CN114605990A - 一种高单色性的近红外荧光碳点及其合成方法和应用 - Google Patents

一种高单色性的近红外荧光碳点及其合成方法和应用 Download PDF

Info

Publication number
CN114605990A
CN114605990A CN202210273118.6A CN202210273118A CN114605990A CN 114605990 A CN114605990 A CN 114605990A CN 202210273118 A CN202210273118 A CN 202210273118A CN 114605990 A CN114605990 A CN 114605990A
Authority
CN
China
Prior art keywords
carbon dot
infrared fluorescent
fluorescent carbon
acid
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210273118.6A
Other languages
English (en)
Other versions
CN114605990B (zh
Inventor
李康
冼莹妹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Pharmaceutical University
Original Assignee
Guangdong Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Pharmaceutical University filed Critical Guangdong Pharmaceutical University
Priority to CN202210273118.6A priority Critical patent/CN114605990B/zh
Publication of CN114605990A publication Critical patent/CN114605990A/zh
Application granted granted Critical
Publication of CN114605990B publication Critical patent/CN114605990B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Luminescent Compositions (AREA)
  • General Health & Medical Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于荧光碳点的技术领域,具体涉及一种高单色性的近红外荧光碳点及其合成方法和应用。其合成方法如下:1)将邻苯二胺、氧化剂和强酸强碱盐溶于去离子水中,搅拌均匀之后加入酸性试剂,于120~260℃下反应1~36小时;2)步骤1)的反应物冷却至室温,将反应液和沉淀物分离,将沉淀物用去离子水、正丁醇洗涤、烘干,即得到碳点粉末,所制得的近红外荧光碳点的荧光单色性好,具有双发性质,碳点的纯化通过过滤与洗涤即可得到,纯化方式简单,耗时短,表明通过本发明的合成方法得到的近红外荧光碳点性能较为优异,具高单色性以及高产率。

Description

一种高单色性的近红外荧光碳点及其合成方法和应用
技术领域
本发明属于荧光碳点的技术领域,具体涉及一种高单色性的近红外荧光碳点及其合成方法和应用。
背景技术
碳量子点是一种碳基零维材料,由于其具有生物相容性好、细胞低毒性、制备成本低、光致发光以及发射波长可调控等优势,在光催化、发光设备、生物成像、光电转换、分析检测等多领域应用广泛。例如具高荧光量子产率的碳点可以作为制备LED的材料,具有超窄发射的碳点可以作为激光材料,具有深红色或者近红外发射的碳点用于生物成像,利用碳点的光电性质作为制备太阳能电池材料,利用其催化性能作为电催化材料和光催化材料,利用其荧光可被淬灭或增强性质作为光学传感探针用于分析检测。
现有技术所制备的碳量子点主要存在如下问题,1)碳点的荧光单色性差,荧光单色性在荧光光谱中用发射峰半高峰宽(FWHM)表示,荧光单色性高对改善具有最小背景噪声的成像对比度,增加显示器高色纯度,甚至可作为激光发射材料等要重要意义;2)碳点的分离纯化以及高产率制备有困难,现阶段碳点的分离纯化主要是透析和色谱柱,这两种方法繁琐耗时,无法扩大规模,而高产率生产是广泛应用的基础;3)荧光调节有困难,难以达到要求,使得荧光调节的方法方便对于拓展荧光碳点的应用尤为关键。
氟啶胺作农作物的光谱抑菌剂,氟啶胺对鳄梨白根腐病、大白菜根肿病、马铃薯晚疫病、铁皮石斛灰霉病、柑橘红蜘蛛等均具有良好的防治效果。农药残留联合专家会议(JMPR)在2018年的报告中指出将植物源中氟啶胺残留定义为氟啶胺,而建立快速灵敏检测氟啶胺的方法非常重要。
发明内容
针对上述问题,本发明的目的在于提供一种高单色性的近红外荧光碳点及其合成方法和应用,通过本发明的合成方法得到的近红外荧光碳点性能较为优异,具高单色性以及高产率。
本发明的技术内容如下:
本发明的一种高单色性的近红外荧光碳点的合成方法,包括如下步骤:
1)将邻苯二胺、氧化剂和强酸强碱盐溶于去离子水中,搅拌均匀之后加入酸性试剂,于120~260℃下反应1~36小时;
2)步骤1)的反应物冷却至室温,将反应液和沉淀物分离,将沉淀物用去离子水、正丁醇洗涤、烘干,即得到碳点粉末;
步骤1)所述邻苯二胺的使用浓度为1 mol/L;
所述氧化剂的使用浓度为0.1~3 mol/L;
所述强酸强碱盐的使用浓度为0~3 mol/L;
所述酸性试剂(H+浓度)的使用浓度为0.1~3 mol/L;
所述氧化剂包括双氧水、高氯酸、硝酸、高氯酸钠、硝酸银、氯化铁、硝酸铁、硫酸铁中的一种或以上的组合;
所述强酸强碱盐包括氯化钠、硫酸钠、硝酸钠、硝酸钾、氯化钾、硫酸钾、硝酸钙、硝酸钡、氯化钡、氯化钙的一种;
所述酸性试剂包括98.0%硫酸、36.0%盐酸、85%磷酸、65.0%硝酸、70.0%高氯酸、40.0%硒酸、48.0%氢溴酸、55.0%氢碘酸的一种;
所述用于碳点的分散剂包括但不限于乙醇、N,N-二甲基甲酰胺、二甲基亚砜的一种,在溶液中测得碳点的紫外-可见吸收光谱、激发光谱和发射光谱。
本发明还提供了一种上述制备方法得到的近红外荧光碳点,其在600 nm的发射峰半高峰宽达到20 nm,近红外区发射的发射半高峰宽达到30 nm;
所述近红外区的发射波长为658-683 nm;
所述近红外光区的发射类型为聚集诱导发射。
本发明还提供了一种上述制备方法得到的近红外荧光碳点应用于制备LED的材料、激光材料和显示器材料以及用于生物成像、光热治疗试剂,用于制备光电转换材料、电催化材料、光催化材料,用于制备作为光学探针检测金属离子、阴离子、疾病标志物、环境污染物、物及杂质和农作物农药残留药等(如氟啶胺)。
本发明的有益效果如下:
本发明的近红外荧光碳点具有如下优点:1)荧光单色性好,荧光光谱中半高峰宽(FWHM)越窄、其荧光单色性越高,本发明的近红外荧光碳点在600 nm处发射的半高峰宽能达到20 nm,近红外区的发射半高峰宽能达到30 nm,具备超窄发射的特点; 2)具有双发性质,分别为600 nm处发射和聚集诱导发射,其中聚集诱导发射随着碳点浓度升高,其发射能达近红外区;3)通过控制氧化剂剂量使得碳点产率高于80%,高效合成碳点能够降低合成成本;4)碳点的纯化通过过滤与洗涤即可得到,纯化方式简单,耗时短,表明通过本发明的合成方法得到的近红外荧光碳点性能较为优异,具高单色性以及高产率。
本发明的近红外荧光碳点的合成方法中,采用邻苯二胺、氧化剂以及酸作为反应原料,其中,氧化剂的用量与碳点产量具有线性关系;碳点发射峰展宽与脱水碳化程度相关,酸能够使得脱水碳化更为剧烈。强酸强碱盐的作用是改变离子强度和疏水作用,最终导致碳点自组装形成类硝酸石墨结构。
附图说明
图1为本发明的近红外荧光碳点的XRD图;
图2为本发明的近红外荧光碳点的SEM图;
图3为本发明的近红外荧光碳点的傅里叶转换红外光谱图;
图4为本发明的近红外荧光碳点的XPS图谱;
图5为本发明的近红外荧光碳点的TEM和HRTEM图;
图6为本发明的近红外荧光碳点的紫外—可见吸收光谱;
图7为本发明的近红外荧光碳点的近红外发射的光谱图;
图8为本发明的近红外荧光碳点的粒径分布图;
图9为本发明的近红外荧光碳点的氧化剂用量与碳点产量的线性关系图;
图10为随着氟啶胺浓度增加碳点荧光光谱的变化;
图11为碳点600 nm处荧光强度与氟啶胺浓度的曲线关系。
具体实施方式
以下通过具体的实施案例以及附图说明对本发明作进一步详细的描述,应理解这些实施例仅用于说明本发明而不用于限制本发明的保护范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定。
若无特殊说明,本发明的所有原料和试剂均为常规市场的原料、试剂。
实施例1
一种高单色性的近红外荧光碳点的合成方法
1)将10 mmol 邻苯二胺、10 mmol NaClO4和1 mmol NaCl溶于19 mL去离子水中,搅拌均匀之后加入10 mmol HCl,于200℃下反应10小时;
2)步骤1)的反应物冷却至室温,将反应液和沉淀物分离,将沉淀物用去离子水、正丁醇洗涤、烘干,即得到近红外荧光碳点粉末,其产率为83.3%;
如图1所示,为近红外荧光碳点的XRD图,表明碳点粉末中含有高度有序的晶体结构,这种晶体结构为类硝酸石墨结构;
如图2所示,为近红外荧光碳点的SEM图,表明碳点粉末为层状结构的块状晶体结构,这种块状晶体结构为类硝酸石墨结构;
如图3所示,为近红外荧光碳点的傅里叶转换红外光谱图,表明近红外荧光碳点在500~3500 cm-1波数下的管光吸收;
如图4所示,为近红外荧光碳点的XPS图谱,其中,图a显示了碳点含有的元素,图b显示了碳原子种类,图c显示了氮原子种类,图d显示了氧原子种类;表明近红外荧光碳点主要由碳、氮和氧组成;
如图5所示,为近红外荧光碳点的TEM和HRTEM图,表明近红外荧光碳点分散性好,而且碳核形成了石墨烯结构;
如图6所示,为近红外荧光碳点溶液的紫外-可见吸收光谱图,表明近红外光碳点在250-660 nm内有吸收;
如图7所示,为近红外荧光碳点溶液在不同光波长下的荧光强度,图a显示在468nm的激发光下,在640-750 nm内有发射,表明在高浓度下发射可以达近红外区;图b显示碳点在458-503 nm的激发光下,在550-750 nm内有发射,表明600 nm处发射峰的FWHM为20nm,近红外发射峰的FWHM为30 nm;
实施例2
一种高单色性的近红外荧光碳点的合成方法
1)将10 mmol邻苯二胺、8 mmol氧化剂(H2O2、HClO4以摩尔数比为1:1组合)和1mmol NaSO4溶于19 mL去离子水中,搅拌均匀之后加入18 mmol H2SO4,于260℃下反应1小时;
2)步骤1)的反应物冷却至室温,将反应液和沉淀物分离,将沉淀物用去离子水、正丁醇洗涤、烘干,即得到碳点粉末。
实施例3
一种高单色性的近红外荧光碳点的合成方法
1)将10 mmol邻苯二胺、5 mmol氧化剂(HNO3、Fe(NO3)3以摩尔数比为1:1组合)和4mmol强酸强碱盐(NaNO3、KNO3以摩尔数比为1:1组合)溶于19 mL去离子水中,搅拌均匀之后加入5 mmol HClO4,于120℃下反应36小时;
2)步骤1)的反应物冷却至室温,将反应液和沉淀物分离,将沉淀物用去离子水、正丁醇洗涤、烘干,即得到碳点粉末。
实施例4
一种高单色性的近红外荧光碳点的合成方法
1)将10 mmol邻苯二胺、4 mmol氧化剂(HClO4、NaClO4以摩尔数比为1:1组合)和3mmol强酸强碱盐(NaCl、CaCl2以质量比为1:1组合)溶于19 mL去离子水中,搅拌均匀之后加入4 mmol酸性试剂(HBr、HI以摩尔数比为1:1组合),于150℃下反应15小时;
2)步骤1)的反应物冷却至室温,将反应液和沉淀物分离,将沉淀物用去离子水、正丁醇洗涤、烘干,即得到碳点粉末。
将以上所制备的碳点粉末分散于二甲基亚砜溶液中,并在其溶液中测得碳点的紫外-可见吸收光谱、激发光谱和发射光谱。
溶液传感法检测步骤如下:
1)将碳点分散在DMSO中,配置成为0.02 mg/mL的碳点溶液;
2) 将氟啶胺溶于DMF中,分别配置成为108 μmol/L、130 μmol/L、150 μmol/L、172μmol/L、194 μmol/L、218 μmol/L和258 μmol/L溶液;
3)取1.5 ml 步骤1)中的碳点溶液分别加入到1.5 mL步骤2)配置的氟啶胺溶液,测定碳点溶液的荧光变化。
如图8所示,为本发明的近红外荧光碳点的粒径分布图,表明所制备的碳点粒径较小且分布均匀。
如图9所示,图a为本发明的近红外荧光碳点的氧化剂(高氯酸)用量和碳点产量的线性关系图;图b为本发明的近红外荧光碳点的氧化剂(双氧水)用量和碳点产量的线性关系图。表明能通过氧化剂用量调节碳点产量,且得到的碳点纯度、产量高。
图10为随着氟啶胺浓度增加碳点荧光光谱的变化,表明氟啶胺能淬灭碳点荧光。
图11为碳点600 nm处荧光强度与氟啶胺浓度的曲线关系,表明碳点作为荧光传感器检测氟啶胺。

Claims (9)

1.一种高单色性的近红外荧光碳点的合成方法,其特征在于,包括如下步骤:
1)将邻苯二胺、氧化剂和强酸强碱盐溶于去离子水中,搅拌均匀之后加入酸性试剂,于120~260℃下反应1~36小时;
2)步骤1)的反应物冷却至室温,将反应液和沉淀物分离,将沉淀物用去离子水、正丁醇洗涤、烘干,即得到碳点粉末。
2.由权利要求1所述的近红外荧光碳点的合成方法,其特征在于,步骤1)所述邻苯二胺的使用浓度为1 mol/L;
所述氧化剂的使用浓度为0.1~3 mol/L;
所述强酸强碱盐的使用浓度为0~3 mol/L;
所述酸性试剂的使用浓度为0.1~3 mol/L。
3.由权利要求1所述的近红外荧光碳点的合成方法,其特征在于,步骤1)所述氧化剂包括双氧水、高氯酸、硝酸、高氯酸钠、硝酸银、氯化铁、硝酸铁、硫酸铁中的一种或以上的组合。
4.由权利要求1所述的近红外荧光碳点的合成方法,其特征在于,步骤1)所述强酸强碱盐包括氯化钠、硫酸钠、硝酸钠、硝酸钾、氯化钾、硫酸钾、硝酸钙、硝酸钡、氯化钡、氯化钙的一种。
5.由权利要求1所述的近红外荧光碳点的合成方法,其特征在于,步骤1)所述酸性试剂包括硫酸、盐酸、磷酸、硝酸、高氯酸、硒酸、氢溴酸、氢碘酸中的一种。
6.一种权利要求1~5任一项所述合成方法得到的近红外荧光碳点,其特征在于,所述近红外荧光碳点在600 nm处的发射峰半高峰宽达到20 nm,近红外区的发射半高峰宽达到30nm。
7.由权利要求6所述的的近红外荧光碳点,其特征在于,所述近红外区荧光的波长为658-683 nm。
8.由权利要求6所述的的近红外荧光碳点,其特征在于,所述近红外区发射为聚集诱导发射。
9.一种权利要求6~8任一项所述的近红外荧光碳点应用于制备LED的材料、激光材料和显示器材料以及用于生物成像、光热治疗试剂,用于制备光电转换材料、电催化材料和光催化材料,用于制备光学传感探针检测金属离子、阴离子、疾病标志物、环境污染物、农作物农药残留和药物及杂质。
CN202210273118.6A 2022-03-18 2022-03-18 一种高单色性的近红外荧光碳点及其合成方法和应用 Active CN114605990B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210273118.6A CN114605990B (zh) 2022-03-18 2022-03-18 一种高单色性的近红外荧光碳点及其合成方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210273118.6A CN114605990B (zh) 2022-03-18 2022-03-18 一种高单色性的近红外荧光碳点及其合成方法和应用

Publications (2)

Publication Number Publication Date
CN114605990A true CN114605990A (zh) 2022-06-10
CN114605990B CN114605990B (zh) 2024-05-17

Family

ID=81864945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210273118.6A Active CN114605990B (zh) 2022-03-18 2022-03-18 一种高单色性的近红外荧光碳点及其合成方法和应用

Country Status (1)

Country Link
CN (1) CN114605990B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115624620A (zh) * 2022-10-08 2023-01-20 天津大学 抑制β淀粉样蛋白聚集的碳点抑制剂及合成方法和应用
CN115678552A (zh) * 2022-12-01 2023-02-03 南京工业大学 一种具有窄带发射的荧光碳点的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180006257A1 (en) * 2016-06-30 2018-01-04 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Carbon dot multicolor phosphors
CN109504374A (zh) * 2018-11-30 2019-03-22 郑州大学 一种大规模制备高效红色/近红外发射荧光碳点的方法
CN110511750A (zh) * 2019-08-26 2019-11-29 上海交通大学 制备两种波段单光子和双光子荧光碳量子点的方法及应用
CN110885680A (zh) * 2019-11-12 2020-03-17 中国矿业大学 一种无溶剂法制备多色荧光碳点的方法及其制备的多色荧光碳点
CN111518553A (zh) * 2019-12-24 2020-08-11 江南大学 一种水相室温磷光碳点材料的制备方法和应用
WO2021093406A1 (zh) * 2019-11-14 2021-05-20 清华大学深圳国际研究生院 一种高量子产率的碳量子点的制备方法
JP2021088477A (ja) * 2019-12-04 2021-06-10 学校法人 関西大学 炭素量子ドットおよびその製造方法
CN113666359A (zh) * 2021-08-16 2021-11-19 复旦大学 一种在空气中大规模固相合成荧光碳点的绿色化学方法
CN113845903A (zh) * 2021-09-15 2021-12-28 云南大学 近红外发光碳点的规模化合成方法及其应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180006257A1 (en) * 2016-06-30 2018-01-04 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Carbon dot multicolor phosphors
CN109504374A (zh) * 2018-11-30 2019-03-22 郑州大学 一种大规模制备高效红色/近红外发射荧光碳点的方法
CN110511750A (zh) * 2019-08-26 2019-11-29 上海交通大学 制备两种波段单光子和双光子荧光碳量子点的方法及应用
CN110885680A (zh) * 2019-11-12 2020-03-17 中国矿业大学 一种无溶剂法制备多色荧光碳点的方法及其制备的多色荧光碳点
WO2021093406A1 (zh) * 2019-11-14 2021-05-20 清华大学深圳国际研究生院 一种高量子产率的碳量子点的制备方法
JP2021088477A (ja) * 2019-12-04 2021-06-10 学校法人 関西大学 炭素量子ドットおよびその製造方法
CN111518553A (zh) * 2019-12-24 2020-08-11 江南大学 一种水相室温磷光碳点材料的制备方法和应用
CN113666359A (zh) * 2021-08-16 2021-11-19 复旦大学 一种在空气中大规模固相合成荧光碳点的绿色化学方法
CN113845903A (zh) * 2021-09-15 2021-12-28 云南大学 近红外发光碳点的规模化合成方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUANYUAN SONG等: "Green fluorescent nanomaterials for rapid detection of chromium and iron ions: wool keratin based carbon quantum dots", 《RSC ADVANCES》, vol. 12, pages 8108 - 8118 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115624620A (zh) * 2022-10-08 2023-01-20 天津大学 抑制β淀粉样蛋白聚集的碳点抑制剂及合成方法和应用
CN115678552A (zh) * 2022-12-01 2023-02-03 南京工业大学 一种具有窄带发射的荧光碳点的制备方法
CN115678552B (zh) * 2022-12-01 2023-09-12 南京工业大学 一种具有窄带发射的荧光碳点的制备方法

Also Published As

Publication number Publication date
CN114605990B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
CN114605990B (zh) 一种高单色性的近红外荧光碳点及其合成方法和应用
Sun et al. Highly luminescence manganese doped carbon dots
Fan et al. High-efficiency photoelectrocatalytic hydrogen generation enabled by Ag deposited and Ce doped TiO2 nanotube arrays
Ragupathi et al. CuO/g-C3N4 nanocomposite as promising photocatalyst for photoelectrochemical water splitting
bo Zhong et al. Improved photocatalytic performance of Pd-doped ZnO
Obregón et al. Heterostructured Er3+ doped BiVO4 with exceptional photocatalytic performance by cooperative electronic and luminescence sensitization mechanism
Ahmad et al. Microwave-assisted synthesis of ZnO doped CeO2 nanoparticles as potential scaffold for highly sensitive nitroaniline chemical sensor
Li et al. Photocatalytic nitrogen fixation over fluoride/attapulgite nanocomposite: Effect of upconversion and fluorine vacancy
Ortega et al. Multifunctional environmental applications of ZnO nanostructures synthesized by the microwave-assisted hydrothermal technique
Khalid et al. Al3+/Ag1+ induced phase transformation of MnO2 nanoparticles from α to β and their enhanced electrical and photocatalytic properties
Payra et al. A correlation story of syntheses of ZnO and their influence on photocatalysis
Cheng et al. Photoelectrocatalytic degradation of deoxynivalenol on CuO-Cu2O/WO3 ternary film: Mechanism and reaction pathways
Hou et al. BiOCl/cattail carbon composites with hierarchical structure for enhanced photocatalytic activity
Ba et al. Facile synthesis of 3D CuO nanowire bundle and its excellent gas sensing and electrochemical sensing properties
Liang et al. Localized surface plasmon resonance enhanced electrochemical nitrogen reduction reaction
Sriramprabha et al. Tin oxide/reduced graphene oxide nanocomposite-modified electrode for selective and sensitive detection of riboflavin
Acosta-Esparza et al. UV and Visible light photodegradation of methylene blue with graphene decorated titanium dioxide
Iqbal et al. Facile synthesis of Zn-doped CdS nanowires with efficient photocatalytic performance
Chen et al. Efficient sunlight promoted nitrogen fixation from air under room temperature and ambient pressure via Ti/Mo composites
JP5892478B2 (ja) BiVO4粒子およびその製造方法
Yan et al. In-situ grafting BiVO4 nanocrystals on a BiPO4 surface: enhanced metronidazole degradation activity under UV and visible light
Rajan et al. Design of a novel ZnBi2O4/Bi2O3 type-II photo-catalyst via short term hydrothermal for enhanced degradation of organic pollutants
Lee et al. Synthesis of characterization of ZnxTiyS and its photocatalytic activity for hydrogen production from methanol/water photo-splitting
Li et al. Porous microtubes of nickel-cobalt double oxides as non-enzymatic hydrogen peroxide sensors
Yan et al. One-pot synthesis of Cd x Zn 1− x S–reduced graphene oxide nanocomposites with improved photoelectrochemical performance for selective determination of Cu 2+

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant