CN114599468B - 具有螺旋角过渡的铣削刀具 - Google Patents

具有螺旋角过渡的铣削刀具 Download PDF

Info

Publication number
CN114599468B
CN114599468B CN202080073705.XA CN202080073705A CN114599468B CN 114599468 B CN114599468 B CN 114599468B CN 202080073705 A CN202080073705 A CN 202080073705A CN 114599468 B CN114599468 B CN 114599468B
Authority
CN
China
Prior art keywords
helix angle
cutting portion
cutting
transition
milling tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080073705.XA
Other languages
English (en)
Other versions
CN114599468A (zh
Inventor
加埃塔诺·皮塔拉
安德斯·里杰莱恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandvik Coromant AB
Original Assignee
Sandvik Coromant AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Coromant AB filed Critical Sandvik Coromant AB
Publication of CN114599468A publication Critical patent/CN114599468A/zh
Application granted granted Critical
Publication of CN114599468B publication Critical patent/CN114599468B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • B23C5/1081Shank-type cutters, i.e. with an integral shaft with permanently fixed cutting inserts 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0485Helix angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0485Helix angles
    • B23C2210/0492Helix angles different
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/08Side or top views of the cutting edge
    • B23C2210/086Discontinuous or interrupted cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/28Arrangement of teeth
    • B23C2210/282Unequal angles between the cutting edges, i.e. cutting edges unequally spaced in the circumferential direction
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35044Tool, design of tool, mold, die tooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Numerical Control (AREA)

Abstract

本发明涉及一种铣削刀具(1),其具有前端(2)、后端(3)和在前端(2)和后端(3)之间延伸的纵向轴线(C),其中该铣削刀具包括柄部(4)和切削部分(5)。所述切削部分沿着所述纵向轴线从所述前端朝向所述柄部延伸并且包括由相应数量的排屑槽(7)彼此分开的多个齿(6),其中所述齿(6)跟随围绕所述纵向轴线的弯曲螺旋路径沿着所述切削部分(5)轴向延伸。每个齿(6)以第一螺旋角(α)从所述前端(2)延伸到螺旋过渡部(8)并且以第二螺旋角(β)从所述螺旋过渡部朝向所述柄部延伸。第二螺旋角(β)比第一螺旋角(α)大至少2°且至多15°。第一螺旋角(α)满足33°≤α≤50°,而第二螺旋角(β)满足40°≤β≤55°,并且所述螺旋过渡部(8)轴向地定位在距所述前端(2)为所述切削部分(5)的纵向长度的0.2至0.7倍的距离内。

Description

具有螺旋角过渡的铣削刀具
技术领域
本发明涉及一种铣削刀具和一种用于加工工件的表面的方法。
背景技术
铣削刀具(例如实心立铣刀)可以用于加工工件的表面。加工工艺通常由CNC机床控制,铣削刀具布置在该CNC机床上。
各种因素都会影响工件的加工表面的质量。例如,铣削刀具的弯曲或者与切削工艺相关的一些参数的动态变化会导致加工表面不是完全直且平的。加工表面与期望的平直表面的偏差可以被称为“形状误差”,并且可以包括多种缺陷。例如,某个参数的动态变化可能导致加工表面中的周期性的和/或随机的不规则性。
切削刃与工件的周期性变化的接合(其在铣削操作中总是在某种程度上发生)导致切削刀具和工件之间的力的变化。这种力的变化会导致形状误差的增加。例如,这在Budak,E、Altintas,Y的“Peripheral milling conditions for improved dimensionalaccuracy”(Int.J.Mach.Tools Manuf,1994年第34卷第907-918页)中被讨论,在该文章中介绍了描述铣削期间力的变化的框架,并且介绍了关于如何最佳地选择切削条件(比如进刀速度和切削宽度)以获得增加的材料去除率而不牺牲成品的尺寸精度的结论。
然而,即使在应用可能的最佳切削条件时,现有技术的铣削刀具仍然不能产生完全光滑且直的表面。因此,需要能够产生更高质量的加工表面的铣削刀具。
发明内容
本发明的目的是减轻现有技术的缺点,并提供用于产生质量提高的加工表面的方法和铣削刀具。
因此,根据第一方面,本发明涉及一种铣削刀具,该铣削刀具具有前端、后端和在前端和后端之间延伸的纵向轴线。该铣削刀具包括:
-柄部,和
-切削部分,
-切削部分沿着纵向轴线从前端朝向柄部延伸,并且
-切削部分包括由相应数量的排屑槽相互分开的多个齿,其中
-这些齿跟随围绕纵向轴线的弯曲螺旋路径沿着切削部分轴向地延伸。
铣削刀具的特征在于:
-每个齿以第一螺旋角α从前端延伸到螺旋过渡部,并且
-每个齿以第二螺旋角β从螺旋过渡部朝向柄部延伸,其中
-第二螺旋角β比第一螺旋角α大至少2°且最多15°,
-第一螺旋角α满足33°≤α≤50°,
-第二螺旋角β满足40°≤β≤55°,并且
-螺旋过渡部轴向地定位在距前端为切削部分的纵向长度的0.2至0.7倍的距离内。
在用相对较大的轴向切削深度和/或用具有高螺旋和/或大量切削齿的刀具进行铣削的应用中,通常的是,当生成壁表面时,两个或更多个切削刃同时与工件接合。在这种情况下,即:其中至少一个切削刃在生成壁表面期间总是进行切削,铣削刀具的位移或者更准确地说是铣削刀具的偏转包括静态分量和动态分量。静态分量是至少一个切削刃将总是与工件接合的结果。尽管如此,当不同的切削刃与工件接合和与工件脱离接合时,切削力仍然将会变化。静态力分量将促进全局角度误差,而动态(即,随时间变化的)分量将表现出工件的加工出来的壁表面上的不规则性。
本发明人已经发现,垂直于所产生的壁表面的随时间变化的切削力与所产生的表面误差直接相关,并且在两个切削刃在不同轴向位置处沿着切削深度与工件同时接合的加工情况下,如果在相应的这两个轴向位置处的螺旋角彼此不同并且根据上述内容彼此相关,则这种力的变化可以减小。如前所述,当切削刃进入或离开工件时,力会发生变化。对于螺旋立铣刀的每个齿,进入将发生在轴向地位于切削部分的起作用部分的一端的区域中,并且离开将发生在轴向地位于切削部分的起作用部分的相对端的区域中。例如,进入可以发生在立铣刀的前端处,并且离开可以发生在对应于切削深度的位置(或者反之亦然,这取决于相对于螺旋方向的切削方向)。在这些进入区域和离开区域,切屑厚度和与工件接触的切削刃的长度(这里称为“接触长度”)都将变化。例如,接触长度在进入期间将会增加,并且在离开期间将会减少。然而,接触长度和切屑厚度(以及因此切削力)在进入区域和离开区域之间的区域将保持相同。本发明人已经发现,两个不同螺旋角之间的过渡(其被布置成使得进入区域处的螺旋角不同于离开区域处的螺旋角)可以平衡进入阶段和离开阶段期间的力,从而可以减小力的变化。
螺旋角在每个切削刃的两个轴向接连的部分处应该是不同的,但是在每个这样的部分内应是恒定的,以总是维持同时与工件接合的切削刃的相对应部分之间的最佳螺旋关系。从生产角度来看,这种设计也是有益的,因为刀具的制造相对容易。螺旋角之间的过渡部应该相对较短,并且应该轴向地定位在这样一个位置,即:使得对于大量不同的铣削操作,两个螺旋角在铣削期间都是起作用的,同时确保切削刀具的可制造性(即,过渡部不应该太靠近刀柄或刀具刀尖)。
因此,利用如上限定的构造,最小力(即静态力分量)和最大力之间的差异将会减小。因此,产生的表面误差也将减少。
铣削刀具可以由硬质合金制成。
根据一些实施例,第一螺旋角α可以在38°≤α≤45°的范围内,并且第二螺旋角β可以在45°≤β≤50°的范围内。已经发现,在这些范围内可以获得关于功能和设计方面的特别好的结果。
根据一些实施例,第二螺旋角β可以比第一螺旋角α大3°、7°、8°或12°。
铣削刀具的切削部分的纵向长度可以是切削部分的直径的至少3倍。尽管考虑到许多不同的铣削刀具,根据本公开的设计都是适用的,但是对于其中使用长刃刀切刀和大切削深度的铣削操作,效果尤其显著,其中力的变化可能导致刀具的显著振动。例如,切削部分的纵向长度可以是切削部分的直径的4至6倍,诸如,例如是切削部分的直径的5倍或基本上是5倍。
本公开可以应用于具有任意数量的齿的铣削刀。例如,铣削刀具可以有五个或六个齿。当使用相对较大的轴向切削深度时,五个齿可以提供良好的结果,因此在本公开的上下文内,五个齿可以是有益的。六个齿也可以提供良好的结果。
螺旋过渡部可以轴向地定位在距前端为切削部分的纵向长度的0.4至0.7倍的距离内。例如,该过渡部可以轴向地定位在距前端为切削部分的纵向长度的0.4至0.65倍的距离内。因此,该过渡部可以轴向地定位在切削部分的中部或接近切削部分的中部。
螺旋过渡部可以包括在轴向方向上从螺旋过渡部开始所在的切削部分的第一轴向点延伸到螺旋过渡部结束所在的切削部分的第二轴向点的过渡区域。该过渡部可以是线性的,即,使得螺旋角在过渡区域的延伸范围内连续且均匀地变化。过渡区域的轴向长度可以是切削部分的轴向长度的0.05至0.2倍。因此,过渡区域将提供第一和第二螺旋角之间的平滑过渡。平滑过渡可以具有各种优点,例如通过简化生产和增加刀具的强度。
沿着纵向轴线的螺旋过渡部的轴向中心(即过渡区域的轴向中心)可以位于过渡中心点。该过渡中心点可以例如定位在距前端大于切削部分的纵向长度的0.45倍并且小于切削部分的纵向长度的0.6倍的轴向距离处。
根据另一方面,本发明涉及一种用铣削刀具加工工件的表面的方法,其中该方法包括:
-在平行于铣削刀具的纵向轴线的方向上使用切削深度加工工件,对于每个齿,该切削深度大于从铣削刀具的前端到第二螺旋角开始所在的齿的那一点的轴向距离。
切削深度可以与切削部分的轴向长度相同或基本上相同,即:可能的最大切削深度。在如此大的切削深度下,利用常规立铣刀产生的形状误差将是最大的,并且使用根据本公开的铣削刀具的效果最明显。因此,根据本公开的铣削刀具的参数可以根据最大切削深度来选择。
该方法可以包括加工工件,其中在横向于纵向轴线的方向上的切削宽度(即,径向切削宽度)至多为切削部分的直径的7%。这对应于精加工或半精加工操作,对于这些操作,使用根据本公开的铣削刀具的效果可能是最显著的。例如,径向切削宽度可以在切削部分的直径的0.5%和2%之间。
根据另一方面,本发明涉及一种用于设计铣削刀具的方法,该铣削刀具具有前端、后端和在前端和后端之间延伸的纵向轴线,其中该铣削刀具包括:
-柄部,和
-切削部分,
-该切削部分沿着纵向轴线从前端朝向柄部延伸,并且
-该切削部分包括由相应数量的排屑槽相互隔开的多个齿,其中
-齿跟随围绕纵向轴线的弯曲螺旋路径沿着切削部分轴向地延伸,
-其中每个齿以第一螺旋角α从前端延伸到螺旋过渡部,并且
-每个齿以第二螺旋角β从螺旋过渡部朝向柄部延伸,并且
其中该方法包括以下步骤:
-使力算法经受优化例程,该力算法被设计用于在用铣削刀具对工件的表面进行模拟加工期间计算模拟切削力,在该优化例程中,目标是最小化在垂直于工件的表面的方向上的最大力和最小力之间的差,并且在该优化例程中,变量是以下变量中的至少两个变量:
-第一螺旋角α,
-第二螺旋角β,和
-沿着切削部分的螺旋过渡部的轴向位置,以及
-基于被发现是最佳的第一螺旋角α、第二螺旋角β和螺旋过渡部的轴向位置的组合来设计铣削刀具。
因此,对于不同尺寸和特征的各种铣削刀具以及对于各种应用,可以找到第一螺旋角α和第二螺旋角β以及它们之间的过渡部的轴向位置的最佳组合。该方法可以产生根据本文中的公开内容的铣削刀具,即,这样的铣削刀具,对于这些铣削刀具,
-第二螺旋角β比第一螺旋角α大至少2°且最多15°,
-第一螺旋角α满足33°≤α≤50°,
-第二螺旋角β满足40°≤β≤55°,并且
-螺旋过渡部轴向地定位在距前端为切削部分的纵向长度的0.2至0.7倍的距离内。
用于设计铣削刀具的方法可以使用计算机来执行,即:该方法是计算机实现的。根据一些实施例,优化例程中的变量包括第一螺旋角α、第二螺旋角β和沿着切削部分的螺旋过渡部的轴向位置中的所有的变量。
根据另一方面,本发明涉及一种具有指令的计算机程序,当由计算设备或系统执行时,该指令使得计算设备或系统执行上述用于设计铣削刀具的方法。
附图说明
图1-4示出了用于量化切削力的参数。
图5示出了常规立铣刀和根据本发明的力铣刀的模拟切削力。
图6示出了由根据图5的切削力引起的模拟刀具位移。
图7示出了根据本发明的实施例的铣削刀具。
图8是图7中的铣削刀具的侧视图。
图9示出了与常规铣削刀具相比的由利用根据本发明的铣削刀具加工产生的在工件上测量得到的形状误差。
图10示出了根据本发明的加工方法,示出了与工件加工接合的铣削刀具。
所有的附图都是示意性的,其不一定按比例绘制,并且通常仅示出了为了阐明相应实施例所必需的部分,而其它部分可以被省略或仅被建议。除非另有说明,否则不同附图中相同的附图标记指代相同的部分。
具体实施方式
在下文中,描述了用于估计切削力并优化刀具几何形状以减小力变化的方法。
预测切削力的机械模型建立在改进的Kienzle切削力模型结构上,该切削力模型结构依赖于常数系数Kq1、mq其关于未切削的切屑厚度h、切削刃的接触长度b和刀前角γ描述了工件材料切削阻力Kq(h)。这里,下标q表示切削力的方向定向q=[t,r,a],其对应于刀具固定坐标系的切向方向、径向方向和轴向方向。
在一般形式下,力方程定义为:
Fq=kq(h)qbh
其中未切削的切屑厚度h与每齿进刀量fz和接近角κ相关,如h=fzsinκ,并且刃的接触长度b与切削深度ap相关,如
切屑厚度相关的切削阻力k(h)q定义为:
其中kq1是在1mm的未切削的切屑厚度下的切削阻力,并且mq是描述切削阻力与未切削的切屑厚度的指数关系的斜率系数,并且校正径向刀前角的变化。
这种一般的切削力描述可以用作在可变螺旋的优化中使用的铣削力算法的基础。
为了将上述一般化的Kienzle模型应用于在铣削中发现的随时间变化的切削条件,第一步是离散切屑厚度变化。图1显示了这种离散化。离散化描述了在一个接合循环中相对于增量角度旋转步长Δφ的未切削的切屑厚度,其中fz是每齿进刀量,Fx是进刀力,Fy是法向力,DC是切削刀具直径,ae是径向切削宽度,n是主轴速度,Φst是进入角,并且Φex是离开角。
根据下式,进刀力Fx和法向力Fy与径向力Fr和切向力Ft(在图3-4中示出)相关:
Fx=-Ftcosφ-Frsinφ
Fy=Ftsinφ-Frcosφ
刀具的螺旋角导致逐渐的切削接合。因此,刀具本体也需要沿其轴向方向离散化,参见图2,其中切削深度ap被离散化成轴向步长Δap。这种离散化允许螺旋角逐渐变化,或者,如在这种优化方法中那样,在螺旋角从α过渡到β的离散点LT处变化。刀具螺距角Φp也在图2中示出。
这种离散化方法可以用于将铣削力模型一般化到通用且易于求解的数值结构,其中可以在旋转期间的增量位置处(参见图3)并且在总轴向切削深度上(如图4所示)计算多个切削刃的切削力贡献。在这些图中,Ft表示切向力,Fr表示径向力,并且Fa表示轴向力。
下面给出了可以使用的示例性力算法的一般框架。
输入:
切削条件
ap 轴向切削深度[mm]
fz 每齿进刀量[mm/齿]
n 主轴速度[转/分钟]
ae 径向切削宽度[mm]
刀具几何形状
Dc 切削刀具直径[mm]
LT 第一螺旋和第二螺旋之间的过渡点[mm]
z 切削齿的数量[-]
α 第一螺旋角[弧度]
β 第二螺旋角[弧度]
Δφ 积分角[弧度]
Δap 积分高度[mm]
λ 径向刀前角[度]
工件材料模型
切削常数切向方向
切削常数径向方向
变量
刀具螺距角[弧度]
角度积分步长的数量
轴向积分步数的数量
条件变量
向上铣削
进入角[弧度]
φex=π 离开角[弧度]
向下铣削
φst=π 进入角[弧度]
离开角[弧度]
算法:
for i=1 to K 角度积分循环
φ(i)=φst+iΔφ 排屑槽底部边缘的浸入角
Fx(i)=Fy(i)=Ft(i)=Fr(i)=0 初始化力积分寄存器
for k=1 to N 所有齿的力贡献
φ1=φ(i)+(k-1)φp 齿k的浸入角
φ2=φ1 记住当前的浸入
for j=1 to L 沿轴向切削深度积分
ap(j)=jΔap 轴向位置
if jΔap≤Lt 如果轴向位置低于螺旋过渡点,则:
由于螺旋1而更新浸入角
else
由于螺旋2而更新浸入角
ifφst≤φ2≤φex 如果刃进行切削,则
h=fz sinφ2 此时的切屑厚度
微分的切向力
微分的径向力
ΔFx=-ΔFt cosφ2-Δfr sinφ2 微分的进刀力
ΔFy=ΔFt sinφ2-ΔFrcosφ2 微分的法向力
Ft(i)=Ft(i)+ΔFt 所有刃贡献的总切向力
Fr(i)=Fr(i)+ΔFr
Fx(i)=Fx(i)+ΔFx
Fy(i)=Fy(i)+ΔFy 控制形状误差的总法向力
else
nextj
next k
next 1
这种力算法然后可以经历优化例程。如前面所描述的那样,目标函数要被设计成使得力的动态分量的变化应最小化。这可以通过最小化连续周期性法向切削力Fy上的最大力振幅和最小力振幅之间的差异来实现。
为了最小化目标函数,优化算法被设置为从切削力算法中找到三个变量α、β和LT的最佳组合。
优化问题连同目标函数可以被公式化为:
可以使用各种约束(例如促成从生产角度来看可行的解决方案)来帮助解决优化问题。例如,约束可以涉及距前端的过渡部的最小所需距离。其它约束可以例如涉及所允许的最大和/或最小螺旋角,以避免涉及由于其它原因而不适合的螺旋角的解决方案。
使用计算机进行优化。术语“计算机”是指包括处理器的任何电子设备,处理器例如通用中央处理单元(CPU)、专用处理器或微控制器。计算机能够接收数据(输入),能够对数据执行一系列预定的操作,并且能够由此产生信息或信号形式的结果(输出)。根据上下文,术语“计算机”将特别表示处理器,或者可以更一般地是指与被包含在单个壳体或外壳内的相关元件的集合相关联的处理器。
可以使用为求解非线性多变量函数而设计的任何合适的非线性程序求解器。例如,可以使用中的内置函数fmincon。函数fmincon是设计用以找到受约束的非线性多变量函数的最小值的非线性编程求解器。
上述优化可以构成用于设计铣削刀具的方法中的一个步骤。该方法可以由一个计算机程序或多个计算机程序来实施,这个计算机程序或这些计算机程序可以在单个计算机系统中或在多个计算机系统中以各种活动和非活动的形式存在。例如,它们可以作为由源代码、目标代码、可执行代码或用于执行其中一些步骤的其它格式的程序指令组成的软件程序存在。以上任何一种都可以以压缩或未压缩的形式实施在计算机可读介质上,该计算机可读介质包括存储设备和信号。
将给出优化策略可以提供的结果的示例。在这种情况下,单个螺旋概念之间的比较将与在沿轴向切削深度的优化位置处引入第二螺旋之后的结果进行比较。这是一个关于在优化中考虑的变量的数量减小的示例。考虑具有五个齿、直径DC=12mm、最大切削深度 且螺旋角为42°的常规设计。在优化设计中,第一螺旋α保持与原始设计中的相同,从而使得可以比较两个相当相似的解。因此,只有两个设计变量通过了优化:第二螺旋β和过渡点LT
优化的结果是第二螺旋β=50°,并且过渡点 图5示出了对于具有恒定螺旋42°的常规设计CD和优化设计OD在Y方向上的模拟切削力,其中所使用的切削深度为60mm(即可能的最大切削深度),径向切削宽度为0.2mm,进刀速度为0.08mm/齿,切削速度为80m/min,并且工件材料为Ti6Al4V。图6示出了对于常规设计CD和优化设计OD在Y方向上的相应的模拟响应,即相对于工件的生成表面的模拟刀具偏转。如在图5中看到的那样,在这些切削条件下,优化的解决方案几乎完全消除了力随时间的变化,从而显著降低了切削期间的振动,如在图6中看到的那样。至少在某种程度上,对于其它切削条件也可以预期到类似的效果。
在下文中,将更详细地描述根据本发明的具有优化几何形状的刀具的设计。
图7是根据本发明的示例性实施例的铣削刀具1的等距视图。铣削刀具(其在这种情况下为立铣刀)具有前端2、后端3、位于后端侧的柄部4和位于前端侧的切削部分5。纵向轴线C在前端2和后端3之间延伸。切削部分5包括五个切削齿6和五个排屑槽7。每个切削齿6和每个相应的排屑槽7从前端沿着第一螺旋角延伸到过渡部8,在过渡部8处,螺旋角改变。
过渡部8在图7中显示为不同螺旋角之间的明显的突然过渡,并用线表示出来。然而,尽管短的过渡部可能是有益的,但是该过渡部也可以是在齿的一定轴向距离上延伸的平滑过渡。实践上,可能很难获得完全突然的过渡。因此,该过渡部可以被认为是沿着纵向轴线具有一定延伸的一个过渡区域。这在图8中示出,其中可以看到每个齿6沿着第一螺旋角α从前端延伸到过渡区域开始所在的轴向点8a。过渡区域终止于另一个轴向点8b,齿从该轴向点8b沿第二螺旋角β朝向柄4延伸。
如上所述,对于具有不同尺寸的各种刀具,螺旋角α和β以及过渡位置LT的优选组合通过计算机模拟和优化而被找到。基于优化结果的铣削刀具的优选设计显示于表1中。
表1
在表1中,过渡点LT是从铣削刀具的前端测量得到的位置,在该位置,第二螺旋角β开始,即过渡区域的终点。在根据表1的示例性实施例中,6mm刀具的过渡区域具有5mm的轴向长度,12mm刀具的过渡区域具有10mm的轴向长度,并且18mm和25mm刀具的过渡区域具有15mm的轴向长度,使得例如12mm刀具具有始于距前端23mm的轴向距离处并终止于距前端33mm的轴向距离处的过渡部。
对原型的测试表明,当使用根据表1的任何刀具时,加工表面的形状误差都得到减小。
就螺旋角α和β而言,即在优化参数附近的小范围内,对于没有偏离表1中公开的那些太多的任何设计,至少在某种程度上,可以预期到有利的结果。因此,只要α和β之间的差至少为2°且至多为15°,则与表1中的那些螺旋组合相差不太远(即角α和β的任何的±5°)的螺旋组合都可以导致力的变化减小,从而改善表面光洁度。比率可以优选地是在0.4-0.7的范围内(这意味着,考虑到如上所述的类似过渡区域长度,该过渡部将定位在距铣削刀具的前端为切削部分的纵向长度的0.2至0.7倍的距离内)。
图9示出了使用切削深度ap=60mm(即,对应于最大切削深度)、径向切削宽度ae=0.2mm、进刀速率为0.04mm/齿和切削速度为120m/分钟,与具有相同直径的常规铣削刀具(常规设计CD)相比,用根据表1的直径为12mm的铣削刀具(优化设计OD)加工钛合金(Ti6Al4V)工件所产生的形状误差的测量值。如在图9中可以看到的那样,在这个示例中,当使用这些切削条件时,优化设计的全局误差稍微小一些。然而,鉴于本公开,更重要的是,对于优化设计,所产生的表面的“波纹度”(即沿着Z轴(对应于刀具的纵向轴线)波动的偏差量)也明显更小,这是使用如上所述的可变螺旋构造的结果。
在图10中,示出了根据本公开的立铣刀在加工期间与工件9接合。该示例中的立铣刀对应于根据上面表1的12mm立铣刀。在该加工操作中,当立铣刀1围绕纵向轴线C沿旋转方向R旋转并沿横向于纵向轴线的进刀方向F移动时,工件的表面10被切削。切削部分的轴向长度(即可能的最大切削深度)是直径DC的五倍。过渡部8轴向地位于直径DC的2.75倍的轴向深度LT处(或者,换句话说,最大切削深度/>的0.55倍)。在这个示例中,实际切削深度ap对应于最大切削深度/>径向切削宽度ae为0.2mm,相当于切削直径DC的约1.7%。由于切削深度ap超过所需深度LT,故而将获得根据本发明的改善的表面光洁度。这是因为,在对应于第一螺旋角的轴向位置处的至少一个齿的切削刃和在对应于第二螺旋角的轴向位置处的至少一个齿的切削刃将在加工操作期间的所有时间上均同时与工件接合。特别是,由于切削深度ap对应于最大切削深度/>在该最大切削深度处,效果将是最显著的,并且切削宽度ae低于切削直径DC的7%,所以形状误差的减小将是显著的。在图10中,过渡部8表示为突然过渡部,但是如前所述,该过渡部可以延伸并包括过渡区域,在这种情况下,图10中所示的线对应于过渡部完成并且第二螺旋角开始所在的位置。

Claims (15)

1.一种铣削刀具(1),具有前端(2)、后端(3)和在所述前端(2)和所述后端(3)之间延伸的纵向轴线(C),其中所述铣削刀具包括:
-柄部(4),以及
-切削部分(5),
-所述切削部分(5)沿着所述纵向轴线从所述前端朝向所述柄部延伸,并且
-所述切削部分(5)包括由相应数量的排屑槽(7)彼此分开的多个齿(6),其中
-所述齿(6)跟随围绕所述纵向轴线的弯曲螺旋路径沿着所述切削部分(5)轴向地延伸,
其特征在于,
-每个齿(6)以第一螺旋角(α)从所述前端(2)延伸到螺旋过渡部(8),以及
-每个齿(6)以第二螺旋角(β)从所述螺旋过渡部朝向所述柄部延伸,其中
-所述第二螺旋角(β)比所述第一螺旋角(α)大至少2°且至多15°,
-所述第一螺旋角(α)满足33°≤α≤50°,
-所述第二螺旋角(β)满足40°≤β≤55°,并且
-所述螺旋过渡部(8)轴向地定位在距所述前端(2)为所述切削部分(5)的纵向长度的0.2至0.7倍的距离内。
2.根据权利要求1所述的铣削刀具,其中
-所述第一螺旋角(α)满足38°≤α≤45°,
-所述第二螺旋角(β)满足45°≤β≤50°。
3.根据权利要求1-2中任一项所述的铣削刀具,其中所述第二螺旋角(β)比所述第一螺旋角(α)大3°、7°、8°或12°。
4.根据权利要求1-2中任一项所述的铣削刀具,其中所述切削部分的所述纵向长度是所述切削部分的直径(DC)的至少3倍。
5.根据权利要求1-2中任一项所述的铣削刀具,其中所述切削部分的所述纵向长度是所述切削部分的直径(DC)的5倍。
6.根据权利要求1-2中任一项所述的铣削刀具,其中齿的数量为五或六。
7.根据权利要求1-2中任一项所述的铣削刀具,其中所述螺旋过渡部轴向地定位在距所述前端为所述切削部分的所述纵向长度的0.4至0.7倍的距离内。
8.根据权利要求1-2中任一项所述的铣削刀具,其中所述螺旋过渡部包括过渡区域,所述过渡区域在轴向方向上从螺旋过渡部开始所在的所述切削部分的第一轴向点(8a)延伸至螺旋过渡部结束所在的所述切削部分的第二轴向点(8b)。
9.根据权利要求8所述的铣削刀具,其中所述过渡区域的轴向长度是所述切削部分的轴向长度的0.05至0.2倍。
10.一种用根据权利要求1-9中任一项所述的铣削刀具加工工件(9)的表面的方法,其中所述方法包括:
-在平行于所述铣削刀具的所述纵向轴线(C)的方向上使用切削深度(ap)加工所述工件,对于每个齿,所述切削深度大于从所述铣削刀具的所述前端到所述第二螺旋角开始所在的所述齿的那一点的轴向距离。
11.根据权利要求10所述的方法,其中所述切削深度(ap)与所述切削部分的轴向长度相同。
12.根据权利要求10-11中任一项所述的方法,其中所述方法包括在横向于所述纵向轴线(C)的方向上以切削宽度(ae)加工所述工件,所述切削宽度至多为所述切削部分的直径(DC)的7%。
13.一种用于设计铣削刀具的方法,所述铣削刀具具有前端(2)、后端(3)和在所述前端(2)和所述后端(3)之间延伸的纵向轴线(C),其中所述铣削刀具包括:
-柄部(4),和
-切削部分(5),
-所述切削部分(5)沿着所述纵向轴线从所述前端朝向所述柄部延伸,并且
-所述切削部分(5)包括由相应数量的排屑槽(7)彼此分开的多个齿(6),其中
-所述齿(6)跟随围绕所述纵向轴线的弯曲螺旋路径沿着所述切削部分(5)轴向延伸,
其中每个齿以第一螺旋角(α)从所述前端(2)延伸到螺旋过渡部(8),并且
每个齿以第二螺旋角(β)从所述螺旋过渡部(8)朝向所述柄部(4)延伸,并且
其中所述方法包括以下步骤:
-使力算法经受优化例程,所述力算法被设计用于在用铣削刀具对工件的表面进行模拟加工期间计算模拟切削力,在所述优化例程中,目标是最小化在垂直于所述工件的所述表面的方向上的最大力和最小力之间的差,并且在所述优化例程中,变量是以下变量中的至少两个变量:
-所述第一螺旋角(α),
-所述第二螺旋角(β),和
-沿着所述切削部分(5)的所述螺旋过渡部(8)的轴向位置(LT),以及,
-基于被发现是最佳的所述第一螺旋角(α)、所述第二螺旋角(β)和所述螺旋过渡部(8)的所述轴向位置(LT)的组合来设计所述铣削刀具。
14.根据权利要求13所述的方法,其中所述优化例程中的变量包括所述第一螺旋角(α)、所述第二螺旋角(β)和所述螺旋过渡部(8)沿所述切削部分(5)的所述轴向位置(LT)中的所有的变量。
15.一种计算机程序,具有指令,当由计算设备或系统执行时,所述指令使得所述计算设备或系统执行根据权利要求13-14中任一项所述的方法。
CN202080073705.XA 2019-11-06 2020-10-21 具有螺旋角过渡的铣削刀具 Active CN114599468B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19207415.1A EP3819056B1 (en) 2019-11-06 2019-11-06 Milling tool with helix angle transition
EP19207415.1 2019-11-06
PCT/EP2020/079643 WO2021089328A2 (en) 2019-11-06 2020-10-21 Milling tool with helix angle transition

Publications (2)

Publication Number Publication Date
CN114599468A CN114599468A (zh) 2022-06-07
CN114599468B true CN114599468B (zh) 2023-09-22

Family

ID=68470359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080073705.XA Active CN114599468B (zh) 2019-11-06 2020-10-21 具有螺旋角过渡的铣削刀具

Country Status (5)

Country Link
US (1) US20220402048A1 (zh)
EP (1) EP3819056B1 (zh)
JP (1) JP2023511244A (zh)
CN (1) CN114599468B (zh)
WO (1) WO2021089328A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117884694A (zh) * 2024-03-18 2024-04-16 哈尔滨理工大学 一种立铣刀容屑槽截面方向确定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE802787A (fr) * 1972-07-27 1973-11-16 Gorham Tool Co Fraise de degrossissage a grand debit
US7367754B1 (en) * 2006-07-07 2008-05-06 Greenwood Mark L Variable helix rotary cutting tool
CN101983811A (zh) * 2010-11-30 2011-03-09 株洲钻石切削刀具股份有限公司 不等螺旋角立铣刀
CN102398068A (zh) * 2011-12-06 2012-04-04 株洲钻石切削刀具股份有限公司 等实际前角不等螺旋角立铣刀
EP2929966A1 (de) * 2014-04-09 2015-10-14 Fraisa SA Vollfräswerkzeug zur rotierenden Materialbearbeitung
EP3150313A1 (de) * 2015-09-30 2017-04-05 Fraisa SA Vollfräswerkzeug zur rotierenden materialbearbeitung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB469235A (en) * 1936-02-05 1937-07-21 Fernand Gouverneur Improvements in milling cutters
JPS6389214A (ja) * 1986-10-02 1988-04-20 Izumo Sangyo Kk エンドミル
DE3706282A1 (de) * 1986-02-28 1987-09-03 Izumo Sangyo Kk Umlaufendes schneidwerkzeug
US7306408B2 (en) * 2006-01-04 2007-12-11 Sgs Tool Company Rotary cutting tool
US9211593B2 (en) * 2013-02-13 2015-12-15 Iscar, Ltd. End mill having an asymmetric index angle arrangement for machining titanium
US10040136B2 (en) * 2015-10-12 2018-08-07 Iscar, Ltd. End mill having teeth and associated flutes with correlated physical parameters
US10486246B2 (en) * 2018-02-26 2019-11-26 Iscar, Ltd. End mill having a peripheral cutting edge with a variable angle configuration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE802787A (fr) * 1972-07-27 1973-11-16 Gorham Tool Co Fraise de degrossissage a grand debit
US7367754B1 (en) * 2006-07-07 2008-05-06 Greenwood Mark L Variable helix rotary cutting tool
CN101983811A (zh) * 2010-11-30 2011-03-09 株洲钻石切削刀具股份有限公司 不等螺旋角立铣刀
CN102398068A (zh) * 2011-12-06 2012-04-04 株洲钻石切削刀具股份有限公司 等实际前角不等螺旋角立铣刀
EP2929966A1 (de) * 2014-04-09 2015-10-14 Fraisa SA Vollfräswerkzeug zur rotierenden Materialbearbeitung
EP3150313A1 (de) * 2015-09-30 2017-04-05 Fraisa SA Vollfräswerkzeug zur rotierenden materialbearbeitung

Also Published As

Publication number Publication date
EP3819056A1 (en) 2021-05-12
EP3819056B1 (en) 2023-05-17
CN114599468A (zh) 2022-06-07
JP2023511244A (ja) 2023-03-17
WO2021089328A3 (en) 2021-08-12
WO2021089328A2 (en) 2021-05-14
US20220402048A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
CN102481648B (zh) 内齿轮加工方法及内齿轮加工机
US20050246052A1 (en) Engagement milling
CN110399681B (zh) 一种圆弧头立铣刀刀刃曲线的参数化建模方法
CN114599468B (zh) 具有螺旋角过渡的铣削刀具
CN113962105B (zh) 一种无颤振精加工铣削过程的高效参数优化方法
Gao et al. Analysis of cutting stability in vibration assisted machining using ananalytical predictive force model
de Oliveira et al. Evaluating the influences of the cutting parameters on the surface roughness and form errors in 4-axis milling of thin-walled free-form parts of AISI H13 steel
JP2022168203A (ja) 歯車加工装置及び歯車加工方法
US20040234348A1 (en) Cutting tool having a wiper nose corner
Fomin Microgeometry of surfaces after profile milling with the use of automatic cutting control system
JP4940266B2 (ja) 数値制御装置およびその制御プログラム
CN111687495B (zh) 一种窄空刀槽人字齿轮阶梯进刀粗切方法
JP4763611B2 (ja) 研ぎ直しピニオンカッタの刃形輪郭の評価方法
CN112685872A (zh) 一种用于低频振动辅助钻孔加工的工艺优化方法
JP4607324B2 (ja) 波形切削エッジを持つ切削ツールの研削方法
JP2005066815A (ja) 研ぎ直し可能な任意歯形ピニオンカッタ
CN111299668B (zh) 一种不等齿距铣刀的齿间角确定方法
Li et al. Dynamic force modelling for a ball-end milling cutter based on the merchant oblique cutting theory
US10747191B2 (en) Method for creating or machining toothings on workpieces by gear shaping with regulation of spindle rotation setpoints
Sumbodo et al. Optimization of CNC Milling Machining Time Through Variation of Machine Parameters and Toolpath Strategy in Various Cross-Sectional Shape on Tool Steels and Die Steels Materials
JP2003170333A (ja) 工具送り経路の作成方法
Istotskiy et al. Design and manufacture of hob mills for the formation of straight slots using the principles of screw backing
Pivkin et al. Advanced Design and Machining of Three-flute Drills by Multi-axis Grinding, Laser Ablation and Electroerosion
Ozoegwu et al. Multi-objective optimization of the helix shape of cylindrical milling tools
TWI233383B (en) Numerical control machine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant