CN114544723A - 一种Au@BP5复合材料及其制备方法与应用 - Google Patents

一种Au@BP5复合材料及其制备方法与应用 Download PDF

Info

Publication number
CN114544723A
CN114544723A CN202210190929.XA CN202210190929A CN114544723A CN 114544723 A CN114544723 A CN 114544723A CN 202210190929 A CN202210190929 A CN 202210190929A CN 114544723 A CN114544723 A CN 114544723A
Authority
CN
China
Prior art keywords
electrode
composite material
solution
preparation
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210190929.XA
Other languages
English (en)
Other versions
CN114544723B (zh
Inventor
王锦
卑佳丽
蔡燕
郭旭
范春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202210190929.XA priority Critical patent/CN114544723B/zh
Publication of CN114544723A publication Critical patent/CN114544723A/zh
Application granted granted Critical
Publication of CN114544723B publication Critical patent/CN114544723B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本申请公开一种Au@BP5复合材料及其制备方法与应用,在Au纳米粒子表面包裹一层带有可以识别H2O2特异性基团的不对称柱[5]芳烃,以Au@BP5为光活性材料,设计了一种新型信号开关型光电化学(PEC)生物传感系统,用于检测细胞中微量H2O2。这是首次合成此种不对称柱[5]芳烃BP5并复合Au纳米粒子作为传感材料。利用Au纳米粒子在可见光照下的局域表面等离子效应,不对称柱[5]芳烃(BP5)的主客体络合作用以及柱芳烃上特异性基团与H2O2的反应检测H2O2。基于Au@BP5的多个信号放大能力,H2O2检测线性范围从1 pg mL‑1‑60 pg mL‑1,检测极限为0.33 pg mL‑1(S/N=3)。

Description

一种Au@BP5复合材料及其制备方法与应用
技术领域
本发明属于光电化学技术领域,具体涉及一种Au@BP5复合材料及其制备方法与应用。
背景技术
阿尔茨海默病(AD)是一种常见的神经退行性疾病,主要表现为记忆丧失和认知功能的退化。据《世界阿尔茨海默病报告》显示,2019年全球约有5000万阿尔兹海默症患者,预测到2050年,患者人数将超过1.35亿。由于AD病理复杂,缺乏特效药治疗。因此,AD的精准检测和治疗具有重要社会价值。研究表明,AD患者大脑中存在各种氧化损伤,包括细胞膜脂质过氧化、蛋白和核酸变性等。而氧化损伤主要是由活性氧(ROS)的动态平衡紊乱造成的。ROS是由基态氧分子衍生出的一系列比氧分子更加活泼的分子或自由基的总称,包括超氧阴离子自由基(O2·-)、羟基自由基(·OH)、过氧化氢(H2O2)、次氯酸根离子(ClO-)等。因此,研制细胞内过氧化氢(H2O2)分子的精确测定方法迫在眉睫,对AD的发病机制和临床诊断至关重要。
在众多ROS的检测方法中,电化学检测技术是众多科研工作者潜心探究的热点。电化学法具有操作简单、响应快速、结果精确、易微型化等特点。通过结合微电极技术,电化学分析法可以实现ROS在活体层次的原位、实时动态检测,这对研究ROS及相关分子与疾病的关系至关重要。在电化学基础上发展的光电化学检测(PEC)技术因其激发信号和响应信号不同,具有更高的灵敏度和精确性。而光电化学传感器的关键是制备高光响应的光电材料。具有局域表面等离子共振效应(LSPR)的贵金属纳米粒子(NM NPs)在构建光电化学传感器中得到广泛的应用。具有LSPR效应的贵金属纳米材料因其独特的光、电优势,展现出广阔的应用前景。例如金纳米粒子(Au NPs)对可见光有较强的吸收能力,在一定强度可见光照射下,产生的LSPR效应大大增加光电响应能力,缩短响应时间,提高检测的灵敏度。有报道指出15nm的Au NPs具有超强的可见光吸收能力,显著提高葡萄糖氧化时的光电化学性能。AuNPs还具有高的化学稳定性、生物相容性、易表面功能化等优点。然而在实验过程中,由于ROS分子的复杂和多样性,Au NPs不易对其特异性地识别。单独的贵金属纳米材料修饰的光电化学传感器很难满足专一性和特异性的需求。
柱芳烃作为超分子家族的一员,由于两端的基团可以定向设计,因此既可以将其设计成具备巯基、双硫键、氨基等能与贵金属发生配位作用的“桥梁”分子,又可以编辑目标基团实现目标分子选择性识别和捕捉。柱芳烃功能化贵金属纳米材料对目标分子光电化学检测时能够充分结合二者优异的特性:柱芳烃上目标基团特异地识别待测客体分子,并通过主客体作用络合足够多的待测分子到Au NPs表面发生化学反应;协同Au NPs的LSPR效应提高光电化学响应,实现PEC检测性能的显著提高。杨英威团队研究指出羧基化的柱[5]芳烃功能化金纳米材料做为光学探针能够特异、高效地检测百草枯。若开发柱芳烃功能化贵金属纳米材料构筑的ROS光电化学传感器,将为ROS中H2O2特异、精确、高灵敏地检测带来新的机遇,具有鲜明的引领特色。
发明内容
解决的技术问题:
本申请针对现有技术的不足,解决了原有检测技术灵敏度低、检测范围有限、仪器昂贵、需要专门操作人员、效率低,速度慢、不易操作等技术问题,提供了一种Au@BP5复合材料及其制备方法与应用。
技术方案:
为实现上述目的,本申请通过以下技术方案予以实现:
一种Au@BP5复合材料的制备方法,包括以下步骤:
第一步,制备具有H2O2特异性识别基团的硼酸酯键的不对称柱芳烃(BP5):
Figure BDA0003520763930000021
第二步,制备Au纳米粒子:以氯金酸为原料,柠檬酸和柠檬酸钠为还原剂,利用热还原法制得球状金纳米粒子溶液;
第三步:取1mg BP5分散于0.5mL DMF中制得BP5溶液,通过超声法将0.5mL球状金纳米粒子溶液与BP5溶液超声,利用BP5上巯基-SH与Au键合,合成核壳结构状的Au@BP5纳米粒子;
第四步:滴涂10μL Au@BP5至玻碳电极(GCE)表面,制备Au@BP5/GCE电极。
进一步地,所述第一步具体步骤为:
步骤a:将化合物对甲氧基苯(5.52g,40.0mmol)和4-溴乙氧基苯氧乙酸(2.89g,10mmol)溶解到200mL二氯甲烷中,加入多聚甲醛(1.49g,15mmol),向混合液中加入三氟化硼乙醚(BF(OC2H5)2,1.63g,11.5mmol),室温搅拌半小时,TCL跟踪直到原料消失,得到绿色的混合物,加水猝灭反应,分液得有机相,旋蒸除去溶剂,所得固体通过柱层析(石油醚/二氯甲烷/乙酸乙酯,v/v/v 100:25:1),得到白色粉末状固体A1(1.05g,12%);
步骤b:将化合物A1(0.442g,0.5mmol)和硫脲(0.076g,1mmol)溶解到4mL DMF中,80℃条件下,氮气保护,反应过夜,冷却至室温,加入10mL NaOH(1M),搅拌1h,用HCl(1M)调节pH至3,用乙醚萃取三次,用盐水洗涤,用无水硫酸钠干燥,旋蒸除去溶剂,所得固体通过柱层析(二氯甲烷/甲醇,v/v 50:1),得到白色粉末状固体B1(0.356g,85%);
步骤c:将化合物B1(0.209g,0.25mmol),4-氨基苯硼酸频哪醇酯(0.055g,0.25mmol),HOBT(0.05g,0.40mmol),EDCl(0.08g,0.40mmol)溶解在20mL干燥氯仿中,室温反应12小时,浓缩反应液,所得固体通过柱层析(二氯甲烷/甲醇,v/v 25:1),得到白色粉末状固体C1(0.218g,21%)。
进一步地,所述第二步制备了球状金纳米粒子具体步骤为:将0.9mL柠檬酸和2.1mL柠檬酸钠(0.1mol/L)加入150mL沸水中,搅拌15min;再加入1mL氯金酸,搅拌3min后,放入冰水中冷却,利用超纯水和乙醇清洗上述得到的沉淀物,将沉淀物分散至4mL超纯水溶液中,制得球状金纳米粒子溶液。
进一步地,所述第三步中超声法的超声时间为1h。
本申请还公开了上述制备方法制备得到的Au@BP5复合材料。
一种Au@BP5复合材料在对细胞中微量H2O2的光电检测中的应用,使用传统的三电极系统,以Au@BP5/GCE电极为工作电极,铂网为对电极,饱和甘汞电极(SCE)为参比电极,利用氙灯模拟可见光源照射Au@BP5/GCE电极表面,控制遮光间隔时间作为可调控“开-关”,再用电化学工作站进行光电化学检测,在H2O2溶液中用于光电化学检测。
上述一种Au@BP5复合材料的工作原理在于:在可见光照下,具有LSPR效应的Au纳米粒子产生电子-空穴对,其中,带有正电荷的空穴会氧化溶液中的H2O2来共同提高光电流;BP5具有主客体络合能力可以吸附H2O2并且可以与H2O2发生反应以提高光电流,此方法可以用于细胞中微量H2O2的光电化学检测。
有益效果:
本申请提供了一种Au@BP5复合材料及其制备方法与应用,与现有技术相比,具备以下有益效果:
1.本申请设计了在可见光照下形成具有LSPR效应的Au纳米粒子,与具有主客体络合能力并且可以与H2O2发生反应的BP5,用于细胞中微量H2O2的光电化学检测。
2.解决原有检测技术灵敏度低、检测范围有限、对环境污染严重、仪器昂贵、需要专门操作人员、效率低,速度慢、不易操作等技术问题。
3.本申请合成的柱方烃与H2O2有较大的主客体络合常数,为40912。
4.本申请检测范围为1pg mL-1-60pg mL-1,检出限为0.33pg mL-1(S/N=3)。
5.本申请检测培育的赫拉细胞中H2O2的回收率在97.30%-98.12%。
附图说明
图1是本申请中光电化学传感器的检测流程图。
图2是本申请中Au纳米粒子(a)、Au@BP5(b)的透射电镜图。
图3是本申请中不同配比的Au@BP5修饰的玻碳电极在1mM H2O2+0.1M PBS中的差分脉冲伏安曲线图(DPVs)(a)和1:1000配比的Au@BP5在1mM H2O2+0.1M PBS溶液中,在可见光和无光照射下的差分脉冲伏安曲线图(DPVs)(b)。
图4为本申请中Au、BP5、Au@BP5的阻抗图(a)和Au、BP5、Au@BP5在1mM H2O2+0.1MPBS溶液中的循环伏安曲线图(CVs)(b)。
图5为本申请中BP5的合成方法流程图。
图6为本申请中BP5与H2O2的反应机理图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,等价形式改动或修改同样落于本申请的权利要求书所限定的范围。
实施例1:
本实施例的一种Au@BP5复合材料,所述Au@BP5复合材料的材料由一种新型不对称柱芳烃,超声复合在Au纳米粒子表面,制备得到Au@BP5复合材料。
一种Au@BP5复合材料的制备方法,步骤为:
第一步,制备具有H2O2特异性识别基团的硼酸酯键的不对称柱芳烃(BP5):将化合物对甲氧基苯(5.52g,40.0mmol)和4-溴乙氧基苯氧乙酸(2.89g,10mmol)溶解到200mL二氯甲烷中,加入多聚甲醛(1.49g,15mmol),向混合液中加入三氟化硼乙醚(BF(OC2H5)2,1.63g,11.5mmol),室温搅拌半小时,TCL跟踪直到原料消失,得到绿色的混合物,加水猝灭反应,分液得有机相,旋蒸除去溶剂,所得固体通过柱层析(石油醚/二氯甲烷/乙酸乙酯,v/v/v 100:25:1),得到白色粉末状固体A1(1.05g,12%);将化合物A1(0.442g,0.5mmol)和硫脲(0.076g,1mmol)溶解到4mL DMF中,80℃条件下,氮气保护,反应过夜,冷却至室温,加入10mL NaOH(1M),搅拌1h,用HCl(1M)调节pH至3,用乙醚萃取三次,用盐水洗涤,用无水硫酸钠干燥,旋蒸除去溶剂,所得固体通过柱层析(二氯甲烷/甲醇,v/v 50:1),得到白色粉末状固体B1(0.356g,85%);将化合物B1(0.209g,0.25mmol),4-氨基苯硼酸频哪醇酯(0.055g,0.25mmol),HOBT(0.05g,0.40mmol),EDCl(0.08g,0.40mmol)溶解在20mL干燥氯仿中,室温反应12小时,浓缩反应液,所得固体通过柱层析(二氯甲烷/甲醇,v/v 25:1),得到白色粉末状固体C1(0.218g,21%);
第二步,制备Au纳米粒子:将0.9mL柠檬酸和2.1mL柠檬酸钠(0.1mol/L)加入150mL沸水中,搅拌15min;再加入1mL氯金酸,搅拌3min后,放入冰水中冷却,利用超纯水和乙醇清洗上述得到的沉淀物,清洗若干次以后将沉淀物分散至4mL超纯水溶液中,制得球状金纳米粒子溶液;
第三步:取1mg BP5分散于0.5mL DMF中制得BP5溶液,通过超声法超将0.5mL球状金纳米粒子溶液与BP5溶液超声1h,利用BP5上巯基-SH与Au键合,合成核壳结构状的Au@BP5纳米粒子;DMF可与水任意比互溶,并且有较大表面张力,有利于修饰电极;
第四步:滴涂10μL Au@BP5至玻碳电极(GCE)表面,制备Au@BP5/GCE。
实施例2:
一种Au@BP5复合材料在对细胞中微量H2O2的光电检测中的应用,所述电极Au@BP5/GCE置于H2O2溶液中用于光电化学检测;所有实验都使用传统的三电极系统,以Au@BP5/GCE电极为工作电极,铂网为对电极,饱和甘汞电极(SCE)为参比电极。利用氙灯模拟可见光源照射Au@BP5/GCE电极表面,控制遮光间隔时间作为可调控“开-关”,再用电化学工作站进行光电化学检测。
性能测试
1.Au纳米粒子、Au@BP5复合材料的形貌测定
图2从图2(a)上可以看出所制备的Au纳米粒子分散性较好,直径约为20nm。从图(b)可以看制备的Au@BP5的相貌较Au纳米粒子几乎没有变化。
2.电化学表征
如图3(a)所示,通过在含有1mM H2O2+0.1M PBS溶液中的差分脉冲伏安曲线图来选择最好的复合材料配比,可以看出当Au和BP5物质的量约为1:1000时,出峰最大。如图3(b)所示,通过在含有1mM H2O2+0.1M PBS溶液中,在可见光和无光照射下的差分脉冲伏安曲线图可知,用DPV进行检测时,出峰位置约在-0.8V。在同样H2O2浓度下,有光时的电流比无光照时多了0.706μA,表现了其良好的光电化学活性。
如图4(a)所示,在含有5.0mM K3[Fe(CN)6]/K4[Fe(CN)6]和0.1M KCl溶液中测量阻抗图谱(EIS),曲线上低频率时出现的直线是由电极反应过程中的扩散过程产生的;高频率时的半圆表示电子传递受阻过程,其半圆弧直径等于电子传递阻抗值(Rct)。计算得到Au/GCE、BP5/GCE和Au@BP5/GCE的Rct分别是344.6Ω,1022.3Ω和2469.0Ω。证明Au有最快的电荷传导速率,这是由于BP5的导电性很差,导致复合材料Au@BP5的导电性较大。如图4(b)所示,通过循环伏安法研究了在可见光照射下Au/GCE,BP5/GCE和Au@BP5/GCE电极在含有1mMH2O2+0.1M PBS溶液中的光电化学活性。与Au/GCE和BP5/GCE相比,Au@BP5/GCE电极上的氧化光电流明显增加。这主要是由于Au纳米粒子在可见光照下的局域表面等离子效应,不对称柱[5]芳烃(BP5)的主客体络合作用以及柱芳烃上特异性基团与H2O2的反应达到的。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (6)

1.一种Au@BP5复合材料的制备方法,其特征在于:包括以下步骤:
第一步,制备具有H2O2特异性识别基团的硼酸酯键的不对称柱芳烃(BP5):
Figure FDA0003520763920000011
第二步,制备Au纳米粒子:以氯金酸为原料,柠檬酸和柠檬酸钠为还原剂,利用热还原法制得球状金纳米粒子溶液;
第三步:取1mg BP5分散于0.5mL DMF中制得BP5溶液,通过超声法将0.5mL球状金纳米粒子溶液与BP5溶液超声,利用BP5上巯基-SH与Au键合,合成核壳结构状的Au@BP5纳米粒子;
第四步:滴涂10μL Au@BP5至玻碳电极(GCE)表面,制备Au@BP5/GCE电极。
2.根据权利要求1所述的一种Au@BP5复合材料的制备方法,其特征在于,所述第一步具体步骤为:
步骤a:将化合物对甲氧基苯(5.52g,40.0mmol)和4-溴乙氧基苯氧乙酸(2.89g,10mmol)溶解到200mL二氯甲烷中,加入多聚甲醛(1.49g,15mmol),向混合液中加入三氟化硼乙醚(BF3·(OC2H5)2,1.63g,11.5mmol),室温搅拌半小时,TCL跟踪直到原料消失,得到绿色的混合物,加水猝灭反应,分液得有机相,旋蒸除去溶剂,所得固体通过柱层析(石油醚/二氯甲烷/乙酸乙酯,v/v/v 100:25:1),得到白色粉末状固体A1(1.05g,12%);
步骤b:将化合物A1(0.442g,0.5mmol)和硫脲(0.076g,1mmol)溶解到4mL DMF中,80℃条件下,氮气保护,反应过夜,冷却至室温,加入10mL NaOH(1M),搅拌1h,用HCl(1M)调节pH至3,用乙醚萃取三次,用盐水洗涤,用无水硫酸钠干燥,旋蒸除去溶剂,所得固体通过柱层析(二氯甲烷/甲醇,v/v 50:1),得到白色粉末状固体B1(0.356g,85%);
步骤c:将化合物B1(0.209g,0.25mmol),4-氨基苯硼酸频哪醇酯(0.055g,0.25mmol),HOBT(0.05g,0.40mmol),EDCl(0.08g,0.40mmol)溶解在20mL干燥氯仿中,室温反应12小时,浓缩反应液,所得固体通过柱层析(二氯甲烷/甲醇,v/v 25:1),得到白色粉末状固体C1(0.218g,21%)。
3.根据权利要求1所述的一种Au@BP5复合材料的制备方法,其特征在于:所述第二步制备了球状金纳米粒子具体步骤为:将0.9mL柠檬酸和2.1mL柠檬酸钠(0.1mol/L)加入150mL沸水中,搅拌15min;再加入1mL氯金酸,搅拌3min后,放入冰水中冷却,利用超纯水和乙醇清洗上述得到的沉淀物,将沉淀物分散至4mL超纯水溶液中,制得球状金纳米粒子溶液。
4.根据权利要求1所述的一种Au@BP5复合材料的制备方法,其特征在于:所述第三步中超声法的超声时间为1h。
5.一种权利要求1-4任一制备方法制备得到的Au@BP5复合材料。
6.一种权利要求5所述Au@BP5复合材料在对细胞中微量H2O2的光电检测中的应用,其特征在于:使用传统的三电极系统,以Au@BP5/GCE电极为工作电极,铂网为对电极,饱和甘汞电极(SCE)为参比电极,利用氙灯模拟可见光源照射Au@BP5/GCE电极表面,控制遮光间隔时间作为可调控“开-关”,再用电化学工作站进行光电化学检测,在H2O2溶液中用于光电化学检测。
CN202210190929.XA 2022-02-25 2022-02-25 一种Au@BP5复合材料及其制备方法与应用 Active CN114544723B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210190929.XA CN114544723B (zh) 2022-02-25 2022-02-25 一种Au@BP5复合材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210190929.XA CN114544723B (zh) 2022-02-25 2022-02-25 一种Au@BP5复合材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114544723A true CN114544723A (zh) 2022-05-27
CN114544723B CN114544723B (zh) 2024-06-21

Family

ID=81661312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210190929.XA Active CN114544723B (zh) 2022-02-25 2022-02-25 一种Au@BP5复合材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114544723B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116851770A (zh) * 2023-07-23 2023-10-10 长江师范学院 一种利用水溶性碱性柱[5]芳烃合成金纳米粒子的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107033176A (zh) * 2017-04-20 2017-08-11 同济大学 杯[4]芳烃苯硼酸衍生物/多壁碳纳米管复合材料的制备方法及其应用
CN110967325A (zh) * 2019-11-15 2020-04-07 西北师范大学 一种巯基酯修饰的柱[5]芳烃超分子化合物及其合成和应用
CN113189188A (zh) * 2021-04-16 2021-07-30 南通大学 一种Au NPs@WP5/BiOBr复合材料的制备方法和应用
WO2021174209A1 (en) * 2020-02-27 2021-09-02 University Of Maryland, College Park Sulfated pillararenes, methods of making same, and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107033176A (zh) * 2017-04-20 2017-08-11 同济大学 杯[4]芳烃苯硼酸衍生物/多壁碳纳米管复合材料的制备方法及其应用
CN110967325A (zh) * 2019-11-15 2020-04-07 西北师范大学 一种巯基酯修饰的柱[5]芳烃超分子化合物及其合成和应用
WO2021174209A1 (en) * 2020-02-27 2021-09-02 University Of Maryland, College Park Sulfated pillararenes, methods of making same, and uses thereof
CN113189188A (zh) * 2021-04-16 2021-07-30 南通大学 一种Au NPs@WP5/BiOBr复合材料的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周南;: "第14届固态传感器、传动器与微系统国际会议(Ⅰ)", 分析试验室, no. 12 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116851770A (zh) * 2023-07-23 2023-10-10 长江师范学院 一种利用水溶性碱性柱[5]芳烃合成金纳米粒子的方法

Also Published As

Publication number Publication date
CN114544723B (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
Guan et al. Electrochemical sensor based on covalent organic frameworks-MWCNT-NH2/AuNPs for simultaneous detection of dopamine and uric acid
Hira et al. Ultrasensitive detection of hydrogen peroxide and dopamine using copolymer-grafted metal-organic framework based electrochemical sensor
Lu et al. Electrochemical determination of rutin based on molecularly imprinted poly (ionic liquid) with ionic liquid-graphene as a sensitive element
Wang et al. Facile electrosynthesis of nickel hexacyanoferrate/poly (2, 6-diaminopyridine) hybrids as highly sensitive nitrite sensor
Yan et al. Synergetic catalysis based on the proline tailed metalloporphyrin with graphene sheet as efficient mimetic enzyme for ultrasensitive electrochemical detection of dopamine
CN102850795B (zh) 一种二茂铁接枝聚乙烯亚胺-石墨烯复合材料的制备方法
Pan et al. A novel electrochemical platform based on COF/La2O3/MWCNTS for simultaneous detection of dopamine and uric acid
CN105776183B (zh) 一种二茂铁基碳纳米管复合材料的制备方法及其应用
Zhang et al. MIL-125 (Ti)-derived COOH functionalized TiO2 grafted molecularly imprinted polymers for photoelectrochemical sensing of ofloxacin
Zhao et al. Electrochemical sensing and simultaneous determination of guanine and adenine based on covalent organic frameworks/NH2-rG/MoS2 modified glassy carbon electrode
Ma et al. Electrocatalysis and simultaneous determination of hydroquinone and acetaminophen using PNCOF/graphene oxide modified electrode
Ma et al. A novel self-cleaning electrochemical biosensor integrating copper porphyrin-derived metal-organic framework nanofilms, G-quadruplex, and DNA nanomotors for achieving cyclic detection of lead ions
Niu et al. Enantioselective recognition of L/D-amino acids in the chiral nanochannels of a metal-organic framework
Guo et al. Electrochemical determination of dopamine and uric acid with covalent organic frameworks and Ox-MWCNT co-modified glassy carbon electrode
Mohammed et al. Electropolymerized film of cobalt tetrabenzimidazolephthalocyanine for the amperometric detection of H2O2
Li et al. Naked-eye-based highly selective sensing of Fe3+ and further for PPi with nano copolymer film
Liu et al. Preparation of per-hydroxylated pillar [5] arene decorated graphene and its electrochemical behavior
Xia et al. An electrochemical sensor for the sensitive detection of rutin based on a novel composite of activated silica gel and graphene
Ma et al. Efficient cathodic aptasensor coupling photoelectrochemical enhancement of PEDOT/Bi2S3/ZnO photoanode with signal amplification of Pt nanocatalysts
Yuan et al. Porphyrin-based porous organic frameworks for the ultrasensitive electrochemical impedimetric aptasensing of oxytetracycline
CN114544723A (zh) 一种Au@BP5复合材料及其制备方法与应用
Umar et al. Ultra-trace level voltammetric sensor for MB in human plasma based on a carboxylic derivative of Calix [4] resorcinarene capped silver nanoparticles
Qin et al. Simultaneous electrochemical detection of zinc and copper in fruit juice using Hg/CMWCNTs@ ZIF-8 modified glassy carbon electrode
Pramanik et al. Recent advances on structural and functional aspects of multi-dimensional nanoparticles employed for electrochemically sensing bio-molecules of medical importance
Mo et al. Novel optoelectronic metal organic framework material perylene tetracarboxylate magnesium: preparation and biosensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant