CN114591951A - 一种编辑pomk基因的系统及其用途 - Google Patents

一种编辑pomk基因的系统及其用途 Download PDF

Info

Publication number
CN114591951A
CN114591951A CN202011416237.XA CN202011416237A CN114591951A CN 114591951 A CN114591951 A CN 114591951A CN 202011416237 A CN202011416237 A CN 202011416237A CN 114591951 A CN114591951 A CN 114591951A
Authority
CN
China
Prior art keywords
sgrna
cell
artificial sequence
sequence
pomk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011416237.XA
Other languages
English (en)
Inventor
赵恩峰
刘启慧
黄童
王延宾
贺小宏
任江涛
韩露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Bioheng Biotech Co Ltd
Original Assignee
Jiangsu Puzhu Biomedical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Puzhu Biomedical Technology Co ltd filed Critical Jiangsu Puzhu Biomedical Technology Co ltd
Priority to CN202011416237.XA priority Critical patent/CN114591951A/zh
Publication of CN114591951A publication Critical patent/CN114591951A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01007Mannokinase (2.7.1.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及POMK基因的编辑,尤其是筛选到针对POMK的敲除效率较高的sgRNA序列,其包含的间隔子序列如SEQ ID NO:16所示。

Description

一种编辑POMK基因的系统及其用途
技术领域
本发明属于基因工程和基因遗传修饰技术领域,涉及基于CRISPR/Cas9技术的POMK基因的编辑及其用途。
背景技术
POMK也称为蛋白O-甘露糖激酶,其在脑、睾丸及其他25个组织中均有表达。
(protein O-mannose kinase):O-mannose蛋白激酶。该基因编码一种蛋白,该蛋白可能参与-dystroglycan(a-dg)的laminin结合O型碳水化合物链的呈现,在细胞外基质和外骨骼之间形成跨膜连接。一种具有磷酸化修饰功能的分泌性蛋白;虽然与Ser/Thr蛋白激酶家族有关,但没有蛋白激酶活性,而是作为甘露糖激酶。据报道,POMK能在内质网管腔内使α-Dystroglycan糖蛋白上的甘露糖残基磷酸化,进而调控其后续糖链延伸。POMK的病变会引起α-Dystroglycan的功能异常,影响肌肉和脑的发育,造成先天性肌肉营养不良症。
发明内容
目前,CRISPR技术作为一种新的基因组工程化工具,由于其操作简单,靶向精确,已被广泛应用于细胞的基因组编辑和免疫疗法的开发中。最常用的包括II型、V型、VI型等CRISPR系统。以II型CRISPR系统为例,在外源DNA入侵时,来自CRISPR重复阵列的转录物被Cas9和RNase III核酸酶加工为成熟的crRNA,随后与tracrRNA和Cas9组成复合体。通过识别PAM,crRNA将该复合体引导至靶标DNA,并通过crRNA包含的间隔区序列与靶DNA的结合,解开DNA双链,再由Cas9中的HNH结构域剪切crRNA的互补DNA链,RuvC结构域剪切非互补链,最终在靶标DNA处引入双链断裂。人们还发现,引导Cas9结合并切割特定的DNA序列不需要RNA复合物。通过使用设计的嵌合单向导RNA(sgRNA)可以简单地实现该过程。
术语“单向导RNA”或“sgRNA”是指通过将crRNA和tracrRNA分子融合成“单个向导RNA”的人工工程化RNA,当与Cas9蛋白结合时,其能够识别并切割向导RNA特异性的DNA靶标。sgRNA一般包含间隔子序列(spacer)和骨架序列,这两个序列可以在同一个分子中或不同的分子中。间隔子序列的作用是指导Cas9蛋白切割与间隔子序列互补的DNA位点,也即靶序列。一般而言,间隔子序列是与靶序列具有足够互补性以便与该靶序列杂交、并且指导CRISPR复合物与该靶序列特异性结合的任何多核苷酸序列。间隔子序列与其相应的靶序列之间的互补程度是约或多于约50%或更多。一般间隔子序列的长度为约20个核苷酸。骨架序列为sgRNA中必须的,除间隔子序列之外的其余序列,一般包含tracr序列和tracr配对序列,这些序列一般不会因为靶序列的变化而改变。由于骨架序列不影响sgRNA对靶序列的识别,因此,骨架序列可以是现有技术中任何可行的序列。骨架序列的结构可参见如文献Nowak et al.Nucleic AcidsResearch 2016.44:9555-9564。
在本文中可采用的骨架序列如下表1所示。
表1.示例性的sgRNA骨架序列
Figure BDA0002820160420000021
Figure BDA0002820160420000031
sgRNA,尤其是其中间隔子序列的设计需要考虑很多因素,例如长度、碱基组成、靶基因的结合位置、与非靶标位点的结合率、是否包含SNP、二级结构等等。目前已经可以通过各种在线工具来设计sgRNA。然而,由于Cas酶可以切割任何邻近PAM位点的靶序列,针对特定的靶基因而言,在线工具设计的大量sgRNA的编辑效率都不尽相同,甚至差异很大,例如,PAM位点是5'-NGG-3'的编辑效率通常就比5'-NGA-3'或5'-NAG-3'的高。因此,筛选特异性高的sgRNA对于CRISPR系统编辑效率的提高至关重要。
因此,在第一个方面,本发明提供一种靶向POMK的sgRNA,其包含的间隔子序列如SEQ ID NO:16所示。
在一个优选的实施方案中,所述sgRNA还包含选自SEQ ID NO:1-12的骨架序列。
在第二个方面,本发明还提供表达本发明所述的sgRNA的DNA分子以及包含所述DNA分子的载体。
在第三个方面,本发明还提供一种基因编辑系统,其包含Cas9酶和本发明所述的sgRNA序列。
在第四个方面,本发明提供了一种在体外敲除细胞中的POMK基因的方法,包括将该细胞与Cas9酶和sgRNA接触,其中所述sgRNA包含如SEQ ID NO:16所示的间隔子序列。
在一个实施方案中,所述Cas9酶是蛋白或编码核酸的形式,所述sgRNA是RNA分子、其编码核酸或载体的形式。例如,可以将细胞与Cas9蛋白和sgRNA直接接触,或者将细胞与Cas9蛋白的编码核酸和sgRNA接触,或者将细胞与Cas9蛋白和sgRNA的编码核酸直接接触。
在一个实施方案中,所述细胞是免疫细胞,例如293T细胞、T细胞、B细胞、巨噬细胞、树突状细胞、单核细胞、NK细胞和/或NKT细胞等。优选地,所述免疫细胞是T细胞、NK细胞或NKT细胞,所述T细胞优选CD4+CD8+T细胞、CD4+T细胞、CD8+T细胞、记忆T细胞、幼稚T细胞、γδ-T细胞、αβ-T细胞。
下面将结合实例来详细说明本发明。需要说明的是,本领域的技术人员应该理解本发明的实施例仅仅是为了例举的目的,并不能对本发明构成任何限制。在不矛盾的情况下,本申请中的实施例及实施例中的特征可以相互组合。
具体实施方式
实施例1.sgRNA载体构建
使用CRISPR在线设计工具(http://crispr.mit.edu/),根据评分系统,分别针对POMK的1号外显子和2号外显子设计sgRNA,并根据sgRNA序列设计相应的寡核苷酸链,其序列分别如下表2和表3所示。
表2.sgRNA的间隔子序列及寡核苷酸序列
名称 间隔子序列
sgRNA-1 GAGAGGCCUCGCCCCCCGAG(SEQ ID NO:13)
sgRNA-2 GAGAGGUGCCGCCAGCUGUU(SEQ ID NO:14)
sgRNA-3 GGGUCCACAGUGGAUUGUCG(SEQ ID NO:15)
sgRNA-4 CUCACCUUGGCUGUCCUGCG(SEQ ID NO:16)
sgRNA-5 ACACAUGUUGUCACGCUGCU(SEQ ID NO:17)
sgRNA-6 CAGUGUCUUCGGCAGGUCGU(SEQ ID NO:18)
表3.sgRNA间隔子序列的寡核苷酸序列
Figure BDA0002820160420000041
Figure BDA0002820160420000051
将1μg LentiCRISPR V2质粒(Addgene,52961)用BsmbI酶于37℃酶切30分钟,并用天根胶回收试剂盒(天根,DP209-02)纯化酶切质粒产物。将一对sgRNA oligo退火形成双链,并与酶切的LentiCRISPR V2质粒进行连接,16℃孵育2h。然后,将连接质粒转化至感受态细胞DH5α,均匀涂至amp抗性LB固体培养基平板中,置于37℃培养箱中培养12-16小时,然后挑取单个菌落扩大培养并提取质粒,通过测序确定sgRNA序列被正确克隆入LentiCRISPRV2质粒。
实施例2.细胞转染并检测敲除效率
使用脂质体转染法将携带sgRNA序列的LentiCRISPR V2质粒转染入293T细胞。具体地,提前用完全培养基(10%胎牛血清的高糖DMEM培养基)接种293T细胞,并于5%CO2,37℃恒温培养箱中培养1天,待细胞达到70-90%汇合度时进行转染。将转染试剂(125μlOpti-MEM、3.75μl Lipo3000R)与DNA预混液(125μl Opti-MEM、5μg LentiCRISPR V2质粒、10μl P3000TM)以1:1的比例混合,25℃孵育5分钟后,将其加入293T细胞。将细胞置于37℃培养培养箱继续培养48-72小时后,用含1ng/ml嘌呤霉素的完全培养基进行抗性筛选,并将阳性细胞用完全培养基恢复培养2-3天。收集细胞,并用FACs法鉴定基因敲除效率,结果如下表4所示。
表4.不同sgRNA的敲除效率
名称 敲除效率
sgRNA-1 12.0%
sgRNA-2 33.3%
sgRNA-3 66.7%
sgRNA-4 90.0%
sgRNA-5 30.0%
sgRNA-6 15.0%
从上表可以看出,sgRNA-4的敲除效率最高,达到90%,远远高于其他5个sgRNA的敲除效率。
实施例3.基因表达验证
提取经嘌呤霉素筛选的阳性293T细胞的RNA,并将其逆转录为cDNA,然后用以下引物检测细胞中的POMK基因的表达情况,结果如表5所示。
P-F:AATGACTTGGACGCCTTACC(SEQ ID NO:25)
P-R:GGAAACTGGAGATGTCTGGG(SEQ ID NO:26)
表5POMK的表达水平
Figure BDA0002820160420000061
需要说明的是,以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。本领域技术人员理解的是,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
序列表
<110> 江苏浦珠生物医药科技有限公司
<120> 一种编辑POMK基因的系统及其用途
<130> PZCN11
<160> 32
<170> SIPOSequenceListing 1.0
<210> 1
<211> 89
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA骨架序列
<400> 1
guuuuagagc uaugcuggaa acagcauagc aaguuaaaau aaggcuaguc cguuaucaac 60
uugaaaaagu ggcaccgagu cggugcuuu 89
<210> 2
<211> 79
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA骨架序列
<400> 2
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucaac uugaaaaagu 60
ggcaccgagu cggugcuuu 79
<210> 3
<211> 48
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA骨架序列
<400> 3
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuuuuu 48
<210> 4
<211> 54
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA骨架序列
<400> 4
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucauu uuuu 54
<210> 5
<211> 68
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA骨架序列
<400> 5
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucaac uugaaaaagu 60
guuuuuuu 68
<210> 6
<211> 90
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA骨架序列
<400> 6
guuuuagagc uaugcuggaa acagcauagc aaguuaaaau aaggcuaguc cguuaucaac 60
uugaaaagug gcaccgaguc ggugcuuuuu 90
<210> 7
<211> 90
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA骨架序列
<400> 7
guuucagagc uaugcuggaa acagcauagc aaguugaaau aaggcuaguc cguuaucaac 60
uugaaaaagu ggcaccgagu cggugcuuuu 90
<210> 8
<211> 83
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA骨架序列
<400> 8
guuuuagagc uaugaaaaua gcaaguuaaa auaaggcuag uccguuauca acuugaaaaa 60
guggcaccga gucggugcuu uuu 83
<210> 9
<211> 87
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA骨架序列
<400> 9
guuuuagagc uaugcgaaag cauagcaagu uaaaauaagg cuaguccguu aucaacuuga 60
aaaaguggca ccgagucggu gcuuuuu 87
<210> 10
<211> 97
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA骨架序列
<400> 10
guuuuagagc uaugcuguuu gaaaaaacag cauagcaagu uaaaauaagg cuaguccguu 60
aucaacuuga aaaaguggca ccgagucggu gcuuuuu 97
<210> 11
<211> 101
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA骨架序列
<400> 11
guuuuagagc uaugcuguuu uggaaacaaa acagcauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu u 101
<210> 12
<211> 82
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA骨架序列
<400> 12
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucaac uugaaaaagu 60
ggcaccgagu cggugcuuuu uu 82
<210> 13
<211> 20
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-1
<400> 13
gagaggccuc gccccccgag 20
<210> 14
<211> 20
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-2
<400> 14
gagaggugcc gccagcuguu 20
<210> 15
<211> 20
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-3
<400> 15
ggguccacag uggauugucg 20
<210> 16
<211> 20
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-4
<400> 16
cucaccuugg cuguccugcg 20
<210> 17
<211> 20
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-5
<400> 17
acacauguug ucacgcugcu 20
<210> 18
<211> 20
<212> RNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-6
<400> 18
cagugucuuc ggcaggucgu 20
<210> 19
<211> 25
<212> DNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-1 oligo1
<400> 19
caccggagag gcctcgcccc ccgag 25
<210> 20
<211> 25
<212> DNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-1 oligo2
<400> 20
aaacctcggg gggcgaggcc tctcc 25
<210> 21
<211> 25
<212> DNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-2 oligo1
<400> 21
caccggagag gtgccgccag ctgtt 25
<210> 22
<211> 25
<212> DNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-2 oligo2
<400> 22
aaacaacagc tggcggcacc tctcc 25
<210> 23
<211> 25
<212> DNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-3 oligo1
<400> 23
caccggggtc cacagtggat tgtcg 25
<210> 24
<211> 25
<212> DNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-3 oligo2
<400> 24
aaaccgacaa tccactgtgg acccc 25
<210> 25
<211> 25
<212> DNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-4 oligo1
<400> 25
caccgctcac cttggctgtc ctgcg 25
<210> 26
<211> 25
<212> DNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-4 oligo2
<400> 26
aaaccgcagg acagccaagg tgagc 25
<210> 27
<211> 25
<212> DNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-5 oligo1
<400> 27
caccgacaca tgttgtcacg ctgct 25
<210> 28
<211> 25
<212> DNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-5 oligo2
<400> 28
aaacagcagc gtgacaacat gtgtc 25
<210> 29
<211> 25
<212> DNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-6 oligo1
<400> 29
caccgcagtg tcttcggcag gtcgt 25
<210> 30
<211> 25
<212> DNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> sgRNA-6 oligo2
<400> 30
aaacacgacc tgccgaagac actgc 25
<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> P-F
<400> 31
aatgacttgg acgccttacc 20
<210> 32
<211> 20
<212> DNA
<213> Artificial Sequence(Artificial Sequence)
<220>
<223> P-R
<400> 32
ggaaactgga gatgtctggg 20

Claims (9)

1.一种靶向POMK的sgRNA,其包含的间隔子序列如SEQ ID NO:16所示。
2.权利要求1所述的sgRNA,其包含选自SEQ ID NO:1-12的骨架序列。
3.一种DNA分子,其编码权利要求1或2所述的sgRNA。
4.一种载体,其包含权利要求3所述的DNA分子。
5.一种基因编辑系统,其包含Cas9酶和权利要求1或2所述的sgRNA序列。
6.一种在体外敲除细胞中的POMK基因的方法,包括将该细胞与Cas9酶和权利要求1或2所述的sgRNA接触。
7.权利要求6所述的方法,其中所述Cas9酶是蛋白或编码核酸的形式,所述sgRNA是RNA分子、其编码核酸或载体的形式。
8.权利要求6所述的方法,所述细胞是293T细胞、T细胞、B细胞、巨噬细胞、树突状细胞、单核细胞、NK细胞和/或NKT细胞。
9.权利要求8所述的方法,所述T细胞是CD4+CD8+T细胞、CD4+T细胞、CD8+T细胞、记忆T细胞、幼稚T细胞、γδ-T细胞或αβ-T细胞。
CN202011416237.XA 2020-12-07 2020-12-07 一种编辑pomk基因的系统及其用途 Pending CN114591951A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011416237.XA CN114591951A (zh) 2020-12-07 2020-12-07 一种编辑pomk基因的系统及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011416237.XA CN114591951A (zh) 2020-12-07 2020-12-07 一种编辑pomk基因的系统及其用途

Publications (1)

Publication Number Publication Date
CN114591951A true CN114591951A (zh) 2022-06-07

Family

ID=81813279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011416237.XA Pending CN114591951A (zh) 2020-12-07 2020-12-07 一种编辑pomk基因的系统及其用途

Country Status (1)

Country Link
CN (1) CN114591951A (zh)

Similar Documents

Publication Publication Date Title
US20230383290A1 (en) High-throughput precision genome editing
JP6835726B2 (ja) Crisprハイブリッドdna/rnaポリヌクレオチドおよび使用方法
AU740702B2 (en) Cell-free chimeraplasty and eukaryotic use of heteroduplex mutational vectors
KR102098915B1 (ko) 키메라 게놈 조작 분자 및 방법
WO2020210239A1 (en) Integration of nucleic acid constructs into eukaryotic cells with a transposase from oryzias
EP3940078A1 (en) Off-target single nucleotide variants caused by single-base editing and high-specificity off-target-free single-base gene editing tool
EP3498837A1 (en) Genome editing method
KR20180074610A (ko) 동물 배아의 염기 교정용 조성물 및 염기 교정 방법
CN110684736A (zh) 一种基于CRISPR-Cas9编辑技术的敲除鸡Shp-2基因的细胞系及其构建方法
CN113249362B (zh) 经改造的胞嘧啶碱基编辑器及其应用
WO2021178432A1 (en) Rna-guided genome recombineering at kilobase scale
CN113005141A (zh) 高活性突变体构成的基因编辑工具及制备方法和修复先天性视网膜劈裂症致病基因的方法
KR102151064B1 (ko) 매칭된 5&#39; 뉴클레오타이드를 포함하는 가이드 rna를 포함하는 유전자 교정용 조성물 및 이를 이용한 유전자 교정 방법
CN114591951A (zh) 一种编辑pomk基因的系统及其用途
EP3491131B1 (en) Targeted in situ protein diversification by site directed dna cleavage and repair
CN114591948A (zh) 一种编辑m1ap基因的系统及其用途
CN114606231A (zh) 一种编辑mlxip基因的系统及其用途
WO2022147157A1 (en) Novel nucleic acid-guided nucleases
CN104805100B (zh) 水稻基因OsSμBP‑2在延缓植物叶片衰老中的应用
CN114574485A (zh) 一种编辑agap9基因的系统及其用途
JP7428459B2 (ja) ユーグレナのゲノム改変方法及びユーグレナの育種方法
CN114574487A (zh) 一种编辑cyp4f8基因的系统及其用途
CN114591947A (zh) 一种编辑usp17l8基因的系统及其用途
WO2021076060A1 (en) Programmable rna editing platform
DE60215881T2 (de) Methode für die Erweiterung der chemischen Zusammensetzung von Proteinen produziert in vivo unter Verwendung von mutierten Aminoacyl-tRNA-Synthetasen ohne Korrekturfunktion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220907

Address after: 210061 B1-2, building 16, Shuwu, No.73, tanmi Road, Jiangbei new district, Nanjing City, Jiangsu Province

Applicant after: NANJING BIOHENG BIOTECH Co.,Ltd.

Address before: Room 926-3, building a, phase I, Zhongdan Ecological Life Science Industrial Park, No. 3-1, xinjinhu Road, Jiangbei new area, Nanjing, Jiangsu 210046

Applicant before: Jiangsu Puzhu Biomedical Technology Co.,Ltd.

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination