CN114565172B - 电池剩余寿命预测模型构建、电池剩余寿命预测方法 - Google Patents

电池剩余寿命预测模型构建、电池剩余寿命预测方法 Download PDF

Info

Publication number
CN114565172B
CN114565172B CN202210215363.1A CN202210215363A CN114565172B CN 114565172 B CN114565172 B CN 114565172B CN 202210215363 A CN202210215363 A CN 202210215363A CN 114565172 B CN114565172 B CN 114565172B
Authority
CN
China
Prior art keywords
battery
characteristic data
battery capacity
predicted
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210215363.1A
Other languages
English (en)
Other versions
CN114565172A (zh
Inventor
郄瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Inspur Intelligent Technology Co Ltd
Original Assignee
Suzhou Inspur Intelligent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Inspur Intelligent Technology Co Ltd filed Critical Suzhou Inspur Intelligent Technology Co Ltd
Priority to CN202210215363.1A priority Critical patent/CN114565172B/zh
Publication of CN114565172A publication Critical patent/CN114565172A/zh
Application granted granted Critical
Publication of CN114565172B publication Critical patent/CN114565172B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Water Supply & Treatment (AREA)
  • Game Theory and Decision Science (AREA)
  • Primary Health Care (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)

Abstract

本发明实施例涉及一种电池剩余寿命预测模型构建、电池剩余寿命预测方法,包括:获取样本电池的各历史使用周期的特征数据以及对应的电池容量,特征数据为表征样本电池的健康状态的特征数据;将特征数据输入至初始模型中,得到输出结果;基于输出结果与下一历史使用周期的特征数据的关系对初始模型进行训练,得到特征数据预测模型;将特征数据输入至另一初始模型中,得到输出结果;基于输出结果与电池容量的关系对初始模型进行训练,得到电池容量预测模型;将特征数据预测模型的输出端与电池容量预测模型的输入端级联,构建电池剩余寿命预测模型,由此,可以简便、快捷的训练电池剩余寿命预测模型,模型预测精准度较高。

Description

电池剩余寿命预测模型构建、电池剩余寿命预测方法
技术领域
本发明实施例涉及电池健康监测领域,尤其涉及一种电池剩余寿命预测模型构建、电池剩余寿命预测方法。
背景技术
锂离子电池具有容量高、循环寿命长、质量轻等优点,自上世纪九十年代商业化以来,已经应用到生活的方方面面。然而除了应用广泛、具有众多优点外,锂离子电池本身仍存在一定的安全性和可靠性问题,限制了锂离子电池的发展,例如,电池可能出现起火爆炸事故;另外随着锂离子电池的使用,其容量会逐渐降低,当容量下降到一定程度时,电池将无法正常使用。
电池寿命可以分为存储寿命、使用寿命和循环寿命。存储寿命指电池在存储条件下容量衰减至失效阈值所需要的时间。使用寿命指电池在常规使用条件下容量衰减至失效阈值所需要的时间,实际应用中通常以充放电的循环周期来表示,即循环寿命;锂离子电池的剩余寿命一般定义为:锂离子电池在常规使用条件下,电池的性能或者健康状态退化到失效阈值之前所剩余的充放电循环次数。但准确预测锂离子电池的剩余寿命是一项非常困难的工作,一方面,锂离子电池内部电化学过程非常复杂,是一个典型的非线性动态时变电化学系统;另一方面,其退化过程还受负载环境与工作环境等各方面的影响;除此以外,想要准确得到锂离子电池的内部状态数据还需要使用实验室仪器测量,这限制了锂离子电池剩余寿命预测在现实生活中的使用。
近年来,电池的剩余寿命预测技术取得了巨大发展,通常将剩余寿命预测技术分为基于物理模型和基于数据驱动两大类方法。
基于物理模型的预测方法主要利用电池的负载状态、电池本身的结构和材料性质、电池退化机理和失效机制这三种类型的经验知识进行预测,核心是从物理化学和电化学的角度建立一个电池退化模型,主要包括:基于退化机理模型的预测方法和基于等效电路模型的预测方法。退化机理模型虽然可以反映电池在退化过程中内部的电化学反应情况,但是这种模型一般只在瞬时情况下有较好的准确性,难以准确建立剩余寿命与时间序列的联系,并且特定模型只对特定的电池材料和架构、使用条件有效,限制了测量广泛性和准确度。等效电路模型主要依靠基本电学元件搭建电路,模拟锂离子电池的动态变化过程与特性,从而进行剩余寿命的预测,但由于在模拟过程中忽略了电池内部条件和电池所处环境的影响因素,模型对电池的静态特性与动态特性的描述精度不高。综合来看,基于物理模型的方法需要对锂离子电池内部的物理化学结构有着充分的了解,建模难度高、准确性低。
基于数据驱动的预测方法不考虑锂离子电池内部的化学反应机理和退化机理,直接挖掘电池的可测量状态数据、环境状态和负载数据中隐含的电池健康状态信息,找出其中的时变规律,从而实现剩余寿命预测。主要包括:随机过程模型、滤波方法和人工智能方法。虽然随机过程方法适用范围广,可表达预测结果的不确定性,但是十分依赖超参数的初始化,计算量大,长期预测精度低。滤波方法采用概率式预测,可以排除数据中的噪音,表达不确定性,但是初始化过程复杂,建模难,时效性也比较差。而人工智能方法中,神经网络模型训练需要大量样本数据,模型复杂,自回归算法实行简单,但长期预测精度较低。
因此,如何精准、简便、快捷的预测锂离子电池的剩余寿命成为亟待解决的问题。
发明内容
鉴于此,为解决上述技术问题或部分技术问题,本发明实施例提供一种电池剩余寿命预测模型构建、电池剩余寿命预测方法。
第一方面,本发明实施例提供一种电池剩余寿命预测模型的构建方法,包括:
获取样本电池的各历史使用周期的第一特征数据以及对应的第一电池容量,所述第一特征数据为表征所述样本电池的健康状态的特征数据;
将所述第一特征数据输入至第一初始模型中,得到第一预测特征数据;
基于所述第一预测特征数据与下一历史使用周期的第一特征数据的关系对所述第一初始模型进行训练,得到训练好的特征数据预测模型;
将所述第一特征数据输入至第二初始模型中,得到第一预测电池容量;
基于所述第一预测电池容量与所述第一电池容量的关系对所述第二初始模型进行训练,得到训练好的电池容量预测模型;
将所述特征数据预测模型的输出端与所述电池容量预测模型的输入端级联,构建电池剩余寿命预测模型。
在一个可能的实施方式中,所述特征数据预测模型为自注意力机制模型。
在一个可能的实施方式中,所述电池容量预测模型为多层感知机模型。
第二方面,本发明实施例提供一种电池剩余寿命预测方法,包括:
获取待测电池的当前使用周期的第二特征数据,所述第二特征数据为表征所述待测电池的健康状态的特征数据;
将所述第二特征数据输入至如权利要求1-3任一项所构建的电池剩余寿命预测模型中,得到所述待测电池的第二预测特征数据及第二预测电池容量;
判断所述第二预测电池容量是否达到预设电池容量阈值;
若所述第二预测电池容量未达到预设电池容量阈值,则将所述第二特征数据更新为所述第二预测特征数据,并返回所述第二特征数据输入至电池剩余寿命预测模型中,得到所述待测电池的第二预测特征数据及第二预测电池容量的步骤,直至所述第二预测电池容量达到所述预设电池容量阈值为止;
记录所述第二预测电池容量达到所述预设电池容量阈值时所述电池剩余寿命预测模型的循环周期;
基于所述循环周期确定所述待测电池的剩余寿命。
第三方面,本发明实施例提供一种电池剩余寿命预测模型的构建装置,包括:
数据获取模块,用于获取样本电池的各历史使用周期的第一特征数据以及对应的第一电池容量,所述第一特征数据为表征所述样本电池的健康状态的特征数据;
模型训练模块,用于将所述第一特征数据输入至第一初始模型中,得到第一预测特征数据;
所述模型训练模块,还用于基于所述第一预测特征数据与下一历史使用周期的第一特征数据的关系对所述第一初始模型进行训练,得到训练好的特征数据预测模型;
所述模型训练模块,还用于将所述第一特征数据输入至第二初始模型中,得到第一预测电池容量;
所述模型训练模块,还用于基于所述第一预测电池容量与所述第一电池容量的关系对所述第二初始模型进行训练,得到训练好的电池容量预测模型;
模型构建模块,用于将所述特征数据预测模型的输出端与所述电池容量预测模型的输入端级联,构建电池剩余寿命预测模型。
第四方面,本发明实施例提供一种电池剩余寿命预测装置,包括:
数据获取模块,用于获取待测电池的当前使用周期的第二特征数据,所述第二特征数据为表征所述待测电池的健康状态的特征数据;
预测模块,用于将所述第二特征数据输入至电池剩余寿命预测模型中,得到所述待测电池的第二预测特征数据及第二预测电池容量;
判断模块,用于判断所述第二预测电池容量是否达到预设电池容量阈值;
所述判断模块,还用于若所述第二预测电池容量未达到预设电池容量阈值,则将所述第二特征数据更新为所述第二预测特征数据,并返回所述第二特征数据输入电池剩余寿命预测模型中,得到所述待测电池的第二预测特征数据及第二预测电池容量的步骤,直至所述第二预测电池容量达到所述预设电池容量阈值为止;
记录模块,用于记录所述第二预测电池容量达到所述预设电池容量阈值时所述电池剩余寿命预测模型的循环周期;
确定模块,用于基于所述循环周期确定所述待测电池的剩余寿命。
第五方面,本发明实施例提供一种服务器,包括:处理器和存储器,所述处理器用于执行所述存储器中存储的电池剩余寿命预测模型的构建程序和电池剩余寿命预测程序,以实现上述第一方面中所述的电池剩余寿命预测模型的构建方法和上述第二方面中所述的电池剩余寿命预测方法。
第六方面,本发明实施例提供一种存储介质,包括:所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现上述第一方面中所述的电池剩余寿命预测模型的构建方法和上述第二方面中所述的电池剩余寿命预测方法。
本发明实施例提供的电池剩余寿命预测模型的构建方案,通过获取样本电池的各历史使用周期的第一特征数据以及对应的第一电池容量,所述第一特征数据为表征所述样本电池的健康状态的特征数据;将所述第一特征数据输入至第一初始模型中,得到第一预测特征数据;基于所述第一预测特征数据与下一历史使用周期的第一特征数据的关系对所述第一初始模型进行训练,得到训练好的特征数据预测模型;将所述第一特征数据输入至第二初始模型中,得到第一预测电池容量;基于所述第一预测电池容量与所述第一电池容量的关系对所述第二初始模型进行训练,得到训练好的电池容量预测模型;将所述特征数据预测模型的输出端与所述电池容量预测模型的输入端级联,构建电池剩余寿命预测模型,相比于现有的电池寿命预测模型应用广泛性低、建模难度高、精准度低的问题,由本方案,可以简便、快捷的训练电池剩余寿命预测模型,模型预测精准度较高。
本发明实施例提供的电池剩余寿命预测方案,通过获取待测电池的当前使用周期的第二特征数据,所述第二特征数据为表征所述待测电池的健康状态的特征数据;将所述第二特征数据输入至电池剩余寿命预测模型中,得到所述待测电池的第二预测特征数据及第二预测电池容量;判断所述第二预测电池容量是否达到预设电池容量阈值;若所述第二预测电池容量未达到预设电池容量阈值,则将所述第二特征数据更新为所述第二预测特征数据,并返回所述第二特征数据输入至电池剩余寿命预测模型中,得到所述待测电池的第二预测特征数据及第二预测电池容量的步骤,直至所述第二预测电池容量达到所述预设电池容量阈值为止;记录所述第二预测电池容量达到所述预设电池容量阈值时所述电池剩余寿命预测模型的循环周期;基于所述循环周期确定所述待测电池的剩余寿命,相比于现有技术的电池剩余寿命预测方法较为复杂、精准度低的问题,由本方案,通过使用预先训练的电池剩余寿命预测模型可以简便、快捷、精准的预测电池的剩余寿命。
附图说明
图1为本发明实施例提供的一种电池剩余寿命预测模型的构建方法的流程示意图;
图2为本发明实施例提供的一种电池剩余寿命预测方法的流程示意图;
图3为本发明实施例提供的一种电池剩余寿命预测曲线示意图;
图4为本发明实施例提供的一种电池剩余寿命预测模型的构建装置的结构示意图;
图5为本发明实施例提供的一种电池剩余寿命预测装置的结构示意图;
图6为本发明实施例提供的一种服务器的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为便于对本发明实施例的理解,下面将结合附图以具体实施例做进一步的解释说明,实施例并不构成对本发明实施例的限定。
图1为本发明实施例提供的一种电池剩余寿命预测模型的构建方法的流程示意图,具体包括:
S11、获取样本电池的各历史使用周期的第一特征数据以及对应的第一电池容量,所述第一特征数据为表征所述样本电池的健康状态的特征数据。
本发明实施例中,可以将电池充放电一次记作一个循环周期,随着循环周期的变化,电池充电时的电压、电流和温度曲线都随之改变,达到峰值或者饱和值的时间同循环周期有一定的联系,因此,可以选取电池充电过程中到达截止电压的时间点、达到截止电流的时间点和达到温度峰值的时间点作为第一特征数据,在电池放电时,电压下降速率随着循环周期的增大而增大;到达饱和电流的时间随着周期的增大而减小;电池内部到达温度峰值的时间随周期的增大而减小,因此,可以选择放电过程中到达截止电压的时间点、达到截止电流的时间点和达到温度峰值的时间点作为第一特征数据。阻抗测量数据中电解液阻抗和电荷转移阻抗之和随着循环周期的增大而增大,也可以作为第一特征数据。
将上述的第一特征数据作为表征电池健康状态的特征数据。获取样本电池的各个历史使用周期的第一特征数据,将一个使用周期内的多个第一特征数据进行归一化处理,包括但不限于将多个第一特征数据合并成一组特征向量,作为一组第一特征数据。并获取每组第一特征数据对应的电池容量。
S12、将所述第一特征数据输入至第一初始模型中,得到第一预测特征数据。
S13、基于所述第一预测特征数据与下一历史使用周期的第一特征数据的关系对所述第一初始模型进行训练,得到训练好的特征数据预测模型。
将样本电池的多组第一特征数据输入至第一初始模型中,使得第一初始模型输出每组第一特征数据对应的第一预测特征数据,然后基于第一预测特征数据与实际的下一历史使用周期的第一特征数据的关系,对第一初始模型进行学习训练,得到训练好的特征数据预测模型。其中,第一预测特征数据与实际的下一历史使用周期的第一特征数据的关系可以是相似程度,当相似程度大于预设的差异程度阈值时,则确定模型训练完成;特征数据预测模型可以为自注意力机制模型。
S14、将所述第一特征数据输入至第二初始模型中,得到第一预测电池容量。
S15、基于所述第一预测电池容量与所述第一电池容量的关系对所述第二初始模型进行训练,得到训练好的电池容量预测模型。
将样本电池的多组第一特征数据输入至第二初始模型中,使得第二初始模型输出每组第一特征数据对应的第一预测电池容量,然后基于第一预测电池容量与实际的每组第一特征数据对应的第一电池容量的关系,对第二初始模型进行训练,得到训练好的电池容量预测模型。其中,第一预测电池容量与实际的每组第一特征数据对应的第一电池容量的关系可以是相似程度,当相似程度大于预设的差异程度阈值时,则确定模型训练完成;电池容量预测模型可以为多层感知机模型。
S16、将所述特征数据预测模型的输出端与所述电池容量预测模型的输入端级联,构建电池剩余寿命预测模型。
将上述训练完成的特征数据预测模型的输出端与训练完成的电池容量预测模型的输入端级联,构建得到电池剩余寿命预测模型。
本发明实施例提供的电池剩余寿命预测模型的构建方法,通过获取样本电池的各历史使用周期的第一特征数据以及对应的第一电池容量,所述第一特征数据为表征所述样本电池的健康状态的特征数据;将所述第一特征数据输入至第一初始模型中,得到第一预测特征数据;基于所述第一预测特征数据与下一历史使用周期的第一特征数据的关系对所述第一初始模型进行训练,得到训练好的特征数据预测模型;将所述第一特征数据输入至第二初始模型中,得到第一预测电池容量;基于所述第一预测电池容量与所述第一电池容量的关系对所述第二初始模型进行训练,得到训练好的电池容量预测模型;将所述特征数据预测模型的输出端与所述电池容量预测模型的输入端级联,构建电池剩余寿命预测模型,相比于现有的电池寿命预测模型应用广泛性低、建模难度高、精准度低的问题,由本方法,可以简便、快捷的训练电池剩余寿命预测模型,模型预测精准度较高。
图2为本发明实施例提供的一种电池剩余寿命预测方法的流程示意图,具体包括:
S21、获取待测电池的当前使用周期的第二特征数据,所述第二特征数据为表征所述待测电池的健康状态的特征数据。
本发明实施例中,结合图3所示的一种电池剩余寿命预测曲线示意图,对电池剩余寿命预测方法进行说明。电池剩余寿命预测模型可以部署在任意需要电池供电的设备上,或者,部署在云端服务器。
例如,可以将电池剩余寿命预测模型部署在笔记本电脑上,当用户想要预测笔记本电脑的电池剩余寿命时,可以通过用户端生成电池剩余寿命预测指令,调用电池剩余寿命预测模型对笔记本电脑进行电池剩余寿命预测。
可选的,可以不通过电池剩余寿命预测指令触发电池剩余寿命预测,可以是经过一定的时间,自动触发电池剩余寿命预测。
如图3所示,起始预测点可以是任意接收到电池剩余寿命预测指令的时刻;电池容量阈值可以是电池寿命期限容量,该电池容量阈值表征电池容量下降到该容量时,电池内部可能会发生急剧的化学变化,电池健康状态会急速下降,不同型号电池分别对应不同的电池容量阈值。
获取待测电池的当前使用周期的第二特征数据,该第二特征数据为表征待测电池的健康状态的特征数据,与第一特征数据中的数据类型相同,在此不再赘述。
S22、将所述第二特征数据输入至电池剩余寿命预测模型中,得到所述待测电池的第二预测特征数据及第二预测电池容量。
S23、判断所述第二预测电池容量是否达到预设电池容量阈值。
将待测电池的当前使用周期的第二特征数据输入至电池剩余寿命预测模型中,得到待测电池的第二预测特征数据及第二预测电池容量。判断第二预测电池容量是否达到预设电池容量阈值(例如,待测电池额定容量的40%)。
S24、若所述第二预测电池容量未达到预设电池容量阈值,则将所述第二特征数据更新为所述第二预测特征数据。
若第二预测电池容量未达到预设电池容量阈值,则将第二预测特征数据继续输入至电池剩余寿命预测模型中继续预测,以此循环,直至第二预测电池容量达到预设电池容量阈值为止。
S25、记录所述第二预测电池容量达到所述预设电池容量阈值时所述电池剩余寿命预测模型的循环周期。
S26、基于所述循环周期确定所述待测电池的剩余寿命。
记录第二预测电池容量达到预设电池容量阈值时电池剩余寿命预测模型的循环周期,该循环周期可以作为待测电池的剩余可循环充放电次数,即待测电池的剩余寿命。
S27、若所述第二预测电池容量达到预设电池容量阈值,则确定所述待测电池到达寿命期限。
可选的,若根据当前使用周期的第二特征数据进行预测时,得到的第二预测电池容量达到预设电池容量阈值,则确定待测电池已经达到寿命期限,表征电池如果继续使用很可能出现问题,因此,可以提示更换电池。
本发明实施例提供的电池剩余寿命预测方法,通过获取待测电池的当前使用周期的第二特征数据,所述第二特征数据为表征所述待测电池的健康状态的特征数据;将所述第二特征数据输入至电池剩余寿命预测模型中,得到所述待测电池的第二预测特征数据及第二预测电池容量;判断所述第二预测电池容量是否达到预设电池容量阈值;若所述第二预测电池容量未达到预设电池容量阈值,则将所述第二特征数据更新为所述第二预测特征数据,并返回所述第二特征数据输入至电池剩余寿命预测模型中,得到所述待测电池的第二预测特征数据及第二预测电池容量的步骤,直至所述第二预测电池容量达到所述预设电池容量阈值为止;记录所述第二预测电池容量达到所述预设电池容量阈值时所述电池剩余寿命预测模型的循环周期;基于所述循环周期确定所述待测电池的剩余寿命,相比于现有技术的电池剩余寿命预测方法较为复杂、精准度低的问题,由本方法,通过使用预先训练的电池剩余寿命预测模型可以简便、快捷、精准的预测电池的剩余寿命。
图4为本发明实施例提供的一种电池剩余寿命预测模型的构建装置的结构示意图,具体包括:
数据获取模块,用于获取样本电池的各历史使用周期的第一特征数据以及对应的第一电池容量,所述第一特征数据为表征所述样本电池的健康状态的特征数据。详细说明参见上述方法实施例对应的相关描述,此处不再赘述。
模型训练模块,用于将所述第一特征数据输入至第一初始模型中,得到第一预测特征数据。详细说明参见上述方法实施例对应的相关描述,此处不再赘述。
所述模型训练模块,还用于基于所述第一预测特征数据与下一历史使用周期的第一特征数据的关系对所述第一初始模型进行训练,得到训练好的特征数据预测模型。详细说明参见上述方法实施例对应的相关描述,此处不再赘述。
所述模型训练模块,还用于将所述第一特征数据输入至第二初始模型中,得到第一预测电池容量。详细说明参见上述方法实施例对应的相关描述,此处不再赘述。
所述模型训练模块,还用于基于所述第一预测电池容量与所述第一电池容量的关系对所述第二初始模型进行训练,得到训练好的电池容量预测模型。详细说明参见上述方法实施例对应的相关描述,此处不再赘述。
模型构建模块,用于将所述特征数据预测模型的输出端与所述电池容量预测模型的输入端级联,构建电池剩余寿命预测模型。详细说明参见上述方法实施例对应的相关描述,此处不再赘述。
本发明实施例提供的电池剩余寿命预测模型的构建装置,用于执行上述实施例提供的电池剩余寿命预测模型的构建方法,其实现方式与原理相同,详细内容参见上述方法实施例的相关描述,不再赘述。
图5为本发明实施例提供的一种电池剩余寿命预测装置的结构示意图,具体包括:
数据获取模块,用于获取待测电池的当前使用周期的第二特征数据,所述第二特征数据为表征所述待测电池的健康状态的特征数据。详细说明参见上述方法实施例对应的相关描述,此处不再赘述。
预测模块,用于将所述第二特征数据输入至电池剩余寿命预测模型中,得到所述待测电池的第二预测特征数据及第二预测电池容量。详细说明参见上述方法实施例对应的相关描述,此处不再赘述。
判断模块,用于判断所述第二预测电池容量是否达到预设电池容量阈值。详细说明参见上述方法实施例对应的相关描述,此处不再赘述。
所述判断模块,还用于若所述第二预测电池容量未达到预设电池容量阈值,则将所述第二特征数据更新为所述第二预测特征数据,并返回所述第二特征数据输入电池剩余寿命预测模型中,得到所述待测电池的第二预测特征数据及第二预测电池容量的步骤,直至所述第二预测电池容量达到所述预设电池容量阈值为止。详细说明参见上述方法实施例对应的相关描述,此处不再赘述。
记录模块,用于记录所述第二预测电池容量达到所述预设电池容量阈值时所述电池剩余寿命预测模型的循环周期;
确定模块,用于基于所述循环周期确定所述待测电池的剩余寿命。详细说明参见上述方法实施例对应的相关描述,此处不再赘述。
本发明实施例提供的电池剩余寿命预测装置,用于执行上述实施例提供的电池剩余寿命预测方法,其实现方式与原理相同,详细内容参见上述方法实施例的相关描述,不再赘述。
图6示出了本发明实施例的一种电子设备,如图6所示,该电子设备可以包括处理器601和存储器602,其中处理器601和存储器602可以通过总线或者其他方式连接,图6中以通过总线连接为例。
处理器601可以为中央处理器(Central Processing Unit,CPU)。处理器601还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。
存储器602作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本发明实施例中所提供方法所对应的程序指令/模块。处理器601通过运行存储在存储器602中的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的方法。
存储器602可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储处理器601所创建的数据等。此外,存储器602可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器602可选包括相对于处理器601远程设置的存储器,这些远程存储器可以通过网络连接至处理器601。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
一个或者多个模块存储在存储器602中,当被处理器601执行时,执行上述方法实施例中的方法。
上述电子设备具体细节可以对应参阅上述方法实施例中对应的相关描述和效果进行理解,此处不再赘述。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成的,程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-StateDrive,SSD)等;存储介质还可以包括上述种类的存储器的组合。
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (7)

1.一种电池剩余寿命预测模型的构建方法,其特征在于,包括:
获取样本电池的各历史使用周期的第一特征数据以及对应的第一电池容量,所述第一特征数据为表征所述样本电池的健康状态的特征数据;
将所述第一特征数据输入至第一初始模型中,得到第一预测特征数据;
基于所述第一预测特征数据与下一历史使用周期的第一特征数据的关系对所述第一初始模型进行训练,得到训练好的特征数据预测模型;
将所述第一特征数据输入至第二初始模型中,得到第一预测电池容量;
基于所述第一预测电池容量与所述第一电池容量的关系对所述第二初始模型进行训练,得到训练好的电池容量预测模型;
将所述特征数据预测模型的输出端与所述电池容量预测模型的输入端级联,构建电池剩余寿命预测模型;
所述特征数据预测模型为自注意力机制模型,所述电池容量预测模型为多层感知机模型。
2.一种电池剩余寿命预测方法,其特征在于,包括:
获取待测电池的当前使用周期的第二特征数据,所述第二特征数据为表征所述待测电池的健康状态的特征数据;
将所述第二特征数据输入至如权利要求1所构建的电池剩余寿命预测模型中,得到所述待测电池的第二预测特征数据及第二预测电池容量;
判断所述第二预测电池容量是否达到预设电池容量阈值;
若所述第二预测电池容量未达到预设电池容量阈值,则将所述第二特征数据更新为所述第二预测特征数据,并返回所述第二特征数据输入至如权利要求1所构建的电池剩余寿命预测模型中,得到所述待测电池的第二预测特征数据及第二预测电池容量的步骤,直至所述第二预测电池容量达到所述预设电池容量阈值为止;
记录所述第二预测电池容量达到所述预设电池容量阈值时所述电池剩余寿命预测模型的循环周期;
基于所述循环周期确定所述待测电池的剩余寿命。
3.根据权利要求2所述的方法,其特征在于,所述方法还包括:
若所述第二预测电池容量达到预设电池容量阈值,则确定所述待测电池到达寿命期限。
4.一种电池剩余寿命预测模型的构建装置,其特征在于,包括:
数据获取模块,用于获取样本电池的各历史使用周期的第一特征数据以及对应的第一电池容量,所述第一特征数据为表征所述样本电池的健康状态的特征数据;
模型训练模块,用于将所述第一特征数据输入至第一初始模型中,得到第一预测特征数据;
所述模型训练模块,还用于基于所述第一预测特征数据与下一历史使用周期的第一特征数据的关系对所述第一初始模型进行训练,得到训练好的特征数据预测模型,所述特征数据预测模型为自注意力机制模型;
所述模型训练模块,还用于将所述第一特征数据输入至第二初始模型中,得到第一预测电池容量;
所述模型训练模块,还用于基于所述第一预测电池容量与所述第一电池容量的关系对所述第二初始模型进行训练,得到训练好的电池容量预测模型;
模型构建模块,用于将所述特征数据预测模型的输出端与所述电池容量预测模型的输入端级联,构建电池剩余寿命预测模型,所述电池容量预测模型为多层感知机模型。
5.一种电池剩余寿命预测装置,其特征在于,包括:
数据获取模块,用于获取待测电池的当前使用周期的第二特征数据,所述第二特征数据为表征所述待测电池的健康状态的特征数据;
预测模块,用于将所述第二特征数据输入至如权利要求1所构建的电池剩余寿命预测模型中,得到所述待测电池的第二预测特征数据及第二预测电池容量;
判断模块,用于判断所述第二预测电池容量是否达到预设电池容量阈值;
所述判断模块,还用于若所述第二预测电池容量未达到预设电池容量阈值,则将所述第二特征数据更新为所述第二预测特征数据,并返回所述第二特征数据输入电池剩余寿命预测模型中,得到所述待测电池的第二预测特征数据及第二预测电池容量的步骤,直至所述第二预测电池容量达到所述预设电池容量阈值为止;
记录模块,用于记录所述第二预测电池容量达到所述预设电池容量阈值时所述电池剩余寿命预测模型的循环周期;
确定模块,用于基于所述循环周期确定所述待测电池的剩余寿命。
6.一种服务器,其特征在于,包括:处理器和存储器,所述处理器用于执行所述存储器中存储的电池剩余寿命预测模型的构建程序和电池剩余寿命预测程序,以实现权利要求1所述的电池剩余寿命预测模型的构建方法和权利要求2~3中任一项所述的电池剩余寿命预测方法。
7.一种存储介质,其特征在于,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现权利要求1所述的电池剩余寿命预测模型的构建方法和权利要求2~3中任一项所述的电池剩余寿命预测方法。
CN202210215363.1A 2022-03-08 2022-03-08 电池剩余寿命预测模型构建、电池剩余寿命预测方法 Active CN114565172B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210215363.1A CN114565172B (zh) 2022-03-08 2022-03-08 电池剩余寿命预测模型构建、电池剩余寿命预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210215363.1A CN114565172B (zh) 2022-03-08 2022-03-08 电池剩余寿命预测模型构建、电池剩余寿命预测方法

Publications (2)

Publication Number Publication Date
CN114565172A CN114565172A (zh) 2022-05-31
CN114565172B true CN114565172B (zh) 2023-11-03

Family

ID=81718772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210215363.1A Active CN114565172B (zh) 2022-03-08 2022-03-08 电池剩余寿命预测模型构建、电池剩余寿命预测方法

Country Status (1)

Country Link
CN (1) CN114565172B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111443294A (zh) * 2020-04-10 2020-07-24 华东理工大学 一种锂离子电池剩余寿命间接预测方法及装置
CN112130086A (zh) * 2020-05-29 2020-12-25 国家电网有限公司 一种动力电池剩余寿命预测方法及系统
KR20210116801A (ko) * 2020-03-16 2021-09-28 주식회사 로보볼트 신경망 기반의 배터리 잔존 수명 예측 방법 및 장치
CN113985294A (zh) * 2021-12-29 2022-01-28 山东大学 一种电池剩余寿命的预估方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210116801A (ko) * 2020-03-16 2021-09-28 주식회사 로보볼트 신경망 기반의 배터리 잔존 수명 예측 방법 및 장치
CN111443294A (zh) * 2020-04-10 2020-07-24 华东理工大学 一种锂离子电池剩余寿命间接预测方法及装置
CN112130086A (zh) * 2020-05-29 2020-12-25 国家电网有限公司 一种动力电池剩余寿命预测方法及系统
CN113985294A (zh) * 2021-12-29 2022-01-28 山东大学 一种电池剩余寿命的预估方法及装置

Also Published As

Publication number Publication date
CN114565172A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
US10044212B2 (en) Modeling a change in battery degradation
He et al. State of health estimation of lithium‐ion batteries: A multiscale G aussian process regression modeling approach
KR102362532B1 (ko) 신경망 기반의 배터리 잔존 수명 예측 방법 및 장치
JP2019510215A (ja) バッテリーの充電状態を推定する方法及びセンサーシステム
US20160239592A1 (en) Data-driven battery aging model using statistical analysis and artificial intelligence
CN114371409B (zh) 电池状态预测模型的训练方法、电池状态预测方法及装置
EP3417306A1 (en) System and method for the generation and use of an electro-thermal battery model
CN113671381B (zh) 一种基于时间卷积网络的锂离子动力电池估算方法
KR102615145B1 (ko) 딥러닝 기반의 배터리 유효 충전 데이터 식별 방법, 장비 및 매체
AU2021101964A4 (en) Artificial intelligence based smart electric vehicle battery management system
CN113219357A (zh) 电池包健康状态计算方法、系统及电子设备
CN115221795A (zh) 容量预测模型的训练方法、预测方法、装置、设备及介质
CN113671401A (zh) 一种基于优化算法与数据驱动的锂电池健康状态评估方法
CN115407211B (zh) 一种电动汽车锂电池健康状态在线预测方法及系统
CN116299008A (zh) 一种电池soh预测方法、装置、电子设备及存储介质
CN115129982A (zh) 基于改进贝叶斯优化的实验参数推荐方法、装置、终端及介质
CN117129879B (zh) 阈值调整方法和电池健康状态预测模型的训练方法
US20220284747A1 (en) System and method for forecasting battery state with imperfect data
CN114565172B (zh) 电池剩余寿命预测模型构建、电池剩余寿命预测方法
CN117289167A (zh) 基于多重神经网络的电池剩余寿命预测方法、装置及介质
CN109459700A (zh) 一种变形锂电池检测方法、装置和电子设备
CN113285513A (zh) 评价电池自放电一致性的方法、装置、设备及存储介质
CN117054892A (zh) 一种储能电站电池健康状态的评估方法、装置及管理方法
Song et al. Capacity estimation method of lithium-ion batteries based on deep convolution neural network
KR20210016828A (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant