CN114570393A - 一种含氧空位的CoFe2O4-MoS2负载型催化剂及其制备方法和应用 - Google Patents

一种含氧空位的CoFe2O4-MoS2负载型催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN114570393A
CN114570393A CN202210199078.5A CN202210199078A CN114570393A CN 114570393 A CN114570393 A CN 114570393A CN 202210199078 A CN202210199078 A CN 202210199078A CN 114570393 A CN114570393 A CN 114570393A
Authority
CN
China
Prior art keywords
mos
cofe
oxygen vacancy
supported catalyst
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210199078.5A
Other languages
English (en)
Inventor
季栋
韩慧敏
杨照
方正
李玉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Advanced Biomaterials And Process Equipment Research Institute Co ltd
Original Assignee
Nanjing Advanced Biomaterials And Process Equipment Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Advanced Biomaterials And Process Equipment Research Institute Co ltd filed Critical Nanjing Advanced Biomaterials And Process Equipment Research Institute Co ltd
Priority to CN202210199078.5A priority Critical patent/CN114570393A/zh
Publication of CN114570393A publication Critical patent/CN114570393A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J27/0515Molybdenum with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种含氧空位的CoFe2O4‑MoS2负载型催化剂及其制备方法和应用,其制备方法包括以下步骤:室温下,将含有Fe盐和Co盐的水溶液加入到MoS2的水溶液中,超声分散均匀后,滴加沉淀剂,加热回流,干燥,煅烧,即得到含表面氧空位的CoFe2O4‑MoS2负载型催化剂。本发明克服了CoFe2O4和MoS2的材料缺陷,以简单的原位共沉淀法合成了一种含氧空位的CoFe2O4‑MoS2负载型催化剂,通过在二维材料MoS2上负载CoFe2O4,不仅可以提高复合催化剂的活性,而且可以降低CoFe2O4颗粒的聚合现象,所得含氧空位的CoFe2O4‑MoS2负载型催化剂可以有效降解环丙沙星。

Description

一种含氧空位的CoFe2O4-MoS2负载型催化剂及其制备方法和 应用
技术领域
本发明属于CoFe2O4-MoS2负载型催化剂技术领域,具体涉及一种含氧空位的CoFe2O4-MoS2负载型催化剂及其制备方法和应用。
背景技术
环丙沙星是第二代氟喹诺酮类抗生素的典型代表,用于治愈革兰氏阳性和革兰氏阴性细菌引起的感染。由于环丙沙星在人和动物体内不能被完全或代谢,大部分环丙沙星以其药理活性形式通过尿液和粪便排放到环境中。同时,医院和制药企业的废水也会含有大量的环丙沙星。更严重的是,过渡使用和其较高的化学稳定性导致地下水样品中残留环丙沙星的浓度已经高达40ng/L。一方面,水体中残留的环丙沙星会破坏态环境;另一方面,即使是微量浓度(ng/L)也会直接导致细菌耐药性和抗药性基因产生,进而危害人类健康。因此,有必要探索有效的方法来降解废水中的环丙沙星。
高级氧化工艺是一种去除有毒和难解的有机污染物的替代性有效技术。传统高级氧化工艺通过在高温高压、电、光照等条件下产强氧化能力的羟基自由基,将顽固且不可生物降解的有机化合物化成各种副产物,并最终变成惰性的终产物。为了减少水生环境中的抗生素,研究学已经对异质结光催化、臭氧氧化、芬顿、光芬顿和UV/H2O2进行了深入研究。基于过氧单硫酸盐(PMS)的类芬顿法作为一种高效分解难降解污染物的清洁和有前途的方法,由于其在原位生成强氧化物质,如单重态氧(1O2)、硫酸根(SO4 ·-)、羟基(·OH)、和超氧化物(O2 ·-)自由基。氧化剂或过渡金属离子(Fe2+、Co2+、Cu+等)具有高效节能的优点,在PMS活化方法中脱颖而出。迄今为止,钴离子(Co2+)被认为是PMS均相活化最有效的物种。但残留的Co2+具有潜在的环境毒性和致癌性,极大地阻碍了其规模化应用。
尖晶石型CoFe2O4具有出色的催化活性、稳定的晶体结构、低溶解度、易于与处理后的水溶液分离以及较大的比表面积等优点,已成为最有前途的候选材料。由于两种金属之间的强相互作用,金属离子的浸出量明显减少,可以有效地克服过渡金属活化的缺点。但是,由于CoFe2O4颗粒在合成过程中具有较高的表面能,因此通常会使颗粒聚集,这会极大地降低催化活性。
二维材料二硫化钼(MoS2)具有高导电性、显著的界面极化效应,在用作光催化材料的各种半导体中,表现出特殊的特性,如具有合适的可见光吸收带隙和较大的比表面积,也是一种有前景的载体材料。然而,由于其回收过程困难,这种光催化剂的工业应用是不现实的。
发明内容
发明目的:为了解决现有技术存在问题,本发明提供了一种含氧空位的CoFe2O4-MoS2负载型催化剂及其制备方法和应用。本发明克服了CoFe2O4和MoS2的材料缺陷,以简单的原位共沉淀法合成了一种含氧空位的CoFe2O4-MoS2负载型催化剂,通过在二维材料MoS2上负载CoFe2O4,不仅可以提高复合催化剂的活性,而且可以降低CoFe2O4颗粒的聚合现象。
技术方案:为了达到上述发明问题,本发明采取的技术方案如下:
一种含氧空位的CoFe2O4-MoS2负载型催化剂的制备方法,包括以下步骤:
室温下,将含有Fe盐和Co盐的水溶液加入到MoS2的水溶液中,超声分散均匀后,滴加沉淀剂,加热回流,干燥,煅烧,即得到含表面氧空位的CoFe2O4-MoS2负载型催化剂。
优选的,所述Fe盐选自Fe(NO3)3·9H2O或FeCl3;所述和Co盐选自Co(NO3)2·6H2O或CoCl3·6H2O;所述沉淀剂选自(NH4)2CO3,其浓度为0.4-0.6M。
优选的,所述Fe盐和Co盐的用量,以其中Fe离子和Co离子的摩尔比为2:1计。MoS2、Fe盐和Co盐的质量比为150:27:9.7—150:514:185。
优选的,所述加热回流的温度为90-110℃,回流时间为50-70min。
优选的,所述煅烧的温度为200~500℃,时间为140-160min。
优选的,所述MoS2的合成步骤如下:
取(NH4)6Mo7O24·4H2O和硫脲溶于去离子水中,形成均相溶液,170-190℃保温11-13h,冷却至室温,离心,收集固体产物,洗涤,干燥,即得。
进一步优选的,所述(NH4)6Mo7O24·4H2O和硫脲的质量比为(1-2):(3-4)。
一种含氧空位的CoFe2O4-MoS2负载型催化剂,由上述制备方法制得。
优选的,所述含氧空位的CoFe2O4-MoS2负载型催化剂中,CoFe2O4的质量分数为5~50%。
本发明最后提供了所述的含氧空位的CoFe2O4-MoS2负载型催化剂在降解环丙沙星中的应用。具体为含氧空位的CoFe2O4-MoS2负载型催化剂通过活化过氧单硫酸盐去除水中环丙沙星的应用。
有益效果:与现有技术相比,本发明具有以下优势:
1)本发明提供的方法所制备含氧空位CoFe2O4-MoS2负载型催化剂,操作非常简便。
2)本发明提供的方法所制备含氧空位CoFe2O4-MoS2负载型催化剂,通过共沉淀法原位生长CoFe2O4,同时引入了氧空位缺陷,能够有效地实现CoFe2O4颗粒的良好分散,解决了CoFe2O4易于团聚的问题。
3)本发明提供的方法所制备含氧空位CoFe2O4-MoS2催化剂具有优异的催化反应性能,以极低负载量的CoFe2O4就能可达到环丙沙星的高效降解。通过活化过氧单硫酸盐,然后用液相色谱法检测剩余的环丙沙星。
附图说明
图1为实施例1制得的CoFe2O4-MoS2催化剂的XRD图。
图2为实施例1制得的CoFe2O4-MoS2催化剂的高分辨XPS的O1s的分谱。
图3为实施例1制得的CoFe2O4-MoS2催化剂的降解效果图。
图4为实施例2和实施例3制得的CoFe2O4-MoS2催化剂的降解效果图。
具体实施方式
下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
实施例1
称取(NH4)6Mo7O24·4H2O(1.400g,1.12mmol)和硫脲(3.04g,40mmol)溶于60mL去离子水中,形成均相溶液,搅拌2小时。转移至100mL的特氟龙内衬不锈钢高压釜中,180℃保温12h,冷却至室温。将黑色固体产物离心收集,去离子水抽滤洗涤3~5次,再用无水乙醇洗涤2~3次,60℃真空干燥箱烘箱烘干8小时。
室温下将336uL的(0.2M)Fe(NO3)3·9H2O和(0.1M)Co(NO3)2·6H2O的去离子水溶液添加入含150mgMoS2的50mL去离子水中,超声分散60min;然后滴加(NH4)2CO3溶液(0.5M)10mL,搅拌15min。将该悬浮液在100℃下加热回流60min。冷却至室温,将催化剂前体用去离子水抽滤洗涤(100mL,3次),在60℃下真空干燥6小时。最后将干燥后的催化剂前体在300℃下煅烧150min。得到5%CoFe2O4-MoS2
降解效率测试:以30mL 10mg/L的环丙沙星溶液为污染物,然后加入6mg的实施例1制得的5%CoFe2O4-MoS2催化剂,加入过氧单硫酸盐(PMS)(4.6mg,0.5M)。反应40min,经过活化PMS催化环丙沙星溶液测试分析表明(图3),其对环丙沙星的降解率达到99.7%。
如图1所示为实施例1制得的CoFe2O4-MoS2催化剂的XRD图。主要的响应峰在2θ为14.38°、29.12°、32.84°、33.66°、58.34°、60.36°、75.92°°处,对应于MoS2的(002)、(004)、(100)、(101)、(110)、(008)、(203)、(116)晶面这很好地与MoS2标准PDF卡片37-1492匹配。虽然CoFe2O4的掺杂比例较低,在XRD图谱中特征衍射峰较弱,但是在18.12°、30.62°、43.98°、47.30°、56.36°、64.68°处的峰值可以归属为CoFe2O4的(111)、(220)、(311)、(400)、(511)、(531)晶面。综合以上结果表明,MoS2和CoFe2O4结合良好。
如图2所示为实施例1制得的CoFe2O4-MoS2催化剂的高分辨XPS的O1s的分谱,O1s在大约530.1、530.8和531.7eV处有三个拟合峰,分别与晶格氧(OL)、氧空位(OV)和吸附氧(Oad)相对应。用高斯函数计算XPS的O1s谱图中各分峰面积,确定晶格氧:氧空位:吸附氧=31.6:36.9:31.5。
如图3所示为实施例1制得的CoFe2O4-MoS2催化剂的降解效果图。在20min左右就可观察到5%CoFe2O4-MoS2对环丙沙星的降解率达到90%,40min即可达到99.7%。
实施例2
称取(NH4)6Mo7O24·4H2O(1.400g,1.12mmol)和硫脲(3.04g,40mmol)溶于60mL去离子水中,形成均相溶液,搅拌2小时。转移至100mL的特氟龙内衬不锈钢高压釜中,180℃保温12h,冷却至室温。将黑色固体产物离心收集,去离子水抽滤洗涤3~5次,再用无水乙醇洗涤2~3次,60℃真空干燥箱烘箱烘干8小时。
室温下将1600uL的(0.2M)Fe(NO3)3·9H2O和(0.1M)Co(NO3)2·6H2O的去离子水溶液添加入含150mgMoS2的50mL去离子水中,超声分散60min;然后滴加(NH4)2CO3溶液(0.5M)10mL,搅拌15min。将该悬浮液在100℃下加热回流60min。冷却至室温,将催化剂前体用去离子水抽滤洗涤(100mL,3次),在60℃下真空干燥6小时。最后将干燥后的催化剂前体在300℃下煅烧150min。得到20%CoFe2O4-MoS2
降解效率测试:以30mL 10mg/L的环丙沙星溶液为污染物,然后加入6mg的实施例2制得的20%CoFe2O4-MoS2催化剂,加入过氧单硫酸盐(PMS)(4.6mg,0.5M)。反应40min,经过活化PMS催化环丙沙星溶液测试分析表明(图4),其对环丙沙星的降解率达到94.17%。
实施例3
称取(NH4)6Mo7O24·4H2O(1.400g,1.12mmol)和硫脲(3.04g,40mmol)溶于60mL去离子水中,形成均相溶液,搅拌2小时。转移至100mL的特氟龙内衬不锈钢高压釜中,180℃保温12h,冷却至室温。将黑色固体产物离心收集,去离子水抽滤洗涤3~5次,再用无水乙醇洗涤2~3次,60℃真空干燥箱烘箱烘干8小时。
室温下将6395uL的(0.2M)Fe(NO3)3·9H2O和(0.1M)Co(NO3)2·6H2O的去离子水溶液添加入含150mgMoS2的50mL去离子水中,超声分散60min;然后滴加(NH4)2CO3溶液(0.5M)10mL,搅拌15min。将该悬浮液在100℃下加热回流60min。冷却至室温,将催化剂前体用去离子水抽滤洗涤(100mL,3次),在60℃下真空干燥6小时。最后将干燥后的催化剂前体在300℃下煅烧150min。得到50%CoFe2O4-MoS2
降解效率测试:以30mL 10mg/L的环丙沙星溶液为污染物,然后加入6mg的实施例1制得的20%CoFe2O4-MoS2催化剂,加入过氧单硫酸盐(PMS)(4.6mg,0.5M)。反应40min,经过活化PMS催化环丙沙星溶液测试分析表明(图4),其对环丙沙星的降解率达到84.17%。。
本发明提供了一种思路及方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (10)

1.一种含氧空位的CoFe2O4-MoS2负载型催化剂的制备方法,其特征在于,包括以下步骤:
室温下,将含有Fe盐和Co盐的水溶液加入到MoS2的水溶液中,超声分散均匀后,滴加沉淀剂,加热回流,干燥,煅烧,即得到含表面氧空位的CoFe2O4-MoS2负载型催化剂。
2.根据权利要求1所述的含氧空位的CoFe2O4-MoS2负载型催化剂的制备方法,其特征在于,所述Fe盐选自Fe(NO3)3·9H2O或FeCl3;所述Co盐选自Co(NO3)2·6H2O或CoCl3·6H2O;所述沉淀剂选自(NH4)2CO3,其浓度为0.4-0.6M。
3.根据权利要求1所述的含氧空位的CoFe2O4-MoS2负载型催化剂的制备方法,其特征在于,所述Fe盐和Co盐的用量,以其中Fe离子和Co离子的摩尔比为2:1计。MoS2、Fe盐和Co盐的质量比为150:27:9.7—150:514:185。
4.根据权利要求1所述的含氧空位的CoFe2O4-MoS2负载型催化剂的制备方法,其特征在于,所述加热回流的温度为90-110℃,回流时间为50-70min。
5.根据权利要求1所述的含氧空位的CoFe2O4-MoS2负载型催化剂的制备方法,其特征在于,所述煅烧的温度为200~500℃,时间为140-160min。
6.根据权利要求1所述的含氧空位的CoFe2O4-MoS2负载型催化剂的制备方法,其特征在于,所述MoS2的合成步骤如下:
取(NH4)6Mo7O24·4H2O和硫脲溶于去离子水中,形成均相溶液,170-190℃保温11-13h,冷却至室温,离心,收集固体产物,洗涤,干燥,即得。
7.根据权利要求6所述的含氧空位的CoFe2O4-MoS2负载型催化剂的制备方法,其特征在于,所述(NH4)6Mo7O24·4H2O和硫脲的质量比为(1-2):(3-4)。
8.一种含氧空位的CoFe2O4-MoS2负载型催化剂,由权利要求1-7任一项所述制备方法制得。
9.根据权利要求8所述的含氧空位的CoFe2O4-MoS2负载型催化剂,其特征在于,所述含氧空位的CoFe2O4-MoS2负载型催化剂中,CoFe2O4的质量分数为5~50%。
10.权利要求8所述的含氧空位的CoFe2O4-MoS2负载型催化剂在降解环丙沙星中的应用。
CN202210199078.5A 2022-03-01 2022-03-01 一种含氧空位的CoFe2O4-MoS2负载型催化剂及其制备方法和应用 Pending CN114570393A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210199078.5A CN114570393A (zh) 2022-03-01 2022-03-01 一种含氧空位的CoFe2O4-MoS2负载型催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210199078.5A CN114570393A (zh) 2022-03-01 2022-03-01 一种含氧空位的CoFe2O4-MoS2负载型催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN114570393A true CN114570393A (zh) 2022-06-03

Family

ID=81776797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210199078.5A Pending CN114570393A (zh) 2022-03-01 2022-03-01 一种含氧空位的CoFe2O4-MoS2负载型催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114570393A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115634699A (zh) * 2022-11-07 2023-01-24 浙江省环境科技有限公司 镍掺杂CoFe复合氧化物/二硫化钼负载型催化剂及其制备和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413921A (zh) * 2013-08-26 2013-11-27 中国科学技术大学 尖晶石型磁性铁氧体/二硫化钼纳米复合材料及其制备方法和应用
CN106582772A (zh) * 2017-01-04 2017-04-26 中国科学技术大学苏州研究院 一种CoFe2O4/g‑C3N4磁性纳米材料及其制备方法
CN111167482A (zh) * 2019-12-31 2020-05-19 中国科学院城市环境研究所 一种MoS2/CuFe2O4催化剂、制备方法及其应用
CN112125349A (zh) * 2020-09-23 2020-12-25 广东石油化工学院 高耐久的铁酸钴材料及其应用
CN113976146A (zh) * 2021-11-18 2022-01-28 六盘水师范学院 一种用于过一硫酸氢盐活化的磁性异质结催化剂的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413921A (zh) * 2013-08-26 2013-11-27 中国科学技术大学 尖晶石型磁性铁氧体/二硫化钼纳米复合材料及其制备方法和应用
CN106582772A (zh) * 2017-01-04 2017-04-26 中国科学技术大学苏州研究院 一种CoFe2O4/g‑C3N4磁性纳米材料及其制备方法
CN111167482A (zh) * 2019-12-31 2020-05-19 中国科学院城市环境研究所 一种MoS2/CuFe2O4催化剂、制备方法及其应用
CN112125349A (zh) * 2020-09-23 2020-12-25 广东石油化工学院 高耐久的铁酸钴材料及其应用
CN113976146A (zh) * 2021-11-18 2022-01-28 六盘水师范学院 一种用于过一硫酸氢盐活化的磁性异质结催化剂的制备方法及其应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
QIUNAN SUN ET AL.: ""Activation of peroxymonosulfate by a floating oxygen vacancies - CuFe2O4 photocatalyst under visible light for efficient degradation of sulfamethazine"", 《SCIENCE OF THE TOTAL ENVIRONMENT》, vol. 824, 14 February 2022 (2022-02-14), pages 1 - 12 *
RUI BAI ET AL.: ""Acceleration of peroxymonosulfate decomposition by a magnetic MoS2/ CuFe2O4 heterogeneous catalyst for rapid degradation of fluoxetine"", 《CHEMICAL ENGINEERING JOURNAL》, vol. 397, 15 May 2020 (2020-05-15), pages 1 - 11, XP086182403, DOI: 10.1016/j.cej.2020.125501 *
SHAN FENG ET AL.: ""MoS2/CoFe2O4 heterojunction for boosting photogenerated carrier separation and the dominant role in enhancing peroxymonosulfate activation"", 《CHEMICAL ENGINEERING JOURNAL》, vol. 433, 4 January 2022 (2022-01-04), pages 1 - 12 *
XIAOMING PENG ET AL.: ""Mechanistic investigation of rapid catalytic degradation of tetracycline using CoFe2O4@MoS2 by activation of peroxymonosulfate"", 《SEPARATION AND PURIFICATION TECHNOLOGY》, vol. 287, 22 January 2022 (2022-01-22), pages 1 - 12 *
解超群: ""MoS2/CoFe2O4纳米材料的制备及活化过硫酸盐的研究"", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》, no. 2, 15 February 2021 (2021-02-15), pages 19 - 20 *
邓林等: ""活性炭负载钴铁氧体催化PMS降解水中罗丹明B"", 《环境工程学报》, vol. 12, no. 5, 31 May 2018 (2018-05-31), pages 2 - 1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115634699A (zh) * 2022-11-07 2023-01-24 浙江省环境科技有限公司 镍掺杂CoFe复合氧化物/二硫化钼负载型催化剂及其制备和应用
CN115634699B (zh) * 2022-11-07 2023-05-23 浙江省环境科技有限公司 镍掺杂CoFe复合氧化物/二硫化钼负载型催化剂及其制备和应用

Similar Documents

Publication Publication Date Title
Chen et al. Construction of dual S-scheme Ag2CO3/Bi4O5I2/g-C3N4 heterostructure photocatalyst with enhanced visible-light photocatalytic degradation for tetracycline
Chen et al. Synergy effect between adsorption and heterogeneous photo-Fenton-like catalysis on LaFeO3/lignin-biochar composites for high efficiency degradation of ofloxacin under visible light
Doan et al. Cu2O/Fe3O4/MIL-101 (Fe) nanocomposite as a highly efficient and recyclable visible-light-driven catalyst for degradation of ciprofloxacin
Qamar et al. Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiations
Priyadharsan et al. Synthesis and investigation on synergetic effect of rGO-ZnO decorated MoS2 microflowers with enhanced photocatalytic and antibacterial activity
Raha et al. Facile fabrication of g-C3N4 supported Fe3O4 nanoparticles/ZnO nanorods: A superlative visible light responsive architecture for express degradation of pantoprazole
Abazari et al. An advanced composite with ultrafast photocatalytic performance for the degradation of antibiotics by natural sunlight without oxidizing the source over TMU-5@ Ni–Ti LDH: mechanistic insight and toxicity assessment
gamal El-Shamy Synthesis of new magnesium peroxide (MgO2) nano-rods for pollutant dye removal and antibacterial applications
Kumar et al. Acceleration of photo-reduction and oxidation capabilities of Bi4O5I2/SPION@ calcium alginate by metallic Ag: Wide spectral removal of nitrate and azithromycin
Wang et al. State-of-the-art and prospects of Zn-containing layered double hydroxides (Zn-LDH)-based materials for photocatalytic water remediation
Wu et al. Construct interesting CuS/TiO2 architectures for effective removal of Cr (VI) in simulated wastewater via the strong synergistic adsorption and photocatalytic process
Izzudin et al. Simultaneous remediation of hexavalent chromium and organic pollutants in wastewater using period 4 transition metal oxide-based photocatalysts: a review
Huang et al. Fabrication of a novel biochar decorated nano-flower-like MoS2 nanomaterial for the enhanced photodegradation activity of ciprofloxacin: Performance and mechanism
Chen et al. In-situ synthesis of biochar modified PbMoO4: An efficient visible light-driven photocatalyst for tetracycline removal
Ouyang et al. Synthesis of novel ternary Ag/BiVO4/GO photocatalyst for degradation of oxytetracycline hydrochloride under visible light
Xu et al. Simultaneous removal of ceftriaxone sodium and Cr (VI) by a novel multi-junction (pn junction combined with homojunction) composite photocatalyst: BiOI nanosheets modified cake-like anatase-rutile TiO2
Swetha et al. Triple-mechanism driven Fe-doped nn hetero-architecture of Pr6O11-MoO3 decorated g-C3N4 for doxycycline degradation and bacterial photoinactivation
Cong et al. A dandelion-like NiCo2O4 microsphere with superior catalytic activity as the mediator of persulfate activation for high-efficiency degradation of emerging contaminants
Warshagha et al. Direct Z-scheme AgBr/β-MnO2 photocatalysts for highly efficient photocatalytic and anticancer activity
Shi et al. Improvement of synergistic effect photocatalytic/peroxymonosulfate activation for degradation of amoxicillin using carbon dots anchored on rod-like CoFe2O4
Basaleh et al. Novel visible light heterojunction CdS/Gd2O3 nanocomposites photocatalysts for Cr (VI) photoreduction
Tuna et al. Construction of novel Zn2TiO4/g-C3N4 Heterojunction with efficient photodegradation performance of tetracycline under visible light irradiation
Wu et al. Construction of Z-scheme CoAl-LDH/Bi2MoO6 heterojunction for enhanced photocatalytic degradation of antibiotics in natural water bodies
Bobde et al. Layered double hydroxides (LDHs)-based photocatalysts for dye degradation: A review
An et al. Red mud supported on reduced graphene oxide as photo-Fenton catalysts for organic contaminant degradation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination