来使后述的燃料电池工作的优点。
在本发明中,燃料电池130将储氢部120中所储存的副产氢用作燃料。向燃料电池130的空气极供氧,向燃料极提供副产氢,使电化学反应以水电解逆反应的形式进行,从而产生电、热和水,可以在不造成污染的情况下高效生产电能。在本发明中,燃料电池130的系统结构可以由用于产生大量电能的燃料电池堆、用于向燃料电池堆提供燃料的燃料提供装置、用于向燃料电池堆提供作为电化学反应所需的氧化剂的空气中氧的空气提供装置、用于将燃料电池堆的反应热排出至系统外部并控制燃料电池堆的工作温度的热和水管理装置组成。根据这样的结构,在燃料电池中,通过作为燃料的氢和空气中氧之间的电化学反应产生电,通过反应副产物排出热和水。例如,燃料电池选自熔融碳酸盐燃料电池、聚合物电解质燃料电池、固体氧化物燃料电池、直接甲醇燃料电池、直接乙醇燃料电池、磷酸燃料电池以及直接碳燃料电池。
在本发明的一例中,燃料电池130中,一定量的副产氢通过供氢用压缩机或鼓风机从储氢部120泵出并通过燃料电池130的流入口提供至燃料极,同时空气被提供至燃料电池内部,与提供至燃料极的副产氢一起发生氧化反应及还原反应,从而产生电能。
在本发明中,为了连接海水电解槽110与储氢部120以输送副产氢,还可以包括一侧与海水电解槽110连接且另一侧与储氢部120连接的集氢管150。另外,还包括一侧与海水电解槽110连接且另一侧与氧化镁获取部140连接来将氢氧化镁从海水电解槽110输送至氧化镁获取部140的氢氧化镁输送管170。
图2为示出本发明一实施例的能源系统的结构图。参照图2,本发明一实施例的能源系统100,包括:海水电解槽110,通过电解海水来生成含氯物质;储氢部120,用于对上述海水电解槽中通过上述电解过程产生的副产氢进行捕集、纯化和储存;燃料电池130,将上述储氢部中所储存的副产氢用作燃料;氧化镁获取部140,在上述海水电解槽中将从上述海水产生的氢氧化镁转化为氧化镁;集氢管150,一侧与海水电解槽110连接且另一侧与储氢部120连接以输送副产氢;以及氢氧化镁输送管170,一侧与海水电解槽110连接且另一侧与氧化镁获取部140连接以输送氢氧化镁。并且,还可以包括一侧与储氢部120连接且另一侧与燃料电池130连接来将副产氢从储氢部120输送至燃料电池130的供氢管160。
至此,主要研究了本发明的优选实施例。本发明所属技术领域的普通技术人员应该理解,可以在不脱离本发明的本质特征的情况下,以修改的形式实现本发明。因此,所公开的实施例仅是说明性的,而不是限制性的。本发明的范围以权利要求书而非前述说明为准,凡在与其等同的范围内的不同之处均应理解为包含在本发明之内。

Claims (4)

1.一种利用海水电解槽中产生的副产物的能源系统,其特征在于,包括:
海水电解槽,通过电解海水来生成含氯物质;
储氢部,用于对上述海水电解槽中通过上述电解过程产生的副产氢进行捕集、纯化和储存;
燃料电池,将上述储氢部中所储存的上述副产氢用作燃料;以及
氧化镁获取部,将在上述海水电解槽中从上述海水产生的氢氧化镁(Mg(OH)2)转化为氧化镁,并且
通过热分解反应将上述氢氧化镁转化为氧化镁,
其中,上述热分解反应在350℃至450℃的温度下进行,
其中,上述储氢部利用储氢合金来储存副产氢,并且上述储氢合金选自LaNi3BH3、Li2NH、LiNH2-LiH、TiCl3、Li2O-Li3N、Li2MgN2H2、Li3N、Li2NH、Li3BN2H8和LiB4-1/2MgH2
其中上述储氢合金与所述副产氢反应以生成金属氢化物和热量,并且氢气的压力因所述反应而降低,
其中通过对所述金属氢化物加热以从所述金属氢化物释放氢气而提高氢气的压力,
其中通过氢气的提高的压力经由一侧与上述储氢部连接且另一侧与上述燃料电池连接的供氢管将排出的氢气提供给所述燃料电池,从而使所述燃料电池运行,以及
其中所述能源系统还包括一侧与上述海水电解槽连接且另一侧与上述氧化镁获取部连接来将上述氢氧化镁从上述海水电解槽输送至上述氧化镁获取部的氢氧化镁输送管。
2.根据权利要求1所述的利用海水电解槽中产生的副产物的能源系统,其特征在于,还包括一侧与上述海水电解槽连接且另一侧与上述储氢部连接来将上述副产氢从上述海水电解槽输送至上述储氢部的集氢管。
3.根据权利要求1所述的利用海水电解槽中产生的副产物的能源系统,其特征在于,还包括一侧与上述储氢部连接且另一侧与上述燃料电池连接来将上述副产氢从上述储氢部输送至上述燃料电池的供氢管。
4.根据权利要求1所述的利用海水电解槽中产生的副产物的能源系统,其特征在于,上述燃料电池选自熔融碳酸盐燃料电池、聚合物电解质燃料电池、固体氧化物燃料电池、直接甲醇燃料电池、直接乙醇燃料电池、磷酸燃料电池以及直接碳燃料电池。
CN202111083639.7A 2020-11-30 2021-09-15 利用海水电解槽中产生的副产物的能源系统 Active CN114634193B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0163626 2020-11-30
KR1020200163626A KR20220075499A (ko) 2020-11-30 2020-11-30 해수전해조로부터 발생된 부산물을 활용하는 에너지 시스템

Publications (2)

Publication Number Publication Date
CN114634193A CN114634193A (zh) 2022-06-17
CN114634193B true CN114634193B (zh) 2024-03-08

Family

ID=81945938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111083639.7A Active CN114634193B (zh) 2020-11-30 2021-09-15 利用海水电解槽中产生的副产物的能源系统

Country Status (3)

Country Link
US (1) US11824240B2 (zh)
KR (1) KR20220075499A (zh)
CN (1) CN114634193B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094451B (zh) * 2022-07-26 2024-04-26 同济大学 一种电解海水快速提取镁资源的系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058097A (ja) * 1998-08-11 2000-02-25 Masakatsu Takahashi クリーンエネルギー循環システム
KR20100085336A (ko) * 2009-01-20 2010-07-29 주식회사 미트 수소 발생 장치
KR20110056719A (ko) * 2009-11-23 2011-05-31 주식회사 한진중공업 분산형 담수화 플랜트
KR20110136195A (ko) * 2010-06-14 2011-12-21 주식회사 엑스에프씨 해수전해설비에서 발생되는 폐수소를 활용한 연료전지 시스템
KR101561925B1 (ko) * 2015-04-29 2015-10-20 한국지질자원연구원 해수를 이용한 고순도 산화마그네슘의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006225880B2 (en) * 2005-03-18 2012-01-19 Yts Science Properties Pte. Ltd. Hydrogen forming apparatus, laser reduction apparatus, energy transformation apparatus method for forming hydrogen and electricity generation system
US7951349B2 (en) * 2006-05-08 2011-05-31 The California Institute Of Technology Method and system for storing and generating hydrogen
KR101577525B1 (ko) 2014-02-27 2015-12-14 한국남부발전 주식회사 해수전해 연료전지 복합설비

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058097A (ja) * 1998-08-11 2000-02-25 Masakatsu Takahashi クリーンエネルギー循環システム
KR20100085336A (ko) * 2009-01-20 2010-07-29 주식회사 미트 수소 발생 장치
KR20110056719A (ko) * 2009-11-23 2011-05-31 주식회사 한진중공업 분산형 담수화 플랜트
KR20110136195A (ko) * 2010-06-14 2011-12-21 주식회사 엑스에프씨 해수전해설비에서 발생되는 폐수소를 활용한 연료전지 시스템
KR101561925B1 (ko) * 2015-04-29 2015-10-20 한국지질자원연구원 해수를 이용한 고순도 산화마그네슘의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
上官文峰 等编著.《能源材料 原理与应用》.上海交通大学出版社,2017,(第1版),第360-364页. *
朱洪法 主编.《催化剂手册》.金盾出版社,2008,(第1版),第48页. *

Also Published As

Publication number Publication date
KR20220075499A (ko) 2022-06-08
CN114634193A (zh) 2022-06-17
US11824240B2 (en) 2023-11-21
US20220209269A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
KR101200561B1 (ko) 해수전해설비를 이용한 연료전지, 해수전해설비를 이용하여 가성소다, 암모니아, 요소, pvc의 제조방법 및 그 통합시스템
US20070062820A1 (en) Fuel cell cogeneration system
US20100323254A1 (en) Energy supply system
CN112566867A (zh) 可承受高电流的制备氨的方法
CN114634193B (zh) 利用海水电解槽中产生的副产物的能源系统
US7955749B2 (en) Carbon-fueled fuel cell
KR101163704B1 (ko) 해수전해설비에서 발생되는 폐수소를 활용한 연료전지 시스템
KR102032676B1 (ko) 이산화탄소 활용 시스템
KR101215337B1 (ko) 해수전해설비에서 발생되는 폐수소를 활용한 연료전지 시스템
KR101215336B1 (ko) 해수전해설비에서 발생되는 폐수소를 활용한 연료전지 시스템
KR20200090504A (ko) 이산화탄소를 이용하여 수소를 생산하는 이차전지 및 이를 구비하는 복합 발전 시스템
US20070084718A1 (en) Apparatus and method for creating a hydrogen network using water treatment facilities
KR102001213B1 (ko) 이산화탄소를 이용한 수소 발생 및 이산화탄소 제거 장치를 구비하는 연료전지 시스템
KR101986642B1 (ko) 이산화탄소를 이용한 수소 발생장치를 구비하는 연료전지 시스템
KR102028709B1 (ko) 이산화탄소 활용 시스템을 이용한 평형수 처리 시스템
CN110311146A (zh) 一种利用有机物作催化剂的二氧化碳矿化发电新方法
KR101142474B1 (ko) 고분자 전해질 연료전지 시스템
JP2007059196A (ja) 発電システム
KR20120073966A (ko) 해수나 염수를 전기분해하는 방법
US20230120484A1 (en) Carbon dioxide utilization system
US20240072339A1 (en) Renewable energy integration with natural-gas based combined hydrogen and electricity production (chep) system and method
KR102263566B1 (ko) 이산화탄소를 이용하여 수소를 생산하는 이차전지 및 이를 구비하는 복합 발전 시스템
KR101432793B1 (ko) 고순도 리튬 화합물의 제조 방법 및 이를 이용한 시스템
KR20240106754A (ko) 해수 중 금속 분리 시스템 및 이를 이용한 이산화탄소 포집 및 이용방법
KR20110136197A (ko) 해수전해설비에서 발생되는 폐수소를 활용한 연료전지 시스템

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant