CN114595898B - 一种考虑航道环境的船舶智能操纵方法 - Google Patents

一种考虑航道环境的船舶智能操纵方法 Download PDF

Info

Publication number
CN114595898B
CN114595898B CN202210283450.0A CN202210283450A CN114595898B CN 114595898 B CN114595898 B CN 114595898B CN 202210283450 A CN202210283450 A CN 202210283450A CN 114595898 B CN114595898 B CN 114595898B
Authority
CN
China
Prior art keywords
ship
parameters
motion
model
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210283450.0A
Other languages
English (en)
Other versions
CN114595898A (zh
Inventor
周诗楠
孙文愈
魏锦芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
702th Research Institute of CSIC
Original Assignee
702th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 702th Research Institute of CSIC filed Critical 702th Research Institute of CSIC
Priority to CN202210283450.0A priority Critical patent/CN114595898B/zh
Publication of CN114595898A publication Critical patent/CN114595898A/zh
Application granted granted Critical
Publication of CN114595898B publication Critical patent/CN114595898B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Human Resources & Organizations (AREA)
  • Computer Hardware Design (AREA)
  • Strategic Management (AREA)
  • Automation & Control Theory (AREA)
  • Software Systems (AREA)
  • Economics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Development Economics (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种考虑航道环境的船舶智能操纵方法,涉及船舶操纵技术领域,该方法包括:构建运动预报模型,该模型包含了船舶操纵控制参数和船舶操纵状态参数的对应关系;根据航行任务和确定因素预先规划船舶运动轨迹;获取当前时刻的船舶操纵控制参数和不确定环境量,输入至运动预报模型更新船舶操纵状态参数,确定预先规划船舶运动轨迹中当前时刻的航行目标与更新后的船舶操纵状态参数之间的状态观测偏差,输入至最优估计算法修正下一时刻的船舶操纵控制参数;基于实测数据和模型的计算数据构建多置信度模型,用于优化运动预报模型。该方法实现了船舶控制输出的快速响应,在航行过程中通过修正船舶控制输入,提高预先规划运动轨迹的准确性。

Description

一种考虑航道环境的船舶智能操纵方法
技术领域
本发明涉及船舶操纵技术领域,尤其是一种考虑航道环境的船舶智能操纵方法。
背景技术
近年来,随着人工智能的迅速发展,智能技术在船舶领域得以广泛关注,也为船舶安全自主航行带来了新的机遇与挑战。船舶操纵是船舶航行的关键技术之一,面对新的机遇与挑战,将船舶操纵与智能技术相结合,为船舶航行提供新思路。
操纵运动模型是船舶操纵的重要基础,此前,相关研究人员已对此展开了广泛的研究。由于船舶智能控制依赖于大量的数据,且期望达到良好的实时控制效果,因此操纵运动模型的响应速度在很大程度上影响着船舶智能操纵方法的有效性。目前成熟的船舶操纵运动模型,大多无法在大量计算的情况下,达到快速响应的效果。
船舶在实际航行过程中,诸如气象、水文等不确定的环境因素较多,然而现有的船舶操纵模型往往采用单一、单阶段的方法,未能将不确定环境因素考虑在内。可见,现有方法缺乏可持续性与可扩展性,因此控制精度较差,大概率会偏离目标航线。
发明内容
本发明人针对上述问题及技术需求,提出了一种考虑航道环境的船舶智能操纵方法,将船舶航行中可能遇到航道环境预先考虑在内,从而降低船舶实际控制过程中的不确定性。
本发明的技术方案如下:
一种考虑航道环境的船舶智能操纵方法,包括如下步骤:
构建运动预报模型,运动预报模型包含了船舶操纵控制参数和船舶操纵状态参数之间一一对应的关系;其中,船舶操纵控制参数包括螺旋桨的转速和舵角,船舶操纵状态参数包括船舶的航速、航向角、艏向角和坐标位置;
根据航行任务和确定因素预先规划船舶运动轨迹,确定因素包括航道沿途的桥梁和其他船舶的运动轨迹;
获取当前时刻的船舶操纵控制参数和不确定环境量,输入至运动预报模型更新船舶操纵状态参数,确定预先规划船舶运动轨迹中当前时刻的航行目标与更新后的船舶操纵状态参数之间的状态观测偏差,输入至最优估计算法修正下一时刻的船舶操纵控制参数;
基于测量得到的船舶操纵控制参数和船舶操纵状态参数、基于运动预报模型和最优估计算法计算得到的船舶操纵控制参数和船舶操纵状态参数构建多置信度模型,用于优化运动预报模型。
其进一步的技术方案为,构建运动预报模型,包括:
利用船舶操纵运动数学模型,得到船舶操纵控制参数与船舶操纵状态参数之间一一对应的若干组数据;
利用机器学习回归算法建立船舶操纵控制参数与船舶操纵状态参数之间的数学模型,作为运动预报模型。
其进一步的技术方案为,运动预报模型包括若干个基本单元,每个基本单元包括状态预测器和运动趋势预测器,且基本单元的时间尺度是一个时间步;其中,状态预测器根据当前时刻的船舶操纵控制参数输出下一时刻船舶的航速、航向角和艏向角,运动趋势预测器根据当前时刻的船舶操纵控制参数输出下一时刻船舶的坐标位置;从某一起始时刻,基本单元沿时间轴推进并持续更新船舶操纵状态参数。
其进一步的技术方案为,获取当前时刻的船舶操纵控制参数和不确定环境量,输入至运动预报模型更新船舶操纵状态参数,包括,在每一个航行控制时刻:
将采集到的不确定环境量作为干扰项输入至控制系统中,控制系统内的运动预报模型基于当前时刻的船舶操纵控制参数对一个特定动态控制区的船舶操纵状态参数进行预测,得到当前控制序列下的船舶预计航行坐标位置,一系列状态构成状态预测序列,用以实现船舶操纵控制参数的最优估计。
其进一步的技术方案为,基于测量得到的船舶操纵控制参数和船舶操纵状态参数、基于运动预报模型和最优估计算法计算得到的船舶操纵控制参数和船舶操纵状态参数构建多置信度模型,包括,在船舶航行过程中:
以航行当前时刻为分界线,获取当前时刻前测量得到的船舶操纵控制参数和船舶操纵状态参数作为历史数据,获取当前时刻后基于运动预报模型和最优估计算法计算得到的船舶操纵控制参数和船舶操纵状态参数作为预报数据;将历史数据和预报数据进行融合,形成多置信度模型,并将多置信度模型代入运动预报模型中进行训练,从而在线优化运动预报模型的结构,多置信度模型的表达式为:
Figure BDA0003559065720000031
其中,C为船舶操纵控制参数在完整航程上的序列集合,S为船舶的航速、航向角和艏向角在完整航程上的序列集合,P为船舶的坐标位置在完整航程上的序列集合;上标h和f分别表示历史数据和预报数据。
其进一步的技术方案为,基于测量得到的船舶操纵控制参数和船舶操纵状态参数、基于运动预报模型和最优估计算法计算得到的船舶操纵控制参数和船舶操纵状态参数构建多置信度模型,包括,在船舶航行结束后:
获取本次航行时采集到的完整航程上的船舶操纵控制参数和船舶操纵状态参数作为实测数据,获取本次航行时运动预报模型和最优估计算法计算得到的完整航程上的船舶操纵控制参数和船舶操纵状态参数作为计算数据,将实测数据和计算数据进行融合,形成多置信度模型,并将多置信度模型代入运动预报模型中进行训练,从而离线优化运动预报模型的结构,多置信度模型的表达式为:
Figure BDA0003559065720000032
其中,C为船舶操纵控制参数在完整航程上的序列集合,S为船舶的航速、航向角和艏向角在完整航程上的序列集合,P为船舶的坐标位置在完整航程上的序列集合;上标r表示实测数据,e表示计算数据。
本发明的有益技术效果是:
通过构建包含了船舶输入输出控制参数对应关系的运动预报模型,从而达到了模型快速响应的效果。在此基础之上,通过量化分析船舶航行不确定环境因素的影响,进一步对运动预报模型更新的船舶操纵状态参数和预定的航行目标进行状态观测对比,通过最优估计算法对船舶操纵控制策略进行修正,提高了预先规划运动轨迹的准确性,并对船舶航行的历史数据和计算数据进行智能学习构建多置信度模型优化运动预报模型,从而提高船舶智能操纵方法的置信度,形成长期稳定、可扩展的船舶智能操纵方法。
附图说明
图1是本申请提供的考虑航道环境的船舶智能操纵方法流程图。
图2是本申请提供的基本单元的预报过程及时间推进方式的示意图。
图3是本申请提供的航行控制系统的模型框架。
图4是本申请提供的多置信度模型的构建框架。
具体实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
本申请提供了一种考虑航道环境的船舶智能操纵方法,其流程图如图1所示,该方法包括如下步骤:
步骤1:构建运动预报模型,该模型包含了船舶操纵控制参数和船舶操纵状态参数之间一一对应的关系。
步骤11:利用船舶操纵运动数学模型,得到船舶操纵控制参数与船舶操纵状态参数之间一一对应的若干组数据。
其中,船舶操纵控制参数包括螺旋桨的转速和舵角,船舶操纵状态参数包括船舶的航速、航向角、艏向角和坐标位置,如表1所示。
表1运动预报模型参数分类、内容及定义
名称 符号 内容 类别 备注
控制参数 c 转速、舵角 控制量 [t,t+1]
船舶状态参数 s 航速、航向角、艏向角 状态量 [t]
位置状态参数 p 坐标位置 状态量 [t]
可选的,本实施例中的船舶操纵运动数学模型采用MMG模型。
步骤12:利用机器学习回归算法建立船舶操纵控制参数与船舶操纵状态参数之间的数学模型,作为运动预报模型。
根据运动预报模型,由船舶操纵控制参数,即可快速得到船舶运动轨迹,实现控制输出的快速响应,提升计算速度,为实时预报控制打下基础。
可选的,运动预报模型包括若干个基本单元,每个基本单元包括状态预测器和运动趋势预测器,且基本单元的时间尺度是一个时间步。其中,状态预测器根据当前时刻的船舶操纵控制参数c(k)输出下一时刻船舶的航速、航向角和艏向角,即s(k+n),运动趋势预测器根据当前时刻的船舶操纵控制参数c(k)输出下一时刻船舶的坐标位置,即p(k+n)。如图2所示,从某一起始时刻,基本单元沿时间轴推进并持续更新船舶操纵状态参数。
步骤2:根据航行任务和确定因素预先规划船舶运动轨迹。
其中,确定因素包括航道沿途的桥梁和其他船舶的运动轨迹。
步骤3:获取当前时刻的船舶操纵控制参数和不确定环境量,输入至运动预报模型更新船舶操纵状态参数,确定预先规划船舶运动轨迹中当前时刻的航行目标与更新后的船舶操纵状态参数之间的状态观测偏差,输入至最优估计算法修正下一时刻的船舶操纵控制参数。
具体的,如图3所示,在航行过程的每一个航行控制时刻,利用船载传感器对实时环境量(风、流等)进行采集,将采集到的不确定环境量作为干扰项输入至控制系统中,获取当前时刻对应的船舶操纵控制参数和船舶操纵状态参数,构成当前的船舶状态几何。其中,初始的船舶操纵控制参数由操作员根据历史经验确定。
控制系统内的运动预报模型基于当前时刻的船舶操纵控制参数对一个特定动态控制区(即一个时间窗口)的船舶操纵状态参数进行预测,得到当前控制序列下的船舶预计航行坐标位置,一系列状态构成状态预测序列,用以实现船舶操纵控制参数的最优估计。
对船舶预计航行坐标位置与当前时刻的航行目标进行状态观测,基于观测结果调用最优估计算法实现船舶操纵控制参数的最优估计,形成下一时间段的控制参数序列,并发出指令至螺旋桨执行器,使得船舶执行后续航行操控并推进至下一控制时刻。
步骤4:基于测量得到的船舶操纵控制参数和船舶操纵状态参数、基于运动预报模型和最优估计算法计算得到的船舶操纵控制参数和船舶操纵状态参数构建多置信度模型,用于优化运动预报模型。
为了实现内河船舶的智能航行操控计算需要对多源数据信息进行综合采集、整合、处理和辨识,从而获取可靠的船舶航行状态、环境状态、任务目标等信息,实现既定航行目标下的最佳航行控制决策。多源数据指的是船舶实际航行时传感器的实测数据和控制系统内的计算数据,前者属于高置信度数据,后者属于低置信度数据。将高置信度数据和低置信度数据进行融合,从而对船舶智能操纵方法进行优化。
如图4所示,构建多置信度模型分为实时计算和离线计算两部分。每一部分都要将数据融合后的多置信度模型代入运动预报模型中进行训练,从而优化运动预报模型的结构,得到优化后的运动预报模型。其中:
步骤41:实时计算是在船舶航行过程中进行的,以航行当前时刻为分界线,获取当前时刻前测量得到的船舶操纵控制参数和船舶操纵状态参数作为历史数据,获取当前时刻后基于运动预报模型和最优估计算法计算得到的船舶操纵控制参数和船舶操纵状态参数作为预报数据;将历史数据和预报数据进行融合,形成多置信度模型,并将多置信度模型代入运动预报模型中进行训练,从而在线优化运动预报模型的结构,多置信度模型的表达式为:
Figure BDA0003559065720000061
其中,C为船舶操纵控制参数在完整航程上的序列集合,S为船舶的航速、航向角和艏向角在完整航程上的序列集合,P为船舶的坐标位置在完整航程上的序列集合;上标h和f分别表示历史数据和预报数据。
步骤42:离线计算是在船舶航行结束后进行的,获取本次航行时传感器采集到的完整航程上的船舶操纵控制参数和船舶操纵状态参数作为实测数据,获取本次航行时运动预报模型和最优估计算法计算得到的完整航程上的船舶操纵控制参数和船舶操纵状态参数作为计算数据,将实测数据和计算数据进行融合,形成多置信度模型,并将多置信度模型代入运动预报模型中进行训练,从而离线优化运动预报模型的结构,多置信度模型的表达式为:
Figure BDA0003559065720000062
其中,C为船舶操纵控制参数在完整航程上的序列集合,S为船舶的航速、航向角和艏向角在完整航程上的序列集合,P为船舶的坐标位置在完整航程上的序列集合;上标r表示实测数据,e表示计算数据。
以上所述的仅是本申请的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。

Claims (3)

1.一种考虑航道环境的船舶智能操纵方法,其特征在于,所述方法包括:
构建运动预报模型,所述运动预报模型包含了船舶操纵控制参数和船舶操纵状态参数之间一一对应的关系;其中,所述船舶操纵控制参数包括螺旋桨的转速和舵角,所述船舶操纵状态参数包括船舶的航速、航向角、艏向角和坐标位置;
根据航行任务和确定因素预先规划船舶运动轨迹,所述确定因素包括航道沿途的桥梁和其他船舶的运动轨迹;
获取当前时刻的船舶操纵控制参数和不确定环境量,输入至所述运动预报模型更新所述船舶操纵状态参数,确定所述预先规划船舶运动轨迹中当前时刻的航行目标与更新后的船舶操纵状态参数之间的状态观测偏差,输入至最优估计算法修正下一时刻的船舶操纵控制参数;
基于测量得到的船舶操纵控制参数和船舶操纵状态参数、基于所述运动预报模型和最优估计算法计算得到的船舶操纵控制参数和船舶操纵状态参数构建多置信度模型,用于优化所述运动预报模型;
其中,所述获取当前时刻的船舶操纵控制参数和不确定环境量,输入至所述运动预报模型更新所述船舶操纵状态参数,包括,在每一个航行控制时刻:
将采集到的不确定环境量作为干扰项输入至控制系统中,所述控制系统内的运动预报模型基于当前时刻的船舶操纵控制参数对一个特定动态控制区的船舶操纵状态参数进行预测,得到当前控制序列下的船舶预计航行坐标位置,一系列状态构成状态预测序列,用以实现所述船舶操纵控制参数的最优估计;
其中,基于测量得到的船舶操纵控制参数和船舶操纵状态参数、基于所述运动预报模型和最优估计算法计算得到的船舶操纵控制参数和船舶操纵状态参数构建多置信度模型,包括,在船舶航行过程中:
以航行当前时刻为分界线,获取当前时刻前测量得到的船舶操纵控制参数和船舶操纵状态参数作为历史数据,获取当前时刻后基于所述运动预报模型和最优估计算法计算得到的船舶操纵控制参数和船舶操纵状态参数作为预报数据;将所述历史数据和预报数据进行融合,形成多置信度模型,并将所述多置信度模型代入所述运动预报模型中进行训练,从而在线优化所述运动预报模型的结构,所述多置信度模型的表达式为:
其中,C为船舶操纵控制参数在完整航程上的序列集合,S为船舶的航速、航向角和艏向角在完整航程上的序列集合,P为船舶的坐标位置在完整航程上的序列集合;上标h和f分别表示历史数据和预报数据;
其中,基于测量得到的船舶操纵控制参数和船舶操纵状态参数、基于所述运动预报模型和最优估计算法计算得到的船舶操纵控制参数和船舶操纵状态参数构建多置信度模型,还包括,在船舶航行结束后:
获取本次航行时采集到的完整航程上的船舶操纵控制参数和船舶操纵状态参数作为实测数据,获取本次航行时所述运动预报模型和最优估计算法计算得到的完整航程上的船舶操纵控制参数和船舶操纵状态参数作为计算数据,将所述实测数据和计算数据进行融合,形成多置信度模型,并将所述多置信度模型代入所述运动预报模型中进行训练,从而离线优化所述运动预报模型的结构,所述多置信度模型的表达式为:
其中,C为船舶操纵控制参数在完整航程上的序列集合,S为船舶的航速、航向角和艏向角在完整航程上的序列集合,P为船舶的坐标位置在完整航程上的序列集合;上标r表示实测数据,e表示计算数据。
2.根据权利要求1所述的考虑航道环境的船舶智能操纵方法,其特征在于,所述构建运动预报模型,包括:
利用船舶操纵运动数学模型,得到船舶操纵控制参数与船舶操纵状态参数之间一一对应的若干组数据;
利用机器学习回归算法建立所述船舶操纵控制参数与船舶操纵状态参数之间的数学模型,作为运动预报模型。
3.根据权利要求2所述的考虑航道环境的船舶智能操纵方法,其特征在于,所述运动预报模型包括若干个基本单元,每个所述基本单元包括状态预测器和运动趋势预测器,且所述基本单元的时间尺度是一个时间步;其中,所述状态预测器根据当前时刻的船舶操纵控制参数输出下一时刻船舶的航速、航向角和艏向角,所述运动趋势预测器根据当前时刻的船舶操纵控制参数输出下一时刻船舶的坐标位置;从某一起始时刻,所述基本单元沿时间轴推进并持续更新船舶操纵状态参数。
CN202210283450.0A 2022-03-22 2022-03-22 一种考虑航道环境的船舶智能操纵方法 Active CN114595898B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210283450.0A CN114595898B (zh) 2022-03-22 2022-03-22 一种考虑航道环境的船舶智能操纵方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210283450.0A CN114595898B (zh) 2022-03-22 2022-03-22 一种考虑航道环境的船舶智能操纵方法

Publications (2)

Publication Number Publication Date
CN114595898A CN114595898A (zh) 2022-06-07
CN114595898B true CN114595898B (zh) 2023-05-02

Family

ID=81819188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210283450.0A Active CN114595898B (zh) 2022-03-22 2022-03-22 一种考虑航道环境的船舶智能操纵方法

Country Status (1)

Country Link
CN (1) CN114595898B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116088298B (zh) * 2023-04-11 2023-07-25 珠海云洲智能科技股份有限公司 航速控制方法、航速控制装置、电子设备及存储介质
CN116513407B (zh) * 2023-04-28 2023-11-07 中国船舶科学研究中心 半浸桨船舶的控制系统及控制方法
CN117556172B (zh) * 2024-01-11 2024-04-19 青岛哈尔滨工程大学创新发展中心 船舶操纵运动预报模型构建方法及船舶操纵运动预报方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111565430A (zh) * 2020-04-11 2020-08-21 中国海洋大学 一种基于预测轨迹的海洋船舶无线网络路由方法
CN112068564A (zh) * 2020-09-10 2020-12-11 中国船舶科学研究中心 一种基于经济航行优化的船舶智能操控方法
CN112182972A (zh) * 2020-09-30 2021-01-05 大连海事大学 一种船舶操纵运动adam局部加权回归辨识建模方法
CN112596393A (zh) * 2020-12-24 2021-04-02 武汉理工大学 船舶路径跟踪的控制方法、系统和存储介质
CN112906858A (zh) * 2021-01-26 2021-06-04 武汉工程大学 一种船舶运动轨迹实时预测方法
CN112965363A (zh) * 2021-02-03 2021-06-15 大连海事大学 一种基于外源卡尔曼滤波的船舶动力定位系统
CN113110511A (zh) * 2021-05-19 2021-07-13 大连海事大学 一种基于广义模糊双曲模型的智能船舶航向控制方法
CN113955097A (zh) * 2021-11-01 2022-01-21 广东汇天航空航天科技有限公司 一种旋翼飞行器的舵机位移处理方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6976367B2 (ja) * 2020-02-18 2021-12-08 三菱電機株式会社 船舶の方位制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111565430A (zh) * 2020-04-11 2020-08-21 中国海洋大学 一种基于预测轨迹的海洋船舶无线网络路由方法
CN112068564A (zh) * 2020-09-10 2020-12-11 中国船舶科学研究中心 一种基于经济航行优化的船舶智能操控方法
CN112182972A (zh) * 2020-09-30 2021-01-05 大连海事大学 一种船舶操纵运动adam局部加权回归辨识建模方法
CN112596393A (zh) * 2020-12-24 2021-04-02 武汉理工大学 船舶路径跟踪的控制方法、系统和存储介质
CN112906858A (zh) * 2021-01-26 2021-06-04 武汉工程大学 一种船舶运动轨迹实时预测方法
CN112965363A (zh) * 2021-02-03 2021-06-15 大连海事大学 一种基于外源卡尔曼滤波的船舶动力定位系统
CN113110511A (zh) * 2021-05-19 2021-07-13 大连海事大学 一种基于广义模糊双曲模型的智能船舶航向控制方法
CN113955097A (zh) * 2021-11-01 2022-01-21 广东汇天航空航天科技有限公司 一种旋翼飞行器的舵机位移处理方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘晓 ; 黄志坚 ; 张赞 ; .基于自抗扰控制技术的船舶航向自动舵控制方法研究.船电技术.2016,(第11期),第40-42页. *
曾凡明 ; 刘金林 ; 赖国军 ; .舰船动力装置多学科集成设计优化方法.中国舰船研究.2017,(第02期),第100-106+115页. *
李烈鑫 ; 邢延 ; 黄仙妮 ; 王钦若 ; .基于模糊控制的船舶自动导航仿真系统.电脑编程技巧与维护.2011,(第24期),第127-129+136页. *

Also Published As

Publication number Publication date
CN114595898A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
CN114595898B (zh) 一种考虑航道环境的船舶智能操纵方法
CN113221449B (zh) 一种基于最优策略学习的船舶航迹实时预测方法及系统
CN109032136B (zh) 基于主从分布式模型预测控制的欠驱动多无人船编队跟踪方法
CN111006693B (zh) 智能飞行器航迹规划系统及其方法
CN112631305B (zh) 一种多无人船编队防碰撞抗干扰控制系统
CN112148024B (zh) 基于自适应伪谱法的无人机实时在线航迹规划方法
CN110083983A (zh) 一种船舶分段航速优化方法和智能管理系统
CN108363407B (zh) 一种无人船自主航行的协同云控制系统
CN111338410B (zh) 一种智能船舶航向航速综合控制的方法
CN110146087B (zh) 一种基于动态规划思想的船舶路径规划方法
CN104765368A (zh) 一种基于模糊自适应算法的无人艇航向航速协同控制方法
CN111199103B (zh) 全电力推进船舶的全流程自动计算的航速优化方法及系统
CN113534668B (zh) 基于最大熵的演员-评论家框架的auv运动规划方法
CN112799405B (zh) 基于动态障碍物环境下的无人船路径规划方法
CN108279563A (zh) 一种速度自适应的无人车轨迹跟踪pid控制方法
CN110928314B (zh) 一种基于轨迹预测的纯跟踪模型改进算法
CN109657928A (zh) 一种车载传感器系统的闭环协同调度框架及调度方法
CN116337045A (zh) 一种基于karto和teb的高速建图导航方法
CN108801262B (zh) 一种船舶自动航行控制器航路规划与纠偏修正方法
CN105197200B (zh) 一种基于航迹引导的气垫船进坞过程自动控制系统及控制方法
CN113064422A (zh) 基于双神经网络强化学习的自主水下航行器路径规划方法
CN115951581A (zh) 一种基于改进empc的高速无人艇路径跟踪控制方法
CN113960998B (zh) 一种无人艇模糊预测控制系统及方法
Ma et al. Path tracking control of hybrid-driven robotic fish based on deep reinforcement learning
CN115657664A (zh) 基于人类示教学习的路径规划方法、系统、设备及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant