CN114560921A - OsR5BP1 protein and its coding gene have regulation and control effect on stress tolerance, growth performance and production performance of plant - Google Patents

OsR5BP1 protein and its coding gene have regulation and control effect on stress tolerance, growth performance and production performance of plant Download PDF

Info

Publication number
CN114560921A
CN114560921A CN202210275816.XA CN202210275816A CN114560921A CN 114560921 A CN114560921 A CN 114560921A CN 202210275816 A CN202210275816 A CN 202210275816A CN 114560921 A CN114560921 A CN 114560921A
Authority
CN
China
Prior art keywords
osr5bp1
protein
plant
gene
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210275816.XA
Other languages
Chinese (zh)
Other versions
CN114560921B (en
Inventor
谷晓峰
李秀兰
王晓蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biotechnology Research Institute of CAAS
Original Assignee
Biotechnology Research Institute of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotechnology Research Institute of CAAS filed Critical Biotechnology Research Institute of CAAS
Priority to CN202210275816.XA priority Critical patent/CN114560921B/en
Publication of CN114560921A publication Critical patent/CN114560921A/en
Application granted granted Critical
Publication of CN114560921B publication Critical patent/CN114560921B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses the OsR5BP1 protein and the regulation and control function of the coding gene thereof on the stress tolerance, the growth performance and the production performance of plants. The invention protects the application of OsR5BP1 protein in regulating and controlling the stress tolerance of plants, wherein the regulation is negative regulation, namely, the content of OsR5BP1 protein is reduced, and the stress tolerance of plants is enhanced. The invention also protects the application of the OsR5BP1 protein in regulating and controlling the growth performance and/or the production performance of plants. The regulation is negative regulation, namely OsR5BP1 protein content is reduced, and the growth performance and/or the production performance of the plant are improved. The invention can be used for improving plant traits and has great application and popularization values for plant breeding, particularly rice breeding.

Description

OsR5BP1 protein and its coding gene have regulation and control effect on stress tolerance, growth performance and production performance of plant
Technical Field
The invention belongs to the technical field of biology, and relates to a OsR5BP1 protein and a regulation and control effect of a coding gene thereof on stress tolerance, growth performance and production performance of plants.
Background
Rice is native to china and india. Is one of the main grain crops in the world. The rice seeding surface of China accounts for 1/4 of food crops all over the country, and the yield accounts for more than half. The cultivation history is 14000-18000 years. Is an important grain crop; besides the edible caryopsis, the rice bran can be used for preparing starch, brewing wine and vinegar, and the rice bran can be used for preparing sugar, extracting oil and extracting furfural for industrial and medical use; the rice straw is a good feed, paper making raw material and weaving material, and the rice sprout and rice root can be used for medicine.
In recent years, the rapid development of biotechnology has greatly promoted the innovation of plant breeding research means and the continuous improvement of research level, and the breeding of plant by biotechnology for resisting diseases and insects and resisting herbicides has already entered the practical stage. The exogenous insecticidal and herbicide-resistant genes are introduced into the plant genome by a biotechnology means, so that the natural barrier that plant species and even species are difficult to hybridize is broken, and the transfer of the insect-resistant and herbicide-resistant genes is realized, so that the plant can rapidly and directionally obtain insect resistance and mechanized weeding, and the original good agronomic characters can be reserved. Because each plant of the transgenic corn has a certain degree of resistance, the insect-resistant and herbicide-resistant effects of the transgenic corn are better and more stable than the control effects of artificial control, and the transgenic corn can also save the investment of manpower and material resources and effectively save social resources. The development and application of other agronomic character improved transgenic plants are not as ideal as insect-resistant and herbicide-resistant characters, mainly because of the lack of excellent character improved genes, most agronomic characters are mainly caused by the control of a plurality of micro-effective genes, and no ideal genes are operated all the time.
Disclosure of Invention
The invention aims to provide the OsR5BP1 protein and the coding gene thereof, which have the function of regulating the stress tolerance, the growth performance and the production performance of plants.
The invention discloses application of OsR5BP1 protein in regulation and control of plant stress tolerance
The regulation is negative regulation, namely OsR5BP1 protein content is reduced, and the stress tolerance of the plant is enhanced.
The invention also protects the application of OsR5BP1 protein or OsR5BP1 gene as an inhibition target in plant breeding; the goal of such plant breeding is to develop plants with enhanced stress tolerance.
The invention also protects the application of a substance inhibiting OsR5BP1 gene and/or a substance inhibiting OsR5BP1 protein in plant breeding; the goal of such plant breeding is to develop plants with enhanced stress tolerance.
Specifically, the substance for inhibiting the OsR5BP1 gene is a plasmid for inhibiting OsR5BP1 gene.
Specifically, the substance inhibiting OsR5BP1 gene is a plasmid inhibiting OsR5BP1 gene based on Cas9 system.
The invention also provides a plant breeding method for cultivating the plant with enhanced stress tolerance, which comprises the following steps: carrying out gene editing on OsR5BP1 gene in a receptor plant to obtain a gene editing plant; the stress tolerance of the gene-edited plant is enhanced as compared to the recipient plant.
The invention also provides a method for preparing a plant with enhanced stress tolerance, which comprises the following steps: replacement of "CCGGGCGCAAAGGTCTAGTC" in OsR5BP1 gene in plant genomic DNA with "CCGAGGCGCAAAGGTCTAGTC" or "CCGGCGCAAAGGTCTAGTC" resulted in plants with enhanced stress tolerance.
The stress resistance is heat resistance and/or salt resistance.
The invention also protects the application of the OsR5BP1 protein in regulating and controlling the growth performance and/or the production performance of plants.
The regulation is negative regulation, namely OsR5BP1 protein content is reduced, and the growth performance and/or the production performance of the plant are improved.
The invention also protects the application of OsR5BP1 protein or OsR5BP1 gene as an inhibition target in plant breeding; the goal of plant breeding is to cultivate plants with improved growth performance and/or improved production performance.
The invention also protects the application of a substance inhibiting OsR5BP1 gene and/or a substance inhibiting OsR5BP1 protein in plant breeding; the goal of plant breeding is to cultivate plants with improved growth performance and/or improved production performance.
Specifically, the substance inhibiting OsR5BP1 gene is a plasmid inhibiting OsR5BP1 gene.
Specifically, the substance for inhibiting OsR5BP1 gene is a plasmid for inhibiting OsR5BP1 gene based on Cas9 system.
The invention also provides a plant breeding method, which comprises the following steps: carrying out gene editing on OsR5BP1 gene in a receptor plant to obtain a gene editing plant; the gene-edited plant has improved growth performance and/or improved productivity as compared to the recipient plant.
The invention also provides a method for producing a plant with improved growth performance and/or improved production performance, comprising the steps of: replacement of "CCGGGCGCAAAGGTCTAGTC" in the OsR5BP1 gene in plant genomic DNA with "CCGAGGCGCAAAGGTCTAGTC" or "CCGGCGCAAAGGTCTAGTC" results in plants with improved growth performance and/or improved production performance.
The improvement in growth performance refers to an increase in tiller number and/or spike length and/or an increase in the number of branches.
The number of the branches is the number of the first-stage branches and/or the number of the second-stage branches.
The productivity improvement refers to yield improvement.
The improved productivity refers to the improved yield of the single plant.
The improved production performance refers to the improved number of grains.
The improvement of the production performance refers to the improvement of the number of single-ear grains.
The OsR5BP1 gene is used for inhibiting the activity of OsR5BP1 gene and/or reducing the abundance of OsR5BP1 gene. Reducing the abundance of the OsR5BP1 gene can be achieved by rendering RNA non-transcribable. Reduction of the abundance of the OsR5BP1 gene can be achieved by gene editing. The gene editing may specifically be a Cas9 system based gene editing. In the Cas9 system, the target sequence binding region in sgRNA is shown as sequence 7 in the sequence table. In the Cas9 system, sgRNA is shown as sequence 6 in the sequence table. The gene editing is realized by introducing a recombinant plasmid shown in a sequence 4 of a sequence table into a plant.
Any of the OsR5BP1 inhibiting proteins is used for inhibiting the activity of OsR5BP1 protein and/or reducing the abundance of OsR5BP1 protein. The reduction in abundance of OsR5BP1 protein can be achieved by rendering OsR5BP1 protein non-expressible.
Any of the above gene edits may specifically be a Cas9 system-based gene edit. Specifically, the sgRNA and Cas9 proteins can be used as a substance for gene editing of the OsR5BP1 gene. Specifically, the substance for gene editing of OsR5BP1 gene can be a DNA molecule encoding sgRNA and a DNA molecule encoding Cas9 protein. The substance for gene editing of OsR5BP1 gene can be specifically an expression vector having a DNA molecule encoding sgRNA and an expression vector having a DNA molecule encoding Cas9 protein. The substance for gene editing of OsR5BP1 gene can be specifically an expression vector having a DNA molecule encoding sgRNA and a DNA molecule encoding Cas9 protein. The target sequence binding region in the sgRNA is shown as a sequence 7 in a sequence table. The sgRNA is shown as a sequence 6 in a sequence table. The DNA molecule of the sgRNA is shown as a sequence 5 in a sequence table. The substance for gene editing of OsR5BP1 gene is specifically a recombinant plasmid shown in sequence 4 of a sequence table.
The substitutions are homozygous, i.e. the same substitution occurs in homologous chromosomes.
Any one of the OsR5BP1 proteins is (a1) or (a2) or (a3) or (a 4):
(a1) protein shown as a sequence 1 in a sequence table;
(a2) a fusion protein obtained by attaching a tag to the N-terminus or/and the C-terminus of the protein of (a 1);
(a3) a protein obtained by substituting and/or deleting and/or adding one or more amino acid residues in (a1) and related to the stress tolerance and/or the growth performance and/or the production performance of plants;
(a4) a protein derived from rice, having 98% or more identity to (a1), and being involved in stress tolerance, growth performance and/or productivity of plants.
Any one of the OsR5BP1 genes is a gene for coding OsR5BP1 protein.
Any one of the OsR5BP1 genes is (b1), (b2), (b3) or (b 4):
(b1) the coding region is a DNA molecule shown as a sequence 2 in a sequence table;
(b2) DNA molecule shown in sequence 3 in the sequence table;
(b3) a DNA molecule derived from rice and having 95% or more identity to (b1) or (b2) and encoding the protein;
(b4) a DNA molecule which hybridizes with the nucleotide sequence defined in (b1) or (b2) under stringent conditions and encodes the protein.
Any of the Cas9 proteins is a protein encoded by nucleotides 2697-6968 in sequence 4 of the sequence table.
Any of the above plants is a monocot or a dicot. Any of the above plants is a gramineae plant. Any of the above plants is a plant of the genus oryza. Any of the above plants is rice, for example, Nipponbare.
The invention can be used for improving plant traits and has great application and popularization values for plant breeding, particularly rice breeding.
Drawings
FIG. 1 is a schematic diagram of the structure of a recombinant plasmid.
FIG. 2 shows the sequencing results of the mutation sites and their peripheral nucleotides of Osr5bp1-1 plant and Osr5bp1-2 plant.
FIG. 3 is a photograph of plant phenotype.
FIG. 4 shows the statistical results of plant height.
FIG. 5 shows the statistics of tillering number.
FIG. 6 shows the statistics of the yield of individual plants.
FIG. 7 is a photograph of spike phenotype.
FIG. 8 shows the statistical results of spike length.
Fig. 9 shows the statistics of the number of single ear grains.
FIG. 10 shows the statistics of the number of branches.
FIG. 11 is a photograph of plant phenotype in heat stress test.
Fig. 12 is a survival rate statistic for the heat stress test.
FIG. 13 is a photograph of plant phenotype in salt stress test.
FIG. 14 is a statistical result of survival rate of salt stress test.
FIG. 15 shows RNA m5At the level of C modificationAnd (4) obtaining the result.
Detailed Description
The present invention is described in further detail below with reference to specific embodiments, which are given for the purpose of illustration only and are not intended to limit the scope of the invention. The examples provided below serve as a guide for further modifications by a person skilled in the art and do not constitute a limitation of the invention in any way.
The experimental procedures in the following examples, unless otherwise indicated, are conventional and are carried out according to the techniques or conditions described in the literature in the field or according to the instructions of the products. Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
Unless otherwise stated, the quantitative tests in the following examples were performed in triplicate, and the results were averaged.
OsR5BP1 protein is shown as sequence 1 in the sequence table. In the cDNA of Nipponbare of rice, CDS of coded OsR5BP1 protein is shown as a sequence 2 in a sequence table. In the genomic DNA of the rice Nipponbare, a gene coding OsR5BP1 protein is shown as a sequence 3 in a sequence table. The function of the OsR5BP1 protein is unknown in the prior art.
Example 1 preparation of Gene-edited plants
Construction of recombinant plasmid
Preparing a recombinant plasmid (circular plasmid) which is shown as a sequence 4 in a sequence table. The recombinant plasmid expresses Cas9 protein and a specific sgRNA. In the sequence 4 of the sequence table, the nucleotides 2697-6968 encode Cas9 protein. The coding region of the specific sgRNA is shown as sequence 5 in the sequence table (i.e. nucleotide 519-614 in sequence 4 of the sequence table). The specific sgRNA is shown as a sequence 6 in a sequence table, and a target sequence binding region in the sgRNA is shown as a sequence 7 in the sequence table. The structure of the recombinant plasmid is schematically shown in FIG. 1.
Secondly, genetic transformation is carried out and regeneration plants are obtained
And (3) introducing the recombinant plasmid prepared in the step one into agrobacterium EHA105 to obtain recombinant agrobacterium. Carrying out genetic transformation on the embryogenic callus of Nipponbare rice by recombinant agrobacterium by adopting an agrobacterium impregnation method, then screening resistant callus (the resistance screening adopts 100mg/L hygromycin), then carrying out differentiation regeneration culture, and then carrying out rooting culture to obtain a regeneration plant.
Thirdly, obtaining the gene editing plant and the progeny plant thereof
And D, identifying the regenerated plant obtained in the step two as follows: taking leaves, extracting genome DNA, carrying out PCR amplification by adopting a primer pair consisting of a primer F1 and a primer R1, and sequencing the PCR amplification product.
F1:5’-GCTCGTCAGGGCGCGCCTCG-3’;
R1:5’-GTGGATCAATGTCAGCCACT-3’。
Through the identification, two homozygous mutant plants (homozygous mutants, namely, two chromosome-generated mutations are consistent) are obtained by screening from the regenerated plants obtained in the step two and are named as Osr5bp1-1 plants and Osr5bp1-2 plants respectively. As proved by sequencing, compared with the genomic DNA of Nip, the Osr5BP1-1 plant is different only in that a nucleotide is inserted into the gene coding OsR5BP1 protein (frame shift mutation is caused and termination is carried out in advance), and the sequencing results of the mutation site and the peripheral nucleotides are shown in figure 2. Through sequencing identification, compared with the genomic DNA of Nip (expressed by Nip), the Osr5BP1-2 plant is different only in that a nucleotide deletion (causing frame shift mutation and early termination) occurs in the gene coding OsR5BP1 protein, and the sequencing results of the mutation site and the peripheral nucleotides are shown in figure 2.
Osr5bp1-1 plants are selfed and seeds are harvested, and the seeds are cultivated into plants, namely T1 generation plants. T1 generation plants are self-crossed and harvested to obtain seeds, namely T2 generation seeds. Osr5bp1-1 plant and its selfed progeny are called strain Osr5bp 1-1.
Osr5bp1-2 plants are selfed and seeds are harvested, and the seeds are cultivated into plants, namely T1 generation plants. T1 generation plants are self-crossed and harvested to obtain seeds, namely T2 generation seeds. Osr5bp1-2 plant and its progeny after selfing are called strain Osr5bp 1-2.
Example 2 growth Performance of plants
The test seeds were: nipponbare seeds of rice, T2 generation seeds of Osr5bp1-1 strain and T2 generation seeds of Osr5bp1-2 strain.
The test plants were cultured under parallel conditions, specifically: taking seeds, germinating in a greenhouse and culturing seedlings (counting time from white exposure, culturing for 3 weeks) to obtain 3-week seedlings; transplanting the 3-week seedlings to a field of a Hebei corridor and carrying out normal cultivation management.
Photographs of the plants in the grain filling stage are shown in FIG. 3.
The plant height statistics of plants in the mature period are shown in FIG. 4 (average of 15 plants). The plant heights of the Nipponbare plants of rice, Osr5bp1-1 strains of plants and Osr5bp1-2 strains of plants have no obvious difference.
The statistical results of tillering number of plants in the mature period are shown in FIG. 5 (average of 15 plants). Compared with the Nipponbare plants of rice, the tillering number of the plants of Osr5bp1-1 line and Osr5bp1-2 line is obviously increased.
And (4) collecting seeds of the single plant of the plant in the mature period, airing and weighing to obtain the single plant yield. The statistics of individual plant yields are shown in FIG. 6 (average of 15 plants). Compared with the Nipponbare plants of rice, the yield of each plant of Osr5bp1-1 strain and Osr5bp1-2 strain is obviously increased.
And (4) observing the spike phenotype of the plant in the mature period, taking a picture, and counting the spike length and the number of grains per spike. The photograph is shown in FIG. 7. The statistics of spike length are shown in FIG. 8 (average of 15 plants). The statistics of the number of kernels per panicle are shown in FIG. 9 (average of 15 plants). Compared with the Nipponbare plants of rice, the panicle length of the plants of Osr5bp1-1 line and Osr5bp1-2 line is obviously increased. Compared with the Nipponbare plants of rice, the number of seeds per spike of the plants of Osr5bp1-1 strain and Osr5bp1-2 strain is obviously increased.
And observing the spike part of the plant in the mature period, and counting the number of the first-grade and second-grade branches. The results are shown in FIG. 10 (average of 15 plants). Compared with the Nipponbare plants of rice, the number of the primary branches and the number of the secondary branches of the plants of Osr5bp1-1 strain and the plants of Osr5bp1-2 strain are both obviously increased.
Example 3 stress tolerance of plants
First, Heat stress test
The test seeds were: nipponbare seeds of rice, T2 generation seeds of Osr5bp1-1 strain and T2 generation seeds of Osr5bp1-2 strain.
The test plants were cultured under parallel conditions, specifically: seeds were taken, germinated and cultivated in a greenhouse using Hoagland nutrient solution to the trefoil stage (time point a, photographed), then transferred to a 45 ℃ incubator for 50 hours (time point B, photographed), then transferred back to the greenhouse and cultivated for 7 days (time point C, photographed), and then the survival rates were counted (at least 24 plants were counted per test plant). The greenhouse conditions were: at 28 10 hours light/14 hours dark.
The photographs of the plants are shown in FIG. 11, with the left corresponding to time point A, the middle corresponding to time point B, and the right corresponding to time point C.
The survival results are shown in figure 12. The survival rate of the Nipponbare plants is about 18.5 percent, the survival rate of Osr5bp1-1 plant is about 56.2 percent, and the survival rate of Osr5bp1-2 plant is about 52.3 percent. Compared with Nipponbare, the heat resistance of Osr5bp1-1 strain plants and Osr5bp1-2 strain plants is obviously improved.
Salt stress test
The test seeds were: nipponbare seeds of rice, T2 generation seeds of strain Osr5bp1-1 and T2 generation seeds of strain Osr5bp 1-2.
The test plants were cultured under parallel conditions, specifically: seeds are taken, germinated and cultured in a greenhouse by using Hoagland nutrient solution to the trefoil stage (time point A, photographed), then cultured for 5 days by using Hoagland nutrient solution containing 150mM NaCl (time point B, photographed), then seedlings are washed, then cultured for 7 days by using Hoagland nutrient solution (time point C, photographed), and finally the survival rate is counted (at least 24 plants are counted for each plant to be tested). The greenhouse conditions were: 10 hours light/14 hours dark at 28 ℃.
The photographs of the plants are shown in FIG. 13, with the left corresponding to time point A, the middle corresponding to time point B, and the right corresponding to time point C.
The survival results are shown in figure 14. The survival rate of the Nipponbare plants is 19.7 percent, the survival rate of Osr5bp1-1 strain plants is about 39.6 percent, and the survival rate of Osr5bp1-2 strain plants is about 33.8 percent. Compared with Nipponbare, the salt tolerance of Osr5bp1-1 strain plants and Osr5bp1-2 strain plants is obviously improved.
Example 4 RNA m5Level of C modification
The test seeds were: nipponbare seeds of rice, T2 generation seeds of Osr5bp1-1 strain and T2 generation seeds of Osr5bp1-2 strain.
The test plants were cultured under parallel conditions, specifically: taking seeds, germinating in a greenhouse, culturing to a three-leaf stage, taking overground parts, and extracting total RNA.
Total RNA was collected and subjected to RNA Dot-blot (Dot blot hybridization). The specific antibody adopted is anti-m5C antibody (Diagenode, C15200081). The amount of RNA was set at 100, 200 or 400 ng/. mu.l, respectively.
Taking total RNA, and detecting m by triple quadrupole liquid chromatography-mass spectrometry (UHPLC-MS/MS)5Abundance of C modifications. An Agilent 6400 triple quadrupole liquid chromatography-mass spectrometer was used, drochen distilled water (0.1% formic acid) and acetonitrile (0.1% formic acid) were used as mobile phases, a GOLDaQ column (100 mm. times.2.1 mm) had a pore size of 1.9 μm, and ion pair sampling was set for detection.
The results are shown in FIG. 15.
The results show that compared with Nipponbare, RNA m of Osr5bp1-1 strain plant and Osr5bp1-2 strain plant5The level of C modification increased.
The present invention has been described in detail above. It will be apparent to those skilled in the art that the invention can be practiced in a wide range of equivalent parameters, concentrations, and conditions without departing from the spirit and scope of the invention and without undue experimentation. While the invention has been described with reference to specific embodiments, it will be appreciated that the invention can be further modified. In general, this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains. The use of some of the essential features is possible within the scope of the claims attached below.
Sequence listing
<110> institute of biotechnology of Chinese academy of agricultural sciences
<120> OsR5BP1 protein and its coding gene have regulation and control effects on stress tolerance, growth performance and production performance of plants
<130> GNCYX220722
<160> 7
<170> SIPOSequenceListing 1.0
<210> 1
<211> 465
<212> PRT
<213> Oryza sativa
<400> 1
Met Leu Arg Ala Cys Gly Gly Ala Ser Pro Ala Ala Ala Ala Ala Ala
1 5 10 15
Val Pro Ala Leu Val Arg Ala Arg Leu Ala Lys Gln Ala Ser Ser Ala
20 25 30
Ala His Ala Ala Ala Thr Ala Thr Ala Ser Ala Ser Ser Ser Leu Ser
35 40 45
Ala Leu Gly Glu Val Ala Ala Gly Arg Lys Gly Leu Ala Arg Val Val
50 55 60
Leu Lys Lys Gly Lys Thr Gln Ile Phe Arg Asp Gly Ser Pro Met Val
65 70 75 80
Tyr Ser Gly Ala Val Asp Arg Ile Ile Gly Arg Pro Pro Pro Lys Thr
85 90 95
Gly Asp Val Val Leu Val Ala Asp Gly Ala Glu Lys Pro Ile Gly Trp
100 105 110
Gly Leu Tyr Asn Ser Val Ser Met Phe Cys Val Arg Leu Met Gln Leu
115 120 125
Glu Glu Glu Ala Lys Arg Asp Pro Thr Cys Ala Leu Asn Met Glu Arg
130 135 140
Leu Leu Glu Ala Arg Ile Leu Ser Ala Val Asp Leu Arg Arg Ser Leu
145 150 155 160
Gly Leu Pro Ser Val His Thr Asn Ala Tyr Arg Leu Ile Asn Ser Glu
165 170 175
Gly Asp Arg Leu Ser Gly Leu Ile Val Asp Ile Phe Ala Asp Val Ala
180 185 190
Val Val Ala Ser Ser Ala Ala Trp Val Glu Lys Tyr Arg His Glu Ile
195 200 205
Gln Phe Leu Val Asn Lys Val Ser Asp Val Asn His Ile Lys Trp Arg
210 215 220
Ser Ser Thr Asp Ile Leu Lys Glu Glu Gly Leu Asp Val Ser Glu Gln
225 230 235 240
Lys Asp Pro Glu Ser Ser Ser His Cys Gly Thr Val Glu Val Met Glu
245 250 255
Asn Asp Val Leu Tyr Leu Val Ser Leu Glu Gly Gln Lys Thr Gly Phe
260 265 270
Tyr Ala Asp Gln Arg Glu Asn Arg His Phe Ile Ser Thr Leu Ser Lys
275 280 285
Asp Gln Arg Val Leu Asp Leu Cys Cys Tyr Ser Gly Gly Phe Ala Leu
290 295 300
Asn Ala Ala Lys Gly Gly Ala Asn Asn Val Ile Gly Ile Asp Ser Ser
305 310 315 320
Ala Ser Ala Leu Asp Leu Ala Asn Lys Asn Ile Ile Leu Asn Lys Leu
325 330 335
Asp Thr Gln Arg Ile Ser Phe Val Lys Glu Asp Ala Thr Ala Phe Met
340 345 350
Lys Gly Ala Ile Ser Arg Asn Glu Val Trp Asp Leu Val Ile Leu Asp
355 360 365
Pro Pro Lys Leu Ala Pro Arg Lys Lys Val Leu Gln Ser Ala Ser Gly
370 375 380
Met Tyr Arg Ser Leu Asn Ala Leu Ala Met Gln Val Val Lys Pro Gly
385 390 395 400
Gly Leu Leu Met Thr Cys Ser Cys Ser Gly Ala Met Thr Gln Ser Gly
405 410 415
Leu Phe Leu Arg Thr Ile Gln Gly Ala Ala Ser Met Thr Gly Arg Lys
420 425 430
Val Thr Val Leu Arg Gln Ala Gly Ala Ala Cys Asp His Pro Val Asp
435 440 445
Pro Ala Tyr Pro Glu Gly Arg Tyr Leu Ser Asn Tyr Leu Leu Arg Val
450 455 460
Thr
465
<210> 2
<211> 1398
<212> DNA
<213> Oryza sativa
<400> 2
atgctgcgcg cttgcggcgg cgcgtcgccg gcggcggcgg cggcggcggt gcccgcgctc 60
gtcagggcgc gcctcgcgaa gcaggcctcc tccgcagccc acgcggccgc caccgccacc 120
gcctccgctt cctcctccct ctccgcgctg ggagaggtcg ccgccgggcg caaaggtttg 180
gcaagagtag tattaaagaa aggaaagacc caaatatttc gagatgggag tccgatggtg 240
tatagtggtg ctgttgatag aataattggt cgacctcctc caaaaactgg tgatgttgtt 300
cttgtagctg atggggcaga gaaacctatt ggatggggtc tctataactc tgtgtccatg 360
ttttgtgttc ggctgatgca actagaagaa gaggcaaaaa gggatccaac atgtgcacta 420
aatatggaaa gactgcttga ggcaaggatt ttatctgctg tggatttacg gcgcagttta 480
ggtctccctt cagttcacac aaatgcttat cgtctcatca acagtgaagg ggacagattg 540
tctggtctaa tagtggatat ctttgctgat gttgctgtag ttgcttcatc tgctgcttgg 600
gttgagaaat ataggcatga aatccagttc cttgttaaca aagtcagtga tgtgaaccat 660
ataaagtgga gatcatcaac agatattcta aaagaagaag gattagatgt atcagaacaa 720
aaggatcctg aatcgtcttc acactgtgga acagtggagg tcatggagaa tgatgttctc 780
tatctagtct cattggaggg gcagaaaaca gggttttatg cagatcaacg tgagaaccgt 840
catttcatat caacactctc aaaggaccaa agggttcttg atctgtgctg ctatagtggt 900
ggttttgctc taaatgcagc aaagggtggt gctaataatg tcattggcat tgattcatca 960
gcatcagcac tagaccttgc caataagaat attatcctga ataagcttga cacccaaagg 1020
atttcgtttg taaaagaaga tgcgactgca ttcatgaaag gtgctatctc aagaaatgag 1080
gtctgggact tggtaatcct tgatcctcca aagttggcac ctcgaaaaaa ggtgctacaa 1140
agtgcctcgg gtatgtacag aagcttgaac gctcttgcga tgcaagtggt aaagccaggg 1200
gggttactca tgacatgctc atgctctgga gctatgaccc aaagcggcct cttcctcaga 1260
accattcagg gtgctgcatc aatgaccggc cgaaaggtta cagttctacg ccaagcaggg 1320
gcagcctgtg atcatcccgt agatcctgca taccctgaag gccgatatct cagcaattac 1380
ttgctccgag tgacctga 1398
<210> 3
<211> 4185
<212> DNA
<213> Oryza sativa
<400> 3
atgctgcgcg cttgcggcgg cgcgtcgccg gcggcggcgg cggcggcggt gcccgcgctc 60
gtcagggcgc gcctcgcgaa gcaggcctcc tccgcagccc acgcggccgc caccgccacc 120
gcctccgctt cctcctccct ctccgcgctg ggagaggtcg ccgccgggcg caaaggtcta 180
gtctagtctc tgcggcattt tgccgaacgg ctgtcggtcg cgccgcgaaa gtgtcctctc 240
ccatcttgct tcttctgatt acgcggcgaa accgctcgcg ccatggcggt tgcttgcgct 300
tgcggaaatg ctcaagtgga ttgtggctgc atttacctgc gacgctgcag ttcgttcttg 360
ttgagtggct gacattgatc cactcatcgt ttgattcacc tgtaactgta accagtaatc 420
attaatatct attgttaatt gtagctgact tccagaagca tatttgcttt gttgaaacta 480
attgtatgag aagcgaggtt ttgtgtagag atgtgcctaa tcattgctct atagaactaa 540
taggttggtc ctcattaacc ctctagagtc aggggttagc aattctctag agtttttttt 600
cctttcggca taatgcagag tactctggtg ttgcattatc cataattata ccgttctgta 660
cagtaagtat tatgaagtgg tgatagtcct cttatgtcaa aaatagtttt atgtctccta 720
gagatggctc ataattagtt ttggaagttt taaatcatta taatgcctaa gcacaaagtg 780
gagttgaatt ttccaattgg aatgcattgt ctatttgttg tctagatctc tcttgtattg 840
tcaaactgga aataaagcat agctgattct tccttttttg ggttaataat aggctatggt 900
taggagctac tagacttgga ggctggaatc tttttttttt ctttcacttg agttgacata 960
aagactaact tcaaacattt tttttaggtt tggcaagagt agtattaaag aaaggaaaga 1020
cccaaatatt tcgagatggg agtccgatgg tgtatagtgg tgctgttgat agaataattg 1080
gtcgacctcc tccaaaaact ggtgatgttg ttcttgtagc tgatggggca gagaaaccta 1140
ttggatgggg tctctataac tctgtgtcca tgttttgtgt tcggctgatg caactagaag 1200
aagaggcaaa aaggtgacaa ggtcacaagt tgaagttctc tgtttacaga caatttgaga 1260
acatggccta atattttccc tatttttttt gtttacaggg atccaacatg tgcactaaat 1320
atggaaagac tgcttgaggc aaggatttta tctgctgtgg atttacggcg cagtttaggt 1380
ctcccttcag ttcacacaaa tgcttatcgt ctcatcaaca gtgaagggga caggtatata 1440
ttattcttga gtctcgactt atgttatatg gtcaaggtca ccaaaggtac catgtcaaga 1500
tcaatcatca caagaagtgt aatcagtgca gaactatttg gacttctagt tctagagtat 1560
atttgacctc caaaatccaa attgcattgt tccaatatat tcgcacgaag aataattttt 1620
attattgttt tgaaatgcag attgtctggt ctaatagtgg atatctttgc tgatgttgct 1680
gtagttgctt catctgctgc ttgggttgag aaatataggc atgaaatcca gttccttgtt 1740
aacaaagtca gtgatgtgaa ccatataaag tggagatcat caacagatat tctaaaagaa 1800
gaaggattag atgtatcaga acaaaaggat cctgaatcgt cttcacactg tggaacagtg 1860
gaggtgaacc aacttagtaa ttattgaaac aaagccatta aatttggttt acctttatta 1920
ctaatttcaa gagagagatg gcattcatgc actctattca gcacatcaat cagcttggtt 1980
tttcagattt gacaatcttt tcttcttcct atgttatgtt gcctgttgtt ccaacacctc 2040
tcaattgctg ctcttacttt caggtcatgg agaatgatgt tctctatcta gtctcattgg 2100
aggggcagaa aacagggttt tatgcagatc aacgtgagaa ccgtcatttc atatcaacac 2160
tctcaaagga ccaaagggtt cttgatctgt gctgctatag tggtggtttt gctctaaatg 2220
cagcaaaggg tggtgctaat aatgtcattg gtataatacc atatgctagc gaacctttta 2280
gtcctttgtt gatcttttca tatgcgtcaa ttgttcaatt gaatcattga tcatgaaacc 2340
cacaaaagag tataacatta tacatgtttg gctgctaagg aaaatataat tagtgtatcc 2400
tttttcaggc attgattcat cagcatcagc actagacctt gccaataaga atattatcct 2460
gaataagctt gacacccaaa ggatttcgtt tgtaaaagaa gatgcgactg cattcatgaa 2520
aggtgctatc tcaagaaatg aggtctggga cttggtaatc cttgatcctc caaagttggc 2580
acctcgaaaa aaggtaagca tacaatagag catttaccat tagtctctaa tttgacttca 2640
aatgagatat cttttcatcc atggatctga agtggcaaag aatgttacat atccagcagt 2700
tcgcgaatct tcgatttctt atcagaagac acccaaagta ccctttagca tatgaacatc 2760
agttagcttc tttggctggt tgaccctagt ttactgttag tacataatcc atttggccct 2820
atataatcat gtctgttgaa gcatctgtat aagttcattg agggtttcca atcaataaaa 2880
tggaaagtgt gcagcagaat tttgaatcat agtattttgc ttcaaaagaa ataaagaaat 2940
taagtaagga gcatgtctta gatataccta ttttagagga agtcatgcgc tttatgggta 3000
cttaaaactt tagatgggtg aacaagtcaa atagaacctc tttataagac cagacggaat 3060
caaatagaac ctctttataa gaccagacgg aggatctggt tccagtttac caggtgttta 3120
ccagaagcaa aaaaccattg gttttctgaa acttgagctt gctagtgctc tacttttagt 3180
aactgcttcg attattatct gtcctgttgt atttaggtgc tacaaagtgc ctcgggtatg 3240
tacagaagct tgaacgctct tgcgatgcaa gtggtaaagc caggggggtt actcatgaca 3300
tgctcatgct ctggagctat gacccaaagc ggcctcttcc tcagaaccat tcaggtatgt 3360
cttttgatca tgttgcataa ccaagtaatc agcatacacc ttgtcaccca tatgtatcca 3420
agcaactaac accttatagt aacaataaca tcaattgaaa ggaacatcca ataatggtcc 3480
aatctaatta tttccagctt gacaaactgt aaacattcaa cagaaaaaaa attggacaaa 3540
acacaatgcc catatctagc ttccaactca agatttccct ttttttgggt agaaggtttg 3600
caatgtaaat tcatgcccca ttccagccgt catattggct ataggtccaa ggtggtaaaa 3660
ttgttttttt tttgtaatga tacatattgg attcaataat agtgttttac atcggaaatt 3720
gccatcaagt tatgcacatc gatgataaca ttatctcttt tgtttttaat ttcaagggtg 3780
ctgcatcaat gaccggccga aaggttacag ttctacgcca agcaggggca gcctgtgatc 3840
atcccgtaga tcctgcatac cctgaaggcc gatatctcag caattacttg ctccgagtga 3900
cctgaaggaa aaaaaaaaag gcttagaagc cttctactga ccaattaccg cacagcattt 3960
tcctaagagc tgatgctttg aagttatagt tcagtttcat ttcatttttt aagtcatact 4020
tgttagatca agaaactttc cgaaggaaag atgtatgatg atatagattt tgaagattat 4080
ttgttaattt ctagcgcaga tcattattta cccttgttga gattaacgtt tttaacactt 4140
ttttatatat ggaatatgga agatgtgtaa atcattcaca tggtg 4185
<210> 4
<211> 15898
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
taaacgctct tttctcttag gtttacccgc caatatatcc tgtcaaacac tgatagttta 60
aactgaaggc gggaaacgac aatctgatcc aagctcaagc tgctctagca ttcgccattc 120
aggctgcgca actgttggga agggcgatcg gtgcgggcct cttcgctatt acgccagctg 180
gcgaaagggg gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca 240
cgacgttgta aaacgacggc cagtgccaag cttggatcat gaaccaacgg cctggctgta 300
tttggtggtt gtgtagggag atggggagaa gaaaagcccg attctcttcg ctgtgatggg 360
ctggatgcat gcgggggagc gggaggccca agtacgtgca cggtgagcgg cccacagggc 420
gagtgtgagc gcgagaggcg ggaggaacag tttagtacca cattgcccag ctaactcgaa 480
cgcgaccaac ttataaaccc gcgcgctgtc gcttgtgtcc gggcgcaaag gtctagtcgt 540
tttagagcta gaaatagcaa gttaaaataa ggctagtccg ttatcaactt gaaaaagtgg 600
caccgagtcg gtgctttttt gttttagagc tagaaatagc aagttaaaat aaggctagtc 660
cgtagcgcgt gcgccaattc tgcagacaaa tggccccggg cctgcaggtg cagcgtgacc 720
cggtcgtgcc cctctctaga gataatgagc attgcatgtc taagttataa aaaattacca 780
catatttttt ttgtcacact tgtttgaagt gcagtttatc tatctttata catatattta 840
aactttactc tacgaataat ataatctata gtactacaat aatatcagtg ttttagagaa 900
tcatataaat gaacagttag acatggtcta aaggacaatt gagtattttg acaacaggac 960
tctacagttt tatcttttta gtgtgcatgt gttctccttt ttttttgcaa atagcttcac 1020
ctatataata cttcatccat tttattagta catccattta gggtttaggg ttaatggttt 1080
ttatagacta atttttttag tacatctatt ttattctatt ttagcctcta aattaagaaa 1140
actaaaactc tattttagtt tttttattta ataatttaga tataaaatag aataaaataa 1200
agtgactaaa aattaaacaa atacccttta agaaattaaa aaaactaagg aaacattttt 1260
cttgtttcga gtagataatg ccagcctgtt aaacgccgtc gacgagtcta acggacacca 1320
accagcgaac cagcagcgtc gcgtcgggcc aagcgaagca gacggcacgg catctctgtc 1380
gctgcctctg gacccctctc gagagttccg ctccaccgtt ggacttgctc cgctgtcggc 1440
atccagaaat tgcgtggcgg agcggcagac gtgagccggc acggcaggcg gcctcctcct 1500
cctctcacgg cacggcagct acgggggatt cctttcccac cgctccttcg ctttcccttc 1560
ctcgcccgcc gtaataaata gacaccccct ccacaccctc tttccccaac ctcgtgttgt 1620
tcggagcgca cacacacaca accagatctc ccccaaatcc acccgtcggc acctccgctt 1680
caaggtacgc cgctcgtcct cccccccccc ccctctctac cttctctaga tcggcgttcc 1740
ggtccatggt tagggcccgg tagttctact tctgttcatg tttgtgttag atccgtgttt 1800
gtgttagatc cgtgctgcta gcgttcgtac acggatgcga cctgtacgtc agacacgttc 1860
tgattgctaa cttgccagtg tttctctttg gggaatcctg ggatggctct agccgttccg 1920
cagacgggat cgatttcatg attttttttg tttcgttgca tagggtttgg tttgcccttt 1980
tcctttattt caatatatgc cgtgcacttg tttgtcgggt catcttttca tgcttttttt 2040
tgtcttggtt gtgatgatgt ggtctggttg ggcggtcgtt ctagatcgga gtagaattct 2100
gtttcaaact acctggtgga tttattaatt ttggatctgt atgtgtgtgc catacatatt 2160
catagttacg aattgaagat gatggatgga aatatcgatc taggataggt atacatgttg 2220
atgcgggttt tactgatgca tatacagaga tgctttttgt tcgcttggtt gtgatgatgt 2280
ggtgtggttg ggcggtcgtt cattcgttct agatcggagt agaatactgt ttcaaactac 2340
ctggtgtatt tattaatttt ggaactgtat gtgtgtgtca tacatcttca tagttacgag 2400
tttaagatgg atggaaatat cgatctagga taggtataca tgttgatgtg ggttttactg 2460
atgcatatac atgatggcat atgcagcatc tattcatatg ctctaacctt gagtacctat 2520
ctattataat aaacaagtat gttttataat tattttgatc ttgatatact tggatgatgg 2580
catatgcagc agctatatgt ggattttttt agccctgcct tcatacgcta tttatttgct 2640
tggtactgtt tcttttgtcg atgctcaccc tgttgtttgg tgttacttct gcagccatgg 2700
actataagga ccacgacgga gactacaagg atcatgatat tgattacaaa gacgatgacg 2760
ataagatggc cccaaagaag aagcggaagg tcggtatcca cggagtccca gcagccgaca 2820
agaagtacag catcggcctg gacatcggca ccaactctgt gggctgggcc gtgatcaccg 2880
acgagtacaa ggtgcccagc aagaaattca aggtgctggg caacaccgac cggcacagca 2940
tcaagaagaa cctgatcgga gccctgctgt tcgacagcgg cgaaacagcc gaggccaccc 3000
ggctgaagag aaccgccaga agaagataca ccagacggaa gaaccggatc tgctatctgc 3060
aagagatctt cagcaacgag atggccaagg tggacgacag cttcttccac agactggaag 3120
agtccttcct ggtggaagag gataagaagc acgagcggca ccccatcttc ggcaacatcg 3180
tggacgaggt ggcctaccac gagaagtacc ccaccatcta ccacctgaga aagaaactgg 3240
tggacagcac cgacaaggcc gacctgcggc tgatctatct ggccctggcc cacatgatca 3300
agttccgggg ccacttcctg atcgagggcg acctgaaccc cgacaacagc gacgtggaca 3360
agctgttcat ccagctggtg cagacctaca accagctgtt cgaggaaaac cccatcaacg 3420
ccagcggcgt ggacgccaag gccatcctgt ctgccagact gagcaagagc agacggctgg 3480
aaaatctgat cgcccagctg cccggcgaga agaagaatgg cctgttcgga aacctgattg 3540
ccctgagcct gggcctgacc cccaacttca agagcaactt cgacctggcc gaggatgcca 3600
aactgcagct gagcaaggac acctacgacg acgacctgga caacctgctg gcccagatcg 3660
gcgaccagta cgccgacctg tttctggccg ccaagaacct gtccgacgcc atcctgctga 3720
gcgacatcct gagagtgaac accgagatca ccaaggcccc cctgagcgcc tctatgatca 3780
agagatacga cgagcaccac caggacctga ccctgctgaa agctctcgtg cggcagcagc 3840
tgcctgagaa gtacaaagag attttcttcg accagagcaa gaacggctac gccggctaca 3900
ttgacggcgg agccagccag gaagagttct acaagttcat caagcccatc ctggaaaaga 3960
tggacggcac cgaggaactg ctcgtgaagc tgaacagaga ggacctgctg cggaagcagc 4020
ggaccttcga caacggcagc atcccccacc agatccacct gggagagctg cacgccattc 4080
tgcggcggca ggaagatttt tacccattcc tgaaggacaa ccgggaaaag atcgagaaga 4140
tcctgacctt ccgcatcccc tactacgtgg gccctctggc caggggaaac agcagattcg 4200
cctggatgac cagaaagagc gaggaaacca tcaccccctg gaacttcgag gaagtggtgg 4260
acaagggcgc ttccgcccag agcttcatcg agcggatgac caacttcgat aagaacctgc 4320
ccaacgagaa ggtgctgccc aagcacagcc tgctgtacga gtacttcacc gtgtataacg 4380
agctgaccaa agtgaaatac gtgaccgagg gaatgagaaa gcccgccttc ctgagcggcg 4440
agcagaaaaa ggccatcgtg gacctgctgt tcaagaccaa ccggaaagtg accgtgaagc 4500
agctgaaaga ggactacttc aagaaaatcg agtgcttcga ctccgtggaa atctccggcg 4560
tggaagatcg gttcaacgcc tccctgggca cataccacga tctgctgaaa attatcaagg 4620
acaaggactt cctggacaat gaggaaaacg aggacattct ggaagatatc gtgctgaccc 4680
tgacactgtt tgaggacaga gagatgatcg aggaacggct gaaaacctat gcccacctgt 4740
tcgacgacaa agtgatgaag cagctgaagc ggcggagata caccggctgg ggcaggctga 4800
gccggaagct gatcaacggc atccgggaca agcagtccgg caagacaatc ctggatttcc 4860
tgaagtccga cggcttcgcc aacagaaact tcatgcagct gatccacgac gacagcctga 4920
cctttaaaga ggacatccag aaagcccagg tgtccggcca gggcgatagc ctgcacgagc 4980
acattgccaa tctggccggc agccccgcca ttaagaaggg catcctgcag acagtgaagg 5040
tggtggacga gctcgtgaaa gtgatgggcc ggcacaagcc cgagaacatc gtgatcgaaa 5100
tggccagaga gaaccagacc acccagaagg gacagaagaa cagccgcgag agaatgaagc 5160
ggatcgaaga gggcatcaaa gagctgggca gccagatcct gaaagaacac cccgtggaaa 5220
acacccagct gcagaacgag aagctgtacc tgtactacct gcagaatggg cgggatatgt 5280
acgtggacca ggaactggac atcaaccggc tgtccgacta cgatgtggac catatcgtgc 5340
ctcagagctt tctgaaggac gactccatcg acaacaaggt gctgaccaga agcgacaaga 5400
accggggcaa gagcgacaac gtgccctccg aagaggtcgt gaagaagatg aagaactact 5460
ggcggcagct gctgaacgcc aagctgatta cccagagaaa gttcgacaat ctgaccaagg 5520
ccgagagagg cggcctgagc gaactggata aggccggctt catcaagaga cagctggtgg 5580
aaacccggca gatcacaaag cacgtggcac agatcctgga ctcccggatg aacactaagt 5640
acgacgagaa tgacaagctg atccgggaag tgaaagtgat caccctgaag tccaagctgg 5700
tgtccgattt ccggaaggat ttccagtttt acaaagtgcg cgagatcaac aactaccacc 5760
acgcccacga cgcctacctg aacgccgtcg tgggaaccgc cctgatcaaa aagtacccta 5820
agctggaaag cgagttcgtg tacggcgact acaaggtgta cgacgtgcgg aagatgatcg 5880
ccaagagcga gcaggaaatc ggcaaggcta ccgccaagta cttcttctac agcaacatca 5940
tgaacttttt caagaccgag attaccctgg ccaacggcga gatccggaag cggcctctga 6000
tcgagacaaa cggcgaaacc ggggagatcg tgtgggataa gggccgggat tttgccaccg 6060
tgcggaaagt gctgagcatg ccccaagtga atatcgtgaa aaagaccgag gtgcagacag 6120
gcggcttcag caaagagtct atcctgccca agaggaacag cgataagctg atcgccagaa 6180
agaaggactg ggaccctaag aagtacggcg gcttcgacag ccccaccgtg gcctattctg 6240
tgctggtggt ggccaaagtg gaaaagggca agtccaagaa actgaagagt gtgaaagagc 6300
tgctggggat caccatcatg gaaagaagca gcttcgagaa gaatcccatc gactttctgg 6360
aagccaaggg ctacaaagaa gtgaaaaagg acctgatcat caagctgcct aagtactccc 6420
tgttcgagct ggaaaacggc cggaagagaa tgctggcctc tgccggcgaa ctgcagaagg 6480
gaaacgaact ggccctgccc tccaaatatg tgaacttcct gtacctggcc agccactatg 6540
agaagctgaa gggctccccc gaggataatg agcagaaaca gctgtttgtg gaacagcaca 6600
agcactacct ggacgagatc atcgagcaga tcagcgagtt ctccaagaga gtgatcctgg 6660
ccgacgctaa tctggacaaa gtgctgtccg cctacaacaa gcaccgggat aagcccatca 6720
gagagcaggc cgagaatatc atccacctgt ttaccctgac caatctggga gcccctgccg 6780
ccttcaagta ctttgacacc accatcgacc ggaagaggta caccagcacc aaagaggtgc 6840
tggacgccac cctgatccac cagagcatca ccggcctgta cgagacacgg atcgacctgt 6900
ctcagctggg aggcgacaaa aggccggcgg ccacgaaaaa ggccggccag gcaaaaaaga 6960
aaaagtaagg atcctgattg atcgatagag ctcgaatttc cccgatcgtt caaacatttg 7020
gcaataaagt ttcttaagat tgaatcctgt tgccggtctt gcgatgatta tcatataatt 7080
tctgttgaat tacgttaagc atgtaataat taacatgtaa tgcatgacgt tatttatgag 7140
atgggttttt atgattagag tcccgcaatt atacatttaa tacgcgatag aaaacaaaat 7200
atagcgcgca aactaggata aattatcgcg cgcggtgtca tctatgttac tagatcggga 7260
attcgtaatc atggtcatag ctgtttcctg tgtgaaattg ttatccgctc acaattccac 7320
acaacatacg agccggaagc ataaagtgta aagcctgggg tgcctaatga gtgagctaac 7380
tcacattaat tgcgttgcgc tcactgcccg ctttccagtc gggaaacctg tcgtgccagc 7440
tgcattaatg aatcggccaa cgcgcgggga gaggcggttt gcgtattggc tagagcagct 7500
tgccaacatg gtggagcacg acactctcgt ctactccaag aatatcaaag atacagtctc 7560
agaagaccaa agggctattg agacttttca acaaagggta atatcgggaa acctcctcgg 7620
attccattgc ccagctatct gtcacttcat caaaaggaca gtagaaaagg aaggtggcac 7680
ctacaaatgc catcattgcg ataaaggaaa ggctatcgtt caagatgcct ctgccgacag 7740
tggtcccaaa gatggacccc cacccacgag gagcatcgtg gaaaaagaag acgttccaac 7800
cacgtcttca aagcaagtgg attgatgtga taacatggtg gagcacgaca ctctcgtcta 7860
ctccaagaat atcaaagata cagtctcaga agaccaaagg gctattgaga cttttcaaca 7920
aagggtaata tcgggaaacc tcctcggatt ccattgccca gctatctgtc acttcatcaa 7980
aaggacagta gaaaaggaag gtggcaccta caaatgccat cattgcgata aaggaaaggc 8040
tatcgttcaa gatgcctctg ccgacagtgg tcccaaagat ggacccccac ccacgaggag 8100
catcgtggaa aaagaagacg ttccaaccac gtcttcaaag caagtggatt gatgtgatat 8160
ctccactgac gtaagggatg acgcacaatc ccactatcct tcgcaagacc ttcctctata 8220
taaggaagtt catttcattt ggagaggaca cgctgaaatc accagtctct ctctacaaat 8280
ctatctctct cgagctttcg cagatcccgg ggggcaatga gatatgaaaa agcctgaact 8340
caccgcgacg tctgtcgaga agtttctgat cgaaaagttc gacagcgtct ccgacctgat 8400
gcagctctcg gagggcgaag aatctcgtgc tttcagcttc gatgtaggag ggcgtggata 8460
tgtcctgcgg gtaaatagct gcgccgatgg tttctacaaa gatcgttatg tttatcggca 8520
ctttgcatcg gccgcgctcc cgattccgga agtgcttgac attggggagt ttagcgagag 8580
cctgacctat tgcatctccc gccgtgcaca gggtgtcacg ttgcaagacc tgcctgaaac 8640
cgaactgccc gctgttctac aaccggtcgc ggaggctatg gatgcgatcg ctgcggccga 8700
tcttagccag acgagcgggt tcggcccatt cggaccgcaa ggaatcggtc aatacactac 8760
atggcgtgat ttcatatgcg cgattgctga tccccatgtg tatcactggc aaactgtgat 8820
ggacgacacc gtcagtgcgt ccgtcgcgca ggctctcgat gagctgatgc tttgggccga 8880
ggactgcccc gaagtccggc acctcgtgca cgcggatttc ggctccaaca atgtcctgac 8940
ggacaatggc cgcataacag cggtcattga ctggagcgag gcgatgttcg gggattccca 9000
atacgaggtc gccaacatct tcttctggag gccgtggttg gcttgtatgg agcagcagac 9060
gcgctacttc gagcggaggc atccggagct tgcaggatcg ccacgactcc gggcgtatat 9120
gctccgcatt ggtcttgacc aactctatca gagcttggtt gacggcaatt tcgatgatgc 9180
agcttgggcg cagggtcgat gcgacgcaat cgtccgatcc ggagccggga ctgtcgggcg 9240
tacacaaatc gcccgcagaa gcgcggccgt ctggaccgat ggctgtgtag aagtactcgc 9300
cgatagtgga aaccgacgcc ccagcactcg tccgagggca aagaaataga gtagatgccg 9360
accggatctg tcgatcgaca agctcgagtt tctccataat aatgtgtgag tagttcccag 9420
ataagggaat tagggttcct atagggtttc gctcatgtgt tgagcatata agaaaccctt 9480
agtatgtatt tgtatttgta aaatacttct atcaataaaa tttctaattc ctaaaaccaa 9540
aatccagtac taaaatccag atcccccgaa ttaattcggc gttaattcag tacattaaaa 9600
acgtccgcaa tgtgttatta agttgtctaa gcgtcaattt gtttacacca caatatatcc 9660
tgccaccagc cagccaacag ctccccgacc ggcagctcgg cacaaaatca ccactcgata 9720
caggcagccc atcagtccgg gacggcgtca gcgggagagc cgttgtaagg cggcagactt 9780
tgctcatgtt accgatgcta ttcggaagaa cggcaactaa gctgccgggt ttgaaacacg 9840
gatgatctcg cggagggtag catgttgatt gtaacgatga cagagcgttg ctgcctgtga 9900
tcaccgcggt ttcaaaatcg gctccgtcga tactatgtta tacgccaact ttgaaaacaa 9960
ctttgaaaaa gctgttttct ggtatttaag gttttagaat gcaaggaaca gtgaattgga 10020
gttcgtcttg ttataattag cttcttgggg tatctttaaa tactgtagaa aagaggaagg 10080
aaataataaa tggctaaaat gagaatatca ccggaattga aaaaactgat cgaaaaatac 10140
cgctgcgtaa aagatacgga aggaatgtct cctgctaagg tatataagct ggtgggagaa 10200
aatgaaaacc tatatttaaa aatgacggac agccggtata aagggaccac ctatgatgtg 10260
gaacgggaaa aggacatgat gctatggctg gaaggaaagc tgcctgttcc aaaggtcctg 10320
cactttgaac ggcatgatgg ctggagcaat ctgctcatga gtgaggccga tggcgtcctt 10380
tgctcggaag agtatgaaga tgaacaaagc cctgaaaaga ttatcgagct gtatgcggag 10440
tgcatcaggc tctttcactc catcgacata tcggattgtc cctatacgaa tagcttagac 10500
agccgcttag ccgaattgga ttacttactg aataacgatc tggccgatgt ggattgcgaa 10560
aactgggaag aagacactcc atttaaagat ccgcgcgagc tgtatgattt tttaaagacg 10620
gaaaagcccg aagaggaact tgtcttttcc cacggcgacc tgggagacag caacatcttt 10680
gtgaaagatg gcaaagtaag tggctttatt gatcttggga gaagcggcag ggcggacaag 10740
tggtatgaca ttgccttctg cgtccggtcg atcagggagg atatcgggga agaacagtat 10800
gtcgagctat tttttgactt actggggatc aagcctgatt gggagaaaat aaaatattat 10860
attttactgg atgaattgtt ttagtaccta gaatgcatga ccaaaatccc ttaacgtgag 10920
ttttcgttcc actgagcgtc agaccccgta gaaaagatca aaggatcttc ttgagatcct 10980
ttttttctgc gcgtaatctg ctgcttgcaa acaaaaaaac caccgctacc agcggtggtt 11040
tgtttgccgg atcaagagct accaactctt tttccgaagg taactggctt cagcagagcg 11100
cagataccaa atactgtcct tctagtgtag ccgtagttag gccaccactt caagaactct 11160
gtagcaccgc ctacatacct cgctctgcta atcctgttac cagtggctgc tgccagtggc 11220
gataagtcgt gtcttaccgg gttggactca agacgatagt taccggataa ggcgcagcgg 11280
tcgggctgaa cggggggttc gtgcacacag cccagcttgg agcgaacgac ctacaccgaa 11340
ctgagatacc tacagcgtga gctatgagaa agcgccacgc ttcccgaagg gagaaaggcg 11400
gacaggtatc cggtaagcgg cagggtcgga acaggagagc gcacgaggga gcttccaggg 11460
ggaaacgcct ggtatcttta tagtcctgtc gggtttcgcc acctctgact tgagcgtcga 11520
tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa acgccagcaa cgcggccttt 11580
ttacggttcc tggccttttg ctggcctttt gctcacatgt tctttcctgc gttatcccct 11640
gattctgtgg ataaccgtat taccgccttt gagtgagctg ataccgctcg ccgcagccga 11700
acgaccgagc gcagcgagtc agtgagcgag gaagcggaag agcgcctgat gcggtatttt 11760
ctccttacgc atctgtgcgg tatttcacac cgcatatggt gcactctcag tacaatctgc 11820
tctgatgccg catagttaag ccagtataca ctccgctatc gctacgtgac tgggtcatgg 11880
ctgcgccccg acacccgcca acacccgctg acgcgccctg acgggcttgt ctgctcccgg 11940
catccgctta cagacaagct gtgaccgtct ccgggagctg catgtgtcag aggttttcac 12000
cgtcatcacc gaaacgcgcg aggcagggtg ccttgatgtg ggcgccggcg gtcgagtggc 12060
gacggcgcgg cttgtccgcg ccctggtaga ttgcctggcc gtaggccagc catttttgag 12120
cggccagcgg ccgcgatagg ccgacgcgaa gcggcggggc gtagggagcg cagcgaccga 12180
agggtaggcg ctttttgcag ctcttcggct gtgcgctggc cagacagtta tgcacaggcc 12240
aggcgggttt taagagtttt aataagtttt aaagagtttt aggcggaaaa atcgcctttt 12300
ttctctttta tatcagtcac ttacatgtgt gaccggttcc caatgtacgg ctttgggttc 12360
ccaatgtacg ggttccggtt cccaatgtac ggctttgggt tcccaatgta cgtgctatcc 12420
acaggaaaga gtccttttcg acctttttcc cctgctaggg caatttgccc tagcatctgc 12480
tccgtacatt aggaaccggc ggatgcttcg ccctcgatca ggttgcggta gcgcatgact 12540
aggatcgggc cagcctgccc cgcctcctcc ttcaaatcgt actccggcag gtcatttgac 12600
ccgatcagct tgcgcacggt gaaacagaac ttcttgaact ctccggcgct gccactgcgt 12660
tcgtagatcg tcttgaacaa ccatctggct tctgccttgc ctgcggcgcg gcgtgccagg 12720
cggtagagaa aacggccgat gccgggatcg atcaaaaagt aatcggggtg aaccgtcagc 12780
acgtccgggt tcttgccttc tgtgatctcg cggtacatcc aatcagctag ctcgatctcg 12840
atgtactccg gccgcccggt ttcgctcttt acgatcttgt agcggctaat caaggcttca 12900
ccctcggata ccgtcaccag gcggccgttc ttggccttct tcgtacgctg catggcaacg 12960
tgcgtggtgt ttaaccgaat gcaggtttct accaggtcgt ctttctgctt tccgccatcg 13020
gctcgccggc agaacttgag tacgtccgca acgtgtggac ggaacacgcg gccgggcttg 13080
tctcccttcc cttcccggta tcggttcatg gattcggtta gatgggaaac cgccatcagt 13140
accaggtcgt aatcccacac actggccatg ccggccggcc ctgcggaaac ctctacgtgc 13200
ccgtctggaa gctcgtagcg gatcacctcg ccagctcgtc ggtcacgctt cgacagacgg 13260
aaaacggcca cgtccatgat gctgcgacta tcgcgggtgc ccacgtcata gagcatcgga 13320
acgaaaaaat ctggttgctc gtcgcccttg ggcggcttcc taatcgacgg cgcaccggct 13380
gccggcggtt gccgggattc tttgcggatt cgatcagcgg ccgcttgcca cgattcaccg 13440
gggcgtgctt ctgcctcgat gcgttgccgc tgggcggcct gcgcggcctt caacttctcc 13500
accaggtcat cacccagcgc cgcgccgatt tgtaccgggc cggatggttt gcgaccgtca 13560
cgccgattcc tcgggcttgg gggttccagt gccattgcag ggccggcaga caacccagcc 13620
gcttacgcct ggccaaccgc ccgttcctcc acacatgggg cattccacgg cgtcggtgcc 13680
tggttgttct tgattttcca tgccgcctcc tttagccgct aaaattcatc tactcattta 13740
ttcatttgct catttactct ggtagctgcg cgatgtattc agatagcagc tcggtaatgg 13800
tcttgccttg gcgtaccgcg tacatcttca gcttggtgtg atcctccgcc ggcaactgaa 13860
agttgacccg cttcatggct ggcgtgtctg ccaggctggc caacgttgca gccttgctgc 13920
tgcgtgcgct cggacggccg gcacttagcg tgtttgtgct tttgctcatt ttctctttac 13980
ctcattaact caaatgagtt ttgatttaat ttcagcggcc agcgcctgga cctcgcgggc 14040
agcgtcgccc tcgggttctg attcaagaac ggttgtgccg gcggcggcag tgcctgggta 14100
gctcacgcgc tgcgtgatac gggactcaag aatgggcagc tcgtacccgg ccagcgcctc 14160
ggcaacctca ccgccgatgc gcgtgccttt gatcgcccgc gacacgacaa aggccgcttg 14220
tagccttcca tccgtgacct caatgcgctg cttaaccagc tccaccaggt cggcggtggc 14280
ccatatgtcg taagggcttg gctgcaccgg aatcagcacg aagtcggctg ccttgatcgc 14340
ggacacagcc aagtccgccg cctggggcgc tccgtcgatc actacgaagt cgcgccggcc 14400
gatggccttc acgtcgcggt caatcgtcgg gcggtcgatg ccgacaacgg ttagcggttg 14460
atcttcccgc acggccgccc aatcgcgggc actgccctgg ggatcggaat cgactaacag 14520
aacatcggcc ccggcgagtt gcagggcgcg ggctagatgg gttgcgatgg tcgtcttgcc 14580
tgacccgcct ttctggttaa gtacagcgat aaccttcatg cgttcccctt gcgtatttgt 14640
ttatttactc atcgcatcat atacgcagcg accgcatgac gcaagctgtt ttactcaaat 14700
acacatcacc tttttagacg gcggcgctcg gtttcttcag cggccaagct ggccggccag 14760
gccgccagct tggcatcaga caaaccggcc aggatttcat gcagccgcac ggttgagacg 14820
tgcgcgggcg gctcgaacac gtacccggcc gcgatcatct ccgcctcgat ctcttcggta 14880
atgaaaaacg gttcgtcctg gccgtcctgg tgcggtttca tgcttgttcc tcttggcgtt 14940
cattctcggc ggccgccagg gcgtcggcct cggtcaatgc gtcctcacgg aaggcaccgc 15000
gccgcctggc ctcggtgggc gtcacttcct cgctgcgctc aagtgcgcgg tacagggtcg 15060
agcgatgcac gccaagcagt gcagccgcct ctttcacggt gcggccttcc tggtcgatca 15120
gctcgcgggc gtgcgcgatc tgtgccgggg tgagggtagg gcgggggcca aacttcacgc 15180
ctcgggcctt ggcggcctcg cgcccgctcc gggtgcggtc gatgattagg gaacgctcga 15240
actcggcaat gccggcgaac acggtcaaca ccatgcggcc ggccggcgtg gtggtgtcgg 15300
cccacggctc tgccaggcta cgcaggcccg cgccggcctc ctggatgcgc tcggcaatgt 15360
ccagtaggtc gcgggtgctg cgggccaggc ggtctagcct ggtcactgtc acaacgtcgc 15420
cagggcgtag gtggtcaagc atcctggcca gctccgggcg gtcgcgcctg gtgccggtga 15480
tcttctcgga aaacagcttg gtgcagccgg ccgcgtgcag ttcggcccgt tggttggtca 15540
agtcctggtc gtcggtgctg acgcgggcat agcccagcag gccagcggcg gcgctcttgt 15600
tcatggcgta atgtctccgg ttctagtcgc aagtattcta ctttatgcga ctaaaacacg 15660
cgacaagaaa acgccaggaa aagggcaggg cggcagcctg tcgcgtaact taggacttgt 15720
gcgacatgtc gttttcagaa gacggctgca ctgaacgtca gaagccgact gcactatagc 15780
agcggagggg ttggatcaaa gtactttgat cccgagggga accctgtggt tggcatgcac 15840
atacaaatgg acgaacggat aaaccttttc acgccctttt aaatatccgt tattctaa 15898
<210> 5
<211> 96
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
ccgggcgcaa aggtctagtc gttttagagc tagaaatagc aagttaaaat aaggctagtc 60
cgttatcaac ttgaaaaagt ggcaccgagt cggtgc 96
<210> 6
<211> 96
<212> RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
ccgggcgcaa aggucuaguc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc 96
<210> 7
<211> 20
<212> RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
ccgggcgcaa aggucuaguc 20

Claims (10)

1, OsR5BP1 protein in regulating and controlling plant stress tolerance;
the OsR5BP1 protein is (a1) or (a2) or (a3) or (a 4):
(a1) protein shown as a sequence 1 in a sequence table;
(a2) a fusion protein obtained by attaching a tag to the N-terminus or/and the C-terminus of the protein of (a 1);
(a3) a protein obtained by substituting and/or deleting and/or adding one or more amino acid residues in (a1) and related to the stress tolerance and/or the growth performance and/or the production performance of plants;
(a4) a protein derived from rice, having 98% or more identity to (a1), and being involved in stress tolerance, growth performance and/or productivity of plants.
2, OsR5BP1 protein or its coding gene as the suppression target in plant breeding; the plant breeding aims at cultivating plants with enhanced stress tolerance; the OsR5BP1 protein is the OsR5BP1 protein described in claim 1.
3. The application of a substance inhibiting OsR5BP1 gene and/or a substance inhibiting OsR5BP1 protein in plant breeding; the plant breeding aims at cultivating plants with enhanced stress tolerance; the OsR5BP1 protein is the OsR5BP1 protein of claim 1; the OsR5BP1 gene is a gene which codes for the OsR5BP1 protein.
4. A plant breeding method for breeding a plant with enhanced stress tolerance, comprising the steps of: carrying out gene editing on OsR5BP1 gene in a receptor plant to obtain a gene editing plant; (ii) an increased stress tolerance of the gene-edited plant as compared to the recipient plant; the OsR5BP1 gene is a gene coding OsR5BP1 protein, and the OsR5BP1 protein is OsR5BP1 protein as claimed in claim 1.
5. A method of making a plant with enhanced stress tolerance comprising the steps of: replacing "CCGGGCGCAAAGGTCTAGTC" in OsR5BP1 gene in plant genome DNA by "CCGAGGCGCAAAGGTCTAGTC" or "CCGGCGCAAAGGTCTAGTC" to obtain a plant with enhanced stress tolerance; the OsR5BP1 gene is a gene coding OsR5BP1 protein, and the OsR5BP1 protein is OsR5BP1 protein as claimed in claim 1.
6, OsR5BP1 protein in regulating and controlling the growth performance and/or production performance of plants; the OsR5BP1 protein is the OsR5BP1 protein described in claim 1.
7, OsR5BP1 protein or its coding gene as the suppression target in the plant breeding application; the goal of plant breeding is to cultivate plants with improved growth performance and/or improved production performance; the OsR5BP1 protein is the OsR5BP1 protein described in claim 1.
8. The application of a substance inhibiting OsR5BP1 gene and/or a substance inhibiting OsR5BP1 protein in plant breeding; the goal of plant breeding is to cultivate plants with improved growth performance and/or improved production performance; the OsR5BP1 protein is the OsR5BP1 protein described in claim 1; the OsR5BP1 gene is a gene which codes for the OsR5BP1 protein.
9. A plant breeding method for breeding plants with improved growth performance and/or improved production performance, comprising the steps of: carrying out gene editing on OsR5BP1 genes in a receptor plant to obtain a gene editing plant; an increase in growth performance and/or an increase in production performance of the gene-edited plant as compared to the recipient plant; the OsR5BP1 gene is a gene coding OsR5BP1 protein, and the OsR5BP1 protein is OsR5BP1 protein as claimed in claim 1.
10. A method of producing a plant with enhanced growth performance and/or enhanced production performance comprising the steps of: replacing "CCGGGCGCAAAGGTCTAGTC" in OsR5BP1 gene in plant genome DNA with "CCGAGGCGCAAAGGTCTAGTC" or "CCGGCGCAAAGGTCTAGTC" to obtain a plant with improved growth performance and/or improved production performance; the OsR5BP1 gene is a gene coding OsR5BP1 protein, and the OsR5BP1 protein is OsR5BP1 protein as claimed in claim 1.
CN202210275816.XA 2022-03-21 2022-03-21 OsR5BP1 protein and regulation and control function of coding gene thereof on stress tolerance, growth performance and production performance of plants Active CN114560921B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210275816.XA CN114560921B (en) 2022-03-21 2022-03-21 OsR5BP1 protein and regulation and control function of coding gene thereof on stress tolerance, growth performance and production performance of plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210275816.XA CN114560921B (en) 2022-03-21 2022-03-21 OsR5BP1 protein and regulation and control function of coding gene thereof on stress tolerance, growth performance and production performance of plants

Publications (2)

Publication Number Publication Date
CN114560921A true CN114560921A (en) 2022-05-31
CN114560921B CN114560921B (en) 2023-04-14

Family

ID=81719078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210275816.XA Active CN114560921B (en) 2022-03-21 2022-03-21 OsR5BP1 protein and regulation and control function of coding gene thereof on stress tolerance, growth performance and production performance of plants

Country Status (1)

Country Link
CN (1) CN114560921B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003116546A (en) * 2001-10-18 2003-04-22 Denpatsu Kankyo Ryokka Center:Kk Salt resistance-imparting protein, nucleic acid encoding the same, and salt-resistant transgenic plant
US20210324397A1 (en) * 2020-04-15 2021-10-21 Zhejiang Normal University A gene osckx11 for controlling rice grain number and use thereof
CN113717266A (en) * 2021-09-14 2021-11-30 中国农业科学院生物技术研究所 Osnop2 protein and application of coding gene thereof in stress tolerance and yield correlation
CN113912686A (en) * 2020-06-24 2022-01-11 中国农业科学院生物技术研究所 OsRBP2 protein and coding gene and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003116546A (en) * 2001-10-18 2003-04-22 Denpatsu Kankyo Ryokka Center:Kk Salt resistance-imparting protein, nucleic acid encoding the same, and salt-resistant transgenic plant
US20210324397A1 (en) * 2020-04-15 2021-10-21 Zhejiang Normal University A gene osckx11 for controlling rice grain number and use thereof
CN113912686A (en) * 2020-06-24 2022-01-11 中国农业科学院生物技术研究所 OsRBP2 protein and coding gene and application thereof
CN113717266A (en) * 2021-09-14 2021-11-30 中国农业科学院生物技术研究所 Osnop2 protein and application of coding gene thereof in stress tolerance and yield correlation

Also Published As

Publication number Publication date
CN114560921B (en) 2023-04-14

Similar Documents

Publication Publication Date Title
CN110183523B (en) OsMYB36 protein and coding gene and application thereof
CN113980964B (en) Method for site-directed mutagenesis of BnHBBD gene of brassica napus and application
KR20190113740A (en) Methods and compositions for increasing yield of short stature plants through manipulation of gibberellin metabolism
CN113684169B (en) Poly (3-hydroxybutyrate-4-hydroxybutyrate-5-hydroxyvalerate) trimer and microorganism production strain construction thereof
CN110714022B (en) A gene STK1 for pollen competitiveness; 2 and application thereof in improving efficiency of propagating plant nuclear male sterile line
CN110066829B (en) CRISPR/Cas9 gene editing system and application thereof
CN113481136B (en) Recombinant halophilic monad, construction method and application of catalyzing citric acid to prepare itaconic acid
CN110092821B (en) OsABCB1 protein and coding gene and application thereof
CN113912686B (en) OsRBP2 protein, encoding gene and application thereof
WO2020169221A1 (en) Production of plant-based active substances (e.g. cannabinoids) by recombinant microorganisms
CN114560921B (en) OsR5BP1 protein and regulation and control function of coding gene thereof on stress tolerance, growth performance and production performance of plants
CN109402151A (en) Barley gene HvHVP10 and its application in terms of improving plant salt endurance
CN111217897B (en) Os516 protein and coding gene and application thereof
CN109161545B (en) microRNA for inhibiting expression of Sirt1 gene of chicken, recombinant superficies plasmid thereof and LMH cell line
CN111534578A (en) Method for high-throughput screening of target gene of interaction between eukaryotic cells and pesticides
CN111549053B (en) Method for single nucleotide mutation of cauliflower
KR101831121B1 (en) Nucleic acid structure containing a pyripyropene biosynthesis gene cluster and a marker gene
CN109971789A (en) A kind of gene editing system and its application in new gold mycobacteria
CN109913480B (en) Locust uridine diphosphate glucuronosyltransferase gene and application thereof
CN106715697A (en) Transformation method of sugar beet protoplasts by TALEN platform technology
CN111793639B (en) Method for improving insecticidal activity of Bt by mixing with RNAi engineering bacteria
CN112195190B (en) Replication element derived from Bacillus belgii plasmid and application thereof
CN117305266B (en) Gene OsBDG1 related to rice stress resistance and application of coded protein thereof
CN113943741B (en) Gene editing and application of rice quality trait genes
CN109384835B (en) Insect-resistant related protein and application of encoding gene thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant