CN114593779A - 一种热力系统疏水阀门泄漏量测量系统及方法 - Google Patents

一种热力系统疏水阀门泄漏量测量系统及方法 Download PDF

Info

Publication number
CN114593779A
CN114593779A CN202210269750.3A CN202210269750A CN114593779A CN 114593779 A CN114593779 A CN 114593779A CN 202210269750 A CN202210269750 A CN 202210269750A CN 114593779 A CN114593779 A CN 114593779A
Authority
CN
China
Prior art keywords
heat exchanger
cold
outlet
drain valve
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210269750.3A
Other languages
English (en)
Inventor
林琳
李杨
周元祥
周刚
井新经
王勇
王野
孙剑锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Huaneng Group Technology Innovation Center Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Huaneng Group Technology Innovation Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd, Huaneng Group Technology Innovation Center Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202210269750.3A priority Critical patent/CN114593779A/zh
Publication of CN114593779A publication Critical patent/CN114593779A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2876Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本发明公开了一种热力系统疏水阀门泄漏量测量系统及方法,通过在疏水阀门输出端的疏水管道上设置热量测量单元,该测量单元包括换热器、散热器、循环泵以及换热器热端和换热器冷端的温度测量元件,通过计算所述热量测量单元中换热器的换热量,根据热平衡原理进而计算出疏水阀门的泄漏流量,以实现疏水阀门泄漏量的实时测量。本发明原理清晰、系统简单、可操作性强、有助于机组动态监视,可提升机组运行经济性,是适用于所有带有疏水阀门工作机组节能提效的创新技术。

Description

一种热力系统疏水阀门泄漏量测量系统及方法
技术领域
本发明属于热力发电技术领域,涉及一种疏水阀门泄漏量测量系统及方法,尤其是一种热力系统疏水阀门泄漏量测量系统及方法。
背景技术
在热力发电机组中,热力管道需要设置疏水管道以保障非常规工况下的安全性,但机组在正常运行时需要疏水管道上的疏水阀门保持良好的严密性,以防止蒸汽或高品质水的泄漏。在实际运行中,部分疏水阀门会发生泄漏,导致更换疏水阀的成本增加,损失大量能源,引发机组经济性和安全性能下降。
在现有技术中,往往通过在疏水阀门后的管道中安装温度测点或直接通过人工现场观察来判断疏水阀门是否泄漏,但目前技术人员往往只能针对疏水阀门是否泄漏进行检测,不能对机组疏水阀门泄漏量的大小进行检测,以致于无法准确评估阀门内漏对机组经济性和安全性的实际影响。
发明内容
本发明的目的在于针对疏水阀门泄漏量无法检测,以致无法对机组安全性和经济性进行评估的问题,提供一种热力系统疏水阀门泄漏量测量系统及方法,从而达到能够针对热力系统疏水阀门泄漏量的测量,进而准确评估阀门内漏对机组经济性的实际影响的目的。
为达到上述目的,本发明采用以下技术方案予以实现:
本发明提供一种热力系统疏水阀门泄漏量测量系统,包括设置在疏水管道上的泄漏量检测单元,所述泄漏量检测单元设置于疏水阀门的输出端,包括换热器、散热器、循环泵、热端进口测温元件、热端出口测温元件、冷端进口测温元件和冷端出口测温元件;
换热器的热端进口与疏水阀门的输出端通过疏水管道相连;所述热端进口测温元件设置在换热器的热端进口与疏水阀门输出端之间的疏水管道上,热端出口测温元件设置在换热器的热端出口的疏水管道上;
换热器的冷端出口依次连接散热器和循环泵,循环泵的输出端连接换热器的冷端进口;所述冷端出口测温元件设置在换热器冷端出口与散热器入口之间,冷端进口测温元件设置在循环泵与换热器冷端进口之间。
优选地,所述循环泵为定速循环泵。
优选地,一种利用所述系统的疏水阀门泄漏量测量方法,包括以下步骤:
计算换热器冷端进口焓值和换热器冷端出口焓值;
根据换热器冷端进口焓值和换热器冷端出口焓值,计算换热器的换热量;
计算换热器热端进口焓值和换热器热端出口焓值;
根据换热器的换热量以及换热器热端进口焓值和换热器热端出口焓值,计算出换热器热端流体工质流量,即为该疏水阀门的泄漏流量。
优选地,计算换热器冷端进口焓值h9和换热器冷端出口焓值h8的方法如下:
h9=f(Pa,T9)
h8=f(Pa,T8)
其中,Pa为循环泵的压力即换热器冷端进出口的压力,T9为换热器冷端进口温度,T8为换热器冷端出口的温度。
优选地,所述计算换热器的换热量Q的方法如下:
Q=ma(h8-h9)
其中,ma为循环泵的出口水流量,h9为换热器冷端进口焓值,h8为换热器冷端出口焓值。
优选地,计算换热器热端进口焓值h6和换热器热端出口焓值h7的方法如下:
h6=f(Pb,T6)
h7=f(Pb,T7)
其中,Pb为换热器热端进出口的压力,T6为换热器热端进口温度,T7为换热器热端出口的温度。
优选地,所述计算疏水阀门泄漏流量mb的方法如下:
Q=mb(h6-h7)
其中,Q为换热器的换热量,h6为换热器热端进口焓值,h7为换热器热端出口焓值。
优选地,换热器冷端流体工质为水。
与现有技术相比,本发明具有以下有益效果:
本发明通过在疏水阀门输出端安装泄漏量检测单元,来实现对疏水阀门泄漏量的检测从而实现对实际机组工况的经济性和安全性进行评估。通过泄漏量检测单元中循环泵及散热器的设置,实现了换热器冷端工质的有效循环,达到节能提效的效果,实现疏水阀门泄漏量的实时检测。
本发明提供的一种热力系统疏水阀门泄漏量测量方法,该方法通过对换热器换热量的计算,根据热量守恒原理进而计算出疏水阀门的泄漏量,计算原理简单、清晰,系统简单合理,无需其他附属设备,具有较高的准确性和实用性,是节能提效的创新技术。
附图说明
为了更清楚的说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明的疏水阀门泄漏量测量系统的结构示意图;
图2为本发明的疏水阀门泄漏量测量方法的流程示意图。
其中:1-疏水管道,2-疏水阀门,3-换热器,4-散热器,5-循环泵,6-热端进口测温元件,7-热端出口测温元件,8-冷端出口测温元件,9-冷端进口测温元件。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明实施例的描述中,需要说明的是,若出现术语“上”、“下”、“水平”、“内”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,若出现术语“水平”,并不表示要求部件绝对水平,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本发明实施例的描述中,还需要说明的是,除非另有明确的规定和限定,若出现术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面结合附图对本发明做进一步详细描述:
参见图1,本发明在疏水阀门2输出端连接的疏水管道1上安装了泄漏量检测单元,该泄漏量检测单元包括换热器3、散热器4、循环泵5、热端进口测温元件6、热端出口测温元件7、冷端出口测温元件8和冷端进口测温元件9。
首先,当有流体工质流进疏水管道1通过疏水阀门2并进入设置在疏水阀门输出端的换热器3时,循环泵5定速运行,使换热器3冷端进、出口的冷端流体工质流量ma基本保持额定值不变,换热器3冷端出进口的压力为循环泵5出口的压力Pa已知。循环泵5将换热器3冷端出口流出的冷端流体工质经散热器4散热后,再经换热器3的冷端进口泵入换热器3进行换热,此时换热器3的冷端进口处的冷端进口测温元件9测量的温度为T9。经换热器3换热后冷端流体工质经换热器3的冷端出口流出,此时冷端出口测温元件8测量的温度为T8。流体工质经散热器4散热后再次进入循环泵,以此往复循环。此时,可根据换热器3冷端进出口的压力Pa、换热器3冷端进口温度T9、换热器3冷端出口温度T8。计算出换热器冷端进、出口的焓值分别为h9和h8,则换热器的换热量Q可通过公式计算:
Q=ma(h8-h9)
与此同时,在流体工质进入疏水管道1并通过疏水阀门2经换热器3的热端进口时,疏水管道的压力Pb根据作业机组数据已知,此时换热器3的热端进口测温元件测量的温度为T6。热端流体工质经换热器3换热后,经换热器3的热端出口进入疏水管道1,此时,换热器3的热端出口测温元件测量的温度为T7,根据换热器3热端进、出口的温度T6和T7,以及疏水管道1的压力Pb,利用热端流体工质热力学性质计算公式,计算出换热器3热端进、出口的焓值分别为h6和h7,则可根据热平衡,通过公式计算出疏水阀门泄漏流量mb
Q=ma(h8-h9)=mb(h6-h7)
当换热器3冷端流体工质和换热器3热端流体工质均为水时,循环泵5定速运行,已知经过换热器3冷端进、出口水的流量ma为0.5kg/s,循环泵5出口的压力即为换热器3冷端进、出口的压力Pa为0.5MPa。当水经循环泵5泵入换热器3时,换热器3的冷端进口测温元件9测量的温度T9为20℃。当水经换热器3换热后,通过换热器3冷端出口时,换热器3的冷端出口测温元件8测量的水的温度T8为30℃,则根据换热器3冷端进、出口水的温度T9和T8以及换热器3冷端进、出口的压力Pa,利用水和水蒸气热力性质,换热器3冷端进、出口水的焓值h9和h8可分别通过公式和公式计算得到:
h9=f=84.3kJ/kg
h8=f=126.1kJ/kg
则换热器3的换热量Q根据公式计算如下:
Q=ma(h8-h9)=0.5*(126.1-84.3)=20.9kW
与此同时,在水进入疏水管道1并通过疏水阀门2经换热器3的热端进口时,根据工作机组数据已知疏水管道1的压力Pb为0.7MPa,此时换热器3的热端进口测温元件6测量的温度T6为180℃。当水经换热器3换热后,经换热器3的热端出口流进输水管道1时,此时,换热器3的热端出口测温元件7测量的温度T7为150℃。根据换热器3的热端进、出口的温度T6和T7,以及疏水管道1的压力Pb,利用水和水蒸汽热力性质计算公式,换热器3热端进、出口的水的焓值h6和h7可分别通过公式和公式计算得到:
h6=f=2798.0kJ/kg
h7=f=2724.7kJ/kg
则可根据热平衡原理,通过公式计算出疏水阀门泄漏流量mb如下:
Q=ma(h8-h9)=mb(h6-h7)
20.9kW=mb(2798.0kJ/kg-2724.7kJ/kg)
mb=0.285kg/s
则此时,疏水阀门泄漏流量mb为0.285kg/s。
本发明所述的热力系统疏水阀门泄漏量测量系统及方法能够较为准确地测量出疏水阀门的泄漏流量,进而使得技术人员能够根据测得疏水阀门的泄漏流量来评估疏水阀门泄漏所带来的经济性和安全性的影响,计算原理清晰、系统结构简单、可操作性强、有助于机组动态监视,可提升机组运行经济性,是适用于所有带有疏水阀门工作机组节能提效的创新技术。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种热力系统疏水阀门泄漏量测量系统,其特征在于,包括设置在疏水管道(1)上的泄漏量检测单元,所述泄漏量检测单元设置于疏水阀门(2)的输出端,包括换热器(3)、散热器(4)、循环泵(5)、热端进口测温元件(6)、热端出口测温元件(7)、冷端进口测温元件(9)和冷端出口测温元件(8);
换热器(3)的热端进口与疏水阀门(2)的输出端通过疏水管道(1)相连;所述热端进口测温元件(6)设置在换热器(3)的热端进口与疏水阀门(2)输出端之间的疏水管道(1)上,热端出口测温元件(7)设置在换热器(3)的热端出口的疏水管道上(1);
换热器(3)的冷端出口依次连接散热器(4)和循环泵(5),循环泵(5)的输出端连接换热器(3)的冷端进口;所述冷端出口测温元件(8)设置在换热器(3)冷端出口与散热器(4)入口之间,冷端进口测温元件(9)设置在循环泵(5)与换热器(3)冷端进口之间。
2.根据权利要求1所述的热力系统疏水阀门泄漏量测量系统,其特征在于,循环泵(5)为定速循环泵。
3.一种利用权利要求1或2所述系统的疏水阀门泄漏量测量方法,其特征在于,包括以下步骤:
计算换热器(3)冷端进口焓值和换热器(3)冷端出口焓值;
根据换热器(3)冷端进口焓值和换热器(3)冷端出口焓值,计算换热器(3)的换热量;
计算换热器(3)热端进口焓值和换热器(3)热端出口焓值;
根据换热器(3)的换热量以及换热器(3)热端进口焓值和换热器(3)热端出口焓值,计算出换热器(3)热端流体工质流量,即为该疏水阀门的泄漏流量。
4.根据权利要求3所述的热力系统疏水阀门泄漏量测量方法,其特征在于,所述计算换热器(3)冷端进口焓值h9和换热器(3)冷端出口焓值h8的方法如下:
h9=f(Pa,T9)
h8=f(Pa,T8)
其中,Pa为循环泵(5)的压力即换热器(3)冷端进出口的压力,T9为换热器(3)冷端进口温度,T8为换热器(3)冷端出口的温度。
5.根据权利要求3所述的热力系统疏水阀门泄漏量测量方法,其特征在于,所述计算换热器(3)的换热量Q的方法如下:
Q=ma(h8-h9)
其中,ma为循环泵(5)的出口水流量,h9为换热器(3)冷端进口焓值,h8为换热器(3)冷端出口焓值。
6.根据权利要求3所述的热力系统疏水阀门泄漏量测量方法,其特征在于,所述计算换热器(3)热端进口焓值h6和换热器(3)热端出口焓值h7的方法如下:
h6=f(Pb,T6)
h7=f(Pb,T7)
其中,Pb为换热器(3)热端进出口的压力,T6为换热器(3)热端进口温度,T7为换热器(3)热端出口的温度。
7.根据权利要求3所述的热力系统疏水阀门泄漏量测量方法,其特征在于,所述计算疏水阀门泄漏流量mb的方法如下:
Q=mb(h6-h7)
其中,Q为换热器(3)的换热量,h6为换热器(3)热端进口焓值,h7为换热器(3)热端出口焓值。
8.根据权利要求3-7任一项所述的热力系统疏水阀门泄漏量测量方法,其特征在于,所述换热器(3)冷端流体工质为水。
CN202210269750.3A 2022-03-18 2022-03-18 一种热力系统疏水阀门泄漏量测量系统及方法 Pending CN114593779A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210269750.3A CN114593779A (zh) 2022-03-18 2022-03-18 一种热力系统疏水阀门泄漏量测量系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210269750.3A CN114593779A (zh) 2022-03-18 2022-03-18 一种热力系统疏水阀门泄漏量测量系统及方法

Publications (1)

Publication Number Publication Date
CN114593779A true CN114593779A (zh) 2022-06-07

Family

ID=81819090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210269750.3A Pending CN114593779A (zh) 2022-03-18 2022-03-18 一种热力系统疏水阀门泄漏量测量系统及方法

Country Status (1)

Country Link
CN (1) CN114593779A (zh)

Similar Documents

Publication Publication Date Title
CN103154625B (zh) 冷冻循环装置
CN106932214B (zh) 一种换热器性能及能效测试平台
RU2537114C2 (ru) Установка для определения кпд секции паровой турбины, установка для расчёта истинного кпд секции среднего давления паровой турбины и установка для управления паровой турбиной
CN104966536A (zh) 一种以导热油为热流体的高温工质换热试验系统及方法
CN106872197A (zh) 一种换热器性能测试装置及测试方法
CN102004460A (zh) 一种汽轮机通流部分结垢程度的在线监测方法
CN103091355A (zh) 一种电磁泵驱动液态金属循环传热性能测试装置
CN102313471A (zh) 冷却系统的功能监视和/或控制方法及相应的冷却系统
CN105241667B (zh) 基于k‑M模型的凝汽器真空状态判别方法
CN114593779A (zh) 一种热力系统疏水阀门泄漏量测量系统及方法
CN116428221A (zh) 一种空压机冷却系统
CN106203849B (zh) 一种大型发电机组冷端性能检测方法及系统
CN206583619U (zh) 一种加热器试验台
CN113221477B (zh) 一种确定循环水流量的热平衡计算方法
CN212988819U (zh) 热管换热器检测系统
CN107121299A (zh) 评估溴吸收式热泵系统和电压缩式热泵系统性能的方法
CN112268924A (zh) 热管换热器检测方法及检测系统
CN219492696U (zh) 一种空压机冷却系统
CN105136342A (zh) 微温差条件下提高换热器换热量测量精度的系统及方法
Vodeniktov et al. The problem of the surface condenser overall heat transfer coefficient determining at high temperatures of cooling water
CN112613164B (zh) 一种火电厂汽轮机热耗率快速计算方法
CN105184043B (zh) 基于单个无量纲数的凝汽器传热系数计算方法
CN110298492A (zh) 一种凝汽器抽真空系统节能改造收益的评价方法
CN216645878U (zh) 一种热交换器运行状态监测试验装置
CN221056043U (zh) 双源即热即冷式热泵恒温阀芯测试用供水系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination