CN114628162A - 一种基于无孔导电配位聚合物的高性能超级电容器 - Google Patents

一种基于无孔导电配位聚合物的高性能超级电容器 Download PDF

Info

Publication number
CN114628162A
CN114628162A CN202210282159.1A CN202210282159A CN114628162A CN 114628162 A CN114628162 A CN 114628162A CN 202210282159 A CN202210282159 A CN 202210282159A CN 114628162 A CN114628162 A CN 114628162A
Authority
CN
China
Prior art keywords
active material
bht
negative
conductive
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210282159.1A
Other languages
English (en)
Other versions
CN114628162B (zh
Inventor
徐伟
孙勇
靳毅岗
李泽
李洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN202210282159.1A priority Critical patent/CN114628162B/zh
Publication of CN114628162A publication Critical patent/CN114628162A/zh
Application granted granted Critical
Publication of CN114628162B publication Critical patent/CN114628162B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种基于无孔导电配位聚合物的高性能超级电容器。所述超级电容器由正极片、负极片、隔膜和电解液组装得到,负极片上的负极活性材料为无孔导电配合物Cu3BHT,其呈纳米棒状,正极片上的正极活性材料为MnO2。本发明将无孔导电配合物Cu3BHT作为超级电容器的负极材料,MnO2作为超级电容器的正极材料,聚丙烯酰胺水凝胶作为隔膜和电解液的载体,构建的非对称超级电容器器件Cu3BHT//MnO2展现出优秀的稳定性。在3Ag‑1的电流密度下恒电流充放电1500次循环,其容量滞留保持在92%;同时该器件在0~2.2V的电势窗口内可以稳定工作,并且在功率密度为549.6Wkg‑1时能量密度可达39.1Whkg‑1。本发明为多氧化还原位点的无孔导电配位聚合物在超级电容器电极材料方面的发展提供了新思路。

Description

一种基于无孔导电配位聚合物的高性能超级电容器
技术领域
本发明涉及一种基于无孔导电配位聚合物的高性能超级电容器,属于能量储存和转化领域。
背景技术
超级电容器是一种可替代、可持续的能量转换和存储设备,其因高的功率密度、快速的充放电速率、超长的寿命和低成本而被广泛的应用在新能源汽车、便携式电子产品和智能电网等领域。但是基于双电子层电容的传统超级电容器却有一个致命的缺陷,即低的能量密度,这极大的限制了它在各个领域中的应用。根据超级电容器能量密度的计算公式:E=1/2CV2,弥补这一缺陷的一个有效方法是构建非对称超级电容器器件。在非对称超级电容器中,一种电极材料是电池型电极材料或者赝电容型电极材料,另一种电极材料是电容型电极材料。由于正极材料和负极材料电势窗口的分离,非对称超级电容器的工作电势窗口能够被明显扩大,致使其能量密度显著提升。过渡金属氧化物(RuO2,Nb2O5,Fe2O3)和二维层状材料(Ti3C2,MoS2)已经被广泛的用于构建高能量密度的超级电容器。但是这些材料通常具有较低的电导率,这会严重限制其使用寿命和功率密度。因此,对于构建兼备高能量密度和高功率密度的超级电容器来说,开发一种高电容和高电导的新型电极材料具有重要意义。
导电配位聚合物(c-CPs)是一种由金属离子或团簇与有机配体在无限扩展网络中交替连接起来的新型材料。通过对其成分的合理选择和设计,导电配位聚合物可以实现较高的电导。目前,c-CPs在电化学催化,气体存储和药物运输等领域已被广泛关注。而在超级电容器领域,多孔导电配位聚合物(c-MOFs)因其高的比表面积,可调控的孔尺寸,丰富的活性位点以及快速的离子通道等特性也已经崭露头角。例如:Ni3(HITP)2(HITP=2,3,6,7,10,11-六胺基三亚苯),其室温电导率可达58.8S cm-1,在电流密度为0.5A g-1时,其电容约为111F g-1。同类型的材料还包括:Cu3(HHTP)2(HHTP=2,3,6,7,10,11-六羟基三亚苯),Ni3(HAB)2(HAB=1,2,3,4,5,6-六胺基苯)等。但是,c-MOFs的多孔特性决定了其较低的本征密度,这会严重限制其氧化还原位点的理论数目和可实现的质量和体积电容。与c-MOFs相比,无孔导电配位聚合物(c-CPs)拥有高的本征密度,但在超级电容器电极材料方面,c-CPs却因其无孔的特性而少有研究。考虑到法拉第氧化还原过程通常不受固态离子扩散的限制,推测最大化法拉第氧化还原位点的数目将加强无孔导电配位聚合物的电容性能。
发明内容
本发明的目的是提供一种由无孔导电配位聚合物和MnO2作为电极活性材料而构建的兼备高能量密度和高功率密度的超级电容器器件,对无孔配位聚合物在超级电容器电极材料领域的研究具有重要意义。
本发明提供的超级电容器,由正极片、负极片、隔膜和电解液组装得到;
所述负极片上的负极活性材料为无孔导电配位聚合物Cu3BHT,其呈纳米棒状。
上述的超级电容器中,所述正极片上的正极活性材料为MnO2
上述的超级电容器中,将含有所述负极活性材料的负极材料或含有所述正极活性材料的正极材料涂覆在集流体上,烘干后得到所述负极片或正极片;
所述集流体为导电碳纸或石墨纸。
上述的超级电容器中,所述负极材料由所述负极活性材料、导电剂、粘结剂和溶剂组成;
所述正极材料由所述正极活性材料、导电剂、粘结剂和溶剂组成。
上述的超级电容器中,所述负极材料的质量组成如下:
负极活性材料:50%~90%;导电剂:10%~40%;粘结剂:5%~20%;
所述负极材料中,所述溶剂的质量百分含量为5~20%;
所述正极材料的质量组成如下:
正极活性材料:50%~90%;导电剂:10%~40%;粘结剂:5%~20%;
所述正极材料中,所述溶剂的质量百分含量为5~20%;
上述的超级电容器中,所述导电剂选自导电炭黑、碳纳米管、人造石墨、天然石墨或乙炔黑中任一种;
所述溶剂选自异丙醇、N,N-二甲基甲酰胺和N-甲基吡咯烷酮中的至少一种;
所述粘结剂选自聚四氟乙烯、羟甲基纤维素钠、丁苯橡胶、海藻酸钠和聚丙烯酸中的至少一种。
上述的超级电容器中,所述电解液为KCl水溶液;
以水凝胶作为所述隔膜和所述电解液的载体;
所述水凝胶为聚丙烯酰胺水凝胶。
本发明将无孔导电配位聚合物Cu3BHT作为超级电容器的负极材料,MnO2作为超级电容器的正极材料,聚丙烯酰胺水凝胶作为隔膜和电解液的载体,构建的非对称超级电容器器件Cu3BHT//MnO2展现出优秀的稳定性。在3Ag-1的电流密度下恒电流充放电1500次循环,其容量滞留保持在92%;同时该器件在0~2.2V的电势窗口内可以稳定工作,并且在功率密度为549.6Wkg-1时能量密度可达39.1Whkg-1。本发明为多氧化还原位点的无孔导电配位聚合物在超级电容器电极材料方面的发展提供了新思路。
附图说明
图1为制备Cu3BHT纳米棒的合成步骤流程图。
图2为Cu3BHT纳米棒的PXRD图谱与已报道文献中Cu3BHT PXRD图谱的比较图。
图3为Cu3BHT纳米棒的扫描电子显微镜(SEM)图片。
图4为Cu3BHT//MnO2非对称超级电容器器件在不同电流密度下的恒电流充放电(GCDs)图片。
图5为Cu3BHT//MnO2非对称超级电容器器件在不同电势窗口下的电流-电压(CVs)图片。
图6为Cu3BHT//MnO2非对称超级电容器器件在不同扫描速率下的CVs图片。
图7为Cu3BHT//MnO2非对称超级电容器器件循环稳定性图片。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、Cu3BHT的制备
高结晶性的Cu3BHT的制备对反应条件较为苛刻。因此,反应过程中所使用的溶剂都需要通过冷冻和解冻的方法将溶解在其中的氧气除去。同时,整个反应装置需要通过双排系统维持在氩气气氛之下。
1、溶剂除氧处理
将30ml乙醇加入到100ml的支管茄形瓶中,采用Freeze-Thaw法利用液氮脱去溶剂中的溶解氧。然后将茄形瓶接入氩气气氛保护。
2、制备过程
1)称取30mg BHT和23.6mgCu2O加入到100ml的两口瓶中,并加入搅拌磁子。将两口瓶连通双排管,使反应装置中的空气置换为氩气,并使反应装置维持在氩气气氛之下。
2)将已除去溶解氧的乙醇通过注射器加入至上述100ml两口瓶中,同时开启搅拌和加热,使BHT和Cu2O在80℃下反应72h。
3)待反应完成后,关闭反应装置的加热,将反应体系自然冷却至室温,关闭搅拌,抽滤产物,并依次使用水,乙醇,丙酮和乙醚反复冲洗3次,然后将产物于60℃烘干24h。
实施例2、Cu3BHT//MnO2非对称超级电容器器件的制备
称出集流体导电碳纸的质量并记录,将负极材料和正极材料分别均匀的涂抹在导电碳纸集流体上,于70℃真空烘箱中烘干24h,得到超级电容器正负极片。
正极材料由MnO2、导电剂(美国CABOT BP 2000超导电炭黑)、粘结剂(60wt%聚四氟乙烯浓缩分散液)和溶剂(N-甲基吡咯烷酮)组成,其中,MnO2的质量百分含量为80%,导电剂的质量百分含量为10%,粘结剂的质量百分含量为10%,溶剂在正极材料中的质量百分含量约为零(烘干后认为正极材料中的溶剂几乎为零)。
负极材料由Cu3BHT、导电剂(美国CABOT BP 2000超导电炭黑)、粘结剂(60wt%聚四氟乙烯浓缩分散液)和溶剂(N-甲基吡咯烷酮)组成,其中,Cu3BHT的质量百分含量为80%,导电剂的质量百分含量为10%,粘结剂的质量百分含量为10%,溶剂在负极材料中的质量百分含量约为零(烘干后认为负极材料中的溶剂几乎为零)
将得到的正负极片再次称量质量,按照比例分别计算出正负极片上活性物质的质量。
将上述负极极片,浸泡有KCl电解液的聚丙烯酰胺水凝胶,正极极片依次堆叠起来,形成一种三明治类似结构。
使用石墨纸作为导线分别贴于正极极片和负极极片上,并使用绝缘胶带将整个器件包裹起来,得到Cu3BHT//MnO2非对称超级电容器器件。
实施例3、Cu3BHT及Cu3BHT//MnO2非对称超级电容器器件的表征
将制备得到的Cu3BHT纳米棒分别用于粉末X射线衍射、扫描电子显微镜等测试,并在压块(2×5mm,at~1GPa)后进行电导率测试。
在一个三电极体系中,将制备得到的Cu3BHT负极片夹于工作电极,铂片夹于对电极,饱和甘汞电极作为参比电极,1M KCl水溶液作为电解液。分别用于测试其CV、GCD等电化学性能。将电化学工作站的对电极和参比电极夹于制备的Cu3BHT//MnO2非对称超级电容器器件的负极,工作电极夹于正极,分别用于测试其CV、GCD和循环稳定性等电化学性能。
图2为制备的Cu3BHT纳米棒的粉末X射线衍射图谱与已报道的Cu3BHT的粉末X射线衍射图谱的比较图,可以看出两者的PXRD图谱完全一致,说明Cu3BHT纳米棒的成功制备。
图3为制备的Cu3BHT纳米棒的扫描电子显微镜(SEM)图片,从图中可以看出其形貌为长2um左右,直径约为10nm的纳米棒。
图4为Cu3BHT//MnO2非对称超级电容器器件在不同电流密度下的GCDs曲线,可以看出随着电流密度的增大,器件的充放电时间逐渐减短,经计算当电流密度从0.5Ag-1增大到5Ag-1时,器件的电容从58.2Fg-1降低至24.1Fg-1
图5为Cu3BHT//MnO2非对称超级电容器器件在不同工作电势窗口的CVs曲线,可以看出当器件在0~2.2V的电势窗口内工作时,其充电曲线的末端并没有明显的跳跃,说明该器件能够在0~2.2V的电势窗口内稳定工作。
图6为Cu3BHT//MnO2非对称超级电容器器件在不同扫描速率下的CVs曲线,可以看出随着扫描速率的不断增加,器件的CVs曲线并没有出现明显的变形,说明该器件在测试的电势窗口内具有优异的可逆性。
图7为Cu3BHT//MnO2非对称超级电容器器件在3Ag-1的电流密度下恒电流充放电1500次循环的稳定性测试图,可以看出该器件在循环了1500次后,其电容滞留仍保有初始值的92%,说明其具有优异的循环稳定性。

Claims (8)

1.无孔导电配位聚合物Cu3BHT在作为超级电容器的负极活性材料中的应用;
所述无孔导电配位聚合物Cu3BHT呈纳米棒状。
2.一种超级电容器,由正极片、负极片、隔膜和电解液组装得到;
所述负极片上的负极活性材料为无孔导电配位聚合物Cu3BHT,其呈纳米棒状。
3.根据权利要求2所述的超级电容器,其特征在于:所述正极片上的正极活性材料为MnO2
4.根据权利要求2或3所述的超级电容器,其特征在于:将含有所述负极活性材料的负极材料或含有所述正极活性材料的正极材料涂覆在集流体上,烘干后得到所述负极片或正极片;
所述集流体为导电碳纸或石墨纸。
5.根据权利要求4所述的超级电容器,其特征在于:所述负极材料由所述负极活性材料、导电剂、粘结剂和溶剂组成;
所述正极材料由所述正极活性材料、导电剂、粘结剂和溶剂组成。
6.根据权利要求5所述的超级电容器,其特征在于:所述负极材料的质量组成如下:
负极活性材料:50%~90%;导电剂:10%~40%;粘结剂:5%~20%;
所述负极材料中,所述溶剂的质量百分含量为5~20%;
所述正极材料的质量组成如下:
正极活性材料:50%~90%;导电剂:10%~40%;粘结剂:5%~20%;
所述正极材料中,所述溶剂的质量百分含量为5~20%。
7.根据权利要求5或6所述的超级电容器,其特征在于:所述导电剂选自导电炭黑、碳纳米管、人造石墨、天然石墨或乙炔黑中任一种;
所述溶剂选自异丙醇、N,N-二甲基甲酰胺和N-甲基吡咯烷酮中的至少一种;
所述粘结剂选自聚四氟乙烯、羟甲基纤维素钠、丁苯橡胶、海藻酸钠和聚丙烯酸中的至少一种。
8.根据权利要求2-7中任一项所述的超级电容器,其特征在于:所述电解液为KCl水溶液;
以水凝胶作为所述隔膜和所述电解液的载体;
所述水凝胶为聚丙烯酰胺水凝胶。
CN202210282159.1A 2022-03-22 2022-03-22 一种基于无孔导电配位聚合物的高性能超级电容器 Active CN114628162B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210282159.1A CN114628162B (zh) 2022-03-22 2022-03-22 一种基于无孔导电配位聚合物的高性能超级电容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210282159.1A CN114628162B (zh) 2022-03-22 2022-03-22 一种基于无孔导电配位聚合物的高性能超级电容器

Publications (2)

Publication Number Publication Date
CN114628162A true CN114628162A (zh) 2022-06-14
CN114628162B CN114628162B (zh) 2023-11-28

Family

ID=81903175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210282159.1A Active CN114628162B (zh) 2022-03-22 2022-03-22 一种基于无孔导电配位聚合物的高性能超级电容器

Country Status (1)

Country Link
CN (1) CN114628162B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414929A (zh) * 1999-12-28 2003-04-30 Ibiden股份有限公司 含碳的氮化铝烧结体以及用于半导体制造/检测设备的陶瓷基材
CN101486094A (zh) * 2008-01-16 2009-07-22 赖秋郎 抗氧化的微细铜粉及具有抗氧化的微细铜粉的导电性浆料
EP2280437A1 (en) * 2008-04-21 2011-02-02 Ls Mtron Ltd. Cathode active material for a secondary battery, electrode for a secondary battery and secondary battery comprising the same, and a production method therefor
CN102509639A (zh) * 2011-11-28 2012-06-20 深圳市贝特瑞纳米科技有限公司 超级电容器
CN106252098A (zh) * 2016-09-14 2016-12-21 四川大学 一种耐高电压水系超级电容器及其制作方法
CN107958790A (zh) * 2017-11-15 2018-04-24 凌容新能源科技(上海)股份有限公司 超级锂离子电容器及其制备方法
CN110993861A (zh) * 2020-01-03 2020-04-10 南京工业大学 一种纳米氧化铝/聚氨酯无孔隔膜、制备方法及其在锂离子电池中的应用
CN111253759A (zh) * 2020-03-27 2020-06-09 西安交通大学 一种基于金属有机框架与碳纳米管的复合材料的制备方法及器件的制备方法
CN113087920A (zh) * 2021-03-29 2021-07-09 江苏科技大学 一种金属有机骨架复合材料及其制备方法
CN113474425A (zh) * 2019-01-18 2021-10-01 多米诺印刷科学有限公司 油墨组合物
CN114106356A (zh) * 2021-12-30 2022-03-01 复旦大学 以六巯基苯为配体的导电MOFs管状材料及其制备方法
CN114456397A (zh) * 2022-02-15 2022-05-10 广东工业大学 一种双金属配位的金属有机框架材料及其制备方法和应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414929A (zh) * 1999-12-28 2003-04-30 Ibiden股份有限公司 含碳的氮化铝烧结体以及用于半导体制造/检测设备的陶瓷基材
CN101486094A (zh) * 2008-01-16 2009-07-22 赖秋郎 抗氧化的微细铜粉及具有抗氧化的微细铜粉的导电性浆料
EP2280437A1 (en) * 2008-04-21 2011-02-02 Ls Mtron Ltd. Cathode active material for a secondary battery, electrode for a secondary battery and secondary battery comprising the same, and a production method therefor
CN102509639A (zh) * 2011-11-28 2012-06-20 深圳市贝特瑞纳米科技有限公司 超级电容器
CN106252098A (zh) * 2016-09-14 2016-12-21 四川大学 一种耐高电压水系超级电容器及其制作方法
CN107958790A (zh) * 2017-11-15 2018-04-24 凌容新能源科技(上海)股份有限公司 超级锂离子电容器及其制备方法
CN113474425A (zh) * 2019-01-18 2021-10-01 多米诺印刷科学有限公司 油墨组合物
CN110993861A (zh) * 2020-01-03 2020-04-10 南京工业大学 一种纳米氧化铝/聚氨酯无孔隔膜、制备方法及其在锂离子电池中的应用
CN111253759A (zh) * 2020-03-27 2020-06-09 西安交通大学 一种基于金属有机框架与碳纳米管的复合材料的制备方法及器件的制备方法
CN113087920A (zh) * 2021-03-29 2021-07-09 江苏科技大学 一种金属有机骨架复合材料及其制备方法
CN114106356A (zh) * 2021-12-30 2022-03-01 复旦大学 以六巯基苯为配体的导电MOFs管状材料及其制备方法
CN114456397A (zh) * 2022-02-15 2022-05-10 广东工业大学 一种双金属配位的金属有机框架材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIN, YG: "Facile synthesis, precise species control and chemical transformation of highly conducting organic metal chalcogenides CuxBHT (BHT = benzenehexathiol; x=3, 4, and 5.5)", 《JOURNAL OF MATERIALS CHEMISTRY C》, no. 10, pages 2711 - 2717 *

Also Published As

Publication number Publication date
CN114628162B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
Zhang et al. Biomass-derived highly porous nitrogen-doped graphene orderly supported NiMn2O4 nanocrystals as efficient electrode materials for asymmetric supercapacitors
Yang et al. Tailoring the supercapacitive behaviors of Co/Zn-ZIF derived nanoporous carbon via incorporating transition metal species: a hybrid experimental-computational exploration
Kundu et al. Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors
Chen et al. Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors
Su et al. Construction of NiCo2O4@ MnO2 nanosheet arrays for high-performance supercapacitor: highly cross-linked porous heterostructure and worthy electrochemical double-layer capacitance contribution
Liu et al. Ultrafine nickel–cobalt alloy nanoparticles incorporated into three-dimensional porous graphitic carbon as an electrode material for supercapacitors
Zhao et al. All-solid-state hybrid supercapacitors based on ZnCo2O4 nanowire arrays and carbon nanorod electrode materials
Ye et al. In-situ growth of Se-doped NiTe on nickel foam as positive electrode material for high-performance asymmetric supercapacitor
Peng et al. Construction of a hierarchical carbon coated Fe 3 O 4 nanorod anode for 2.6 V aqueous asymmetric supercapacitors with ultrahigh energy density
JPWO2014156511A1 (ja) 蓄電装置およびその電極用材料
CN108711518B (zh) 氮氧共掺杂多孔碳纳米带及其制备方法和应用
Park et al. Intense pulsed white light assisted fabrication of Co-CoOx core-shell nanoflakes on graphite felt for flexible hybrid supercapacitors
CN110459755A (zh) 一种硫/聚吡咯/石墨烯/碳纳米管复合薄膜、制备方法及其应用
Wu et al. A high-performance asymmetric supercapacitors based on hydrogen bonding nanoflower-like polypyrrole and NiCo (OH) 2 electrode materials
An et al. 3D Binder-free conjugated microporous polymer carbon Aerogels@ MnO2 cathode for High-Performance aqueous zinc ion batteries
Pai et al. High performance aqueous asymmetric supercapacitor based on iron oxide anode and cobalt oxide cathode
CN110010367A (zh) 一种二维金属有机框架半导体材料及制备方法及应用
Zhang et al. A nickel coordination supramolecular network synergized with nitrogen-doped graphene as an advanced cathode to significantly boost the rate capability and durability of supercapacitors
Mao et al. Sol–gel synthesis of porous Li2TiO3 for high-performance electrochemical supercapacitors
CN113140410A (zh) 一种掺氮碳纳米片/MXene复合纳米材料、其制备方法和用途
Olatoye et al. Synthesis of γ-MnS/nanoporous carbon/reduced graphene oxide composites for high-performance supercapacitor
Zhang et al. Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors
Lv et al. High performance cathode materials for lithium-ion batteries based on a phenothiazine-based covalent triazine framework
GÖRÇAY et al. One-step potentiostatic codeposition and electrochemical studies of poly (1-pyrenyl)-2, 5-di (2-thienyl) pyrrole-co-pyrrole) film for electrochemical supercapacitors
CN114628162B (zh) 一种基于无孔导电配位聚合物的高性能超级电容器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant