CN114527506A - 人工生成断层地震动简化方法 - Google Patents

人工生成断层地震动简化方法 Download PDF

Info

Publication number
CN114527506A
CN114527506A CN202210158778.XA CN202210158778A CN114527506A CN 114527506 A CN114527506 A CN 114527506A CN 202210158778 A CN202210158778 A CN 202210158778A CN 114527506 A CN114527506 A CN 114527506A
Authority
CN
China
Prior art keywords
time
seismic
acceleration
earthquake
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210158778.XA
Other languages
English (en)
Inventor
贾宏宇
程维
郭德平
许莉
郑史雄
杜修力
赵金钢
谢明志
周潇
蓝先林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202210158778.XA priority Critical patent/CN114527506A/zh
Publication of CN114527506A publication Critical patent/CN114527506A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/303Analysis for determining velocity profiles or travel times

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明提供人工生成断层地震动简化方法,涉及抗震设计技术领域,包括以下步骤:S1:形成初始地震时程曲线,S2:对初始地震动叠加fling‑step(滑冲);S3:修改叠加fling‑step参数,所述步骤S1具体为根据规范的加速度反应谱,从实际地震记录中挑选与目标加速度反应谱符合较好的加速度记录作为初始时程a0(t)。本发明,通过采用向已处理的地面运动叠加fling‑step,实现包含地面永久位移的近断层地震加速度时程的拟合方法,得到的地震加速度记录,除了能够满足加速度反应谱、峰值加速度并能够反映出近断层地震动速度脉冲的特性,同时能够表现地面永久位移,在进行抗震设计时能够提供参考性极高的地震加速度行程的输入数据,满足工程应用的需求。

Description

人工生成断层地震动简化方法
技术领域
本发明涉及抗震设计技术领域,尤其涉及人工生成断层地震动简化方法。
背景技术
地面永久位移是指在地震过程中由于断层错动引发的地面变形,如图1和2 所示的中国台湾集集地震台站TCU067东西方向的地震加速度、速度及位移时程,相应的永久位移约为131.4cm,断层地震破坏的主要原因是建筑物距离断层破裂面很近(20km内),地震动时程中含有短时脉冲,将地震动的大部分能量在短时间内输入建筑结构,使结构在短时间内产生强烈振动,进而对结构产生巨大的破坏作用,因此在进行大跨度桥梁、高速铁路线、输油管线、江河堤坝等长周期结构的抗震设计时,就需要关注地震输入的位移,特别是近断层有永久位移存在的情况。
很多建筑物和构筑物处在断层区域,甚至有些大跨度结构横跨断层,因此设计人员需要获得满足一定条件的地震输入,在断层情况下要求满足场地相关的加速度反应谱、峰值加速度、地震动的速度脉冲特性和地面永久位移,但实测地震波的缺乏,在实际工程应用很难从实际地震记录中找到满足包含地面永久位移的地震加速度时程作为地震输入数据,因此需要基于不同的目标发展相应的地震动模拟方法,来满足工程应用的需要。
发明内容
本发明的目的是为了解决现有技术中存在的缺点,而提出的人工生成断层地震动简化方法。
为了实现上述目的,本发明采用了如下技术方案:人工生成断层地震动简化方法,包括以下步骤:
S1:形成初始地震时程曲线;
S2:对初始地震动叠加fling-step(滑冲);
S3:修改叠加fling-step参数。
为了形成初始地震时程曲线,本发明的改进有,所述步骤S1具体为根据规范的加速度反应谱,从实际地震记录中挑选与目标加速度反应谱符合较好的加速度记录作为初始时程a0(t),对加速度时程a0(t)进行积分,获得相应的速度时程 v0(t)和位移时程d0(t)。
为了对初始地震动叠加fling-step,本发明的改进有,所述步骤S2具体为将fling-step参数化为正弦波的单个周期,并将其叠加在初始时程上。
为了防止重复计数频率,本发明的改进有,所述步骤S3具体为防止叠加过程中重复计数频率造成的高估,用互补低通滤波器过滤fling-step时程,将 fling-step转变为具有更长周期Tf和更早起始时间t的单周期正弦波。
为了提取fling-step参数,本发明的改进有,所述步骤S2中fling-step 参数的提取过程如下:
(1)Dsite:特定分量振幅
Figure BDA0003513409900000021
式中Rrup为破裂距离(km),Rx为距断层的水平走向的法向距离,Dfault是破裂平面上的平均滑移,a0表示描述了在Rrup=0距离处FW上位移,a4描述了在Rrup= 0距离处HW和FW位移之差,a3为允许衰减中的曲率,a2描述了时程曲线的斜率;
(2)Tf1:正弦波周期
从所有模拟时间历程中提取滑冲周期,并检查其对故障类型、幅度、倾角和距离的依赖性,正弦波周期的表达式
1og(Tf1)=1.16M-6.42
(3)t1:起始时间
为了重建包含永久位移的时程,将起始时间t1设置为近似等于S波到达时间。
为了修改叠加fling-step参数,本发明的改进有,所述步骤S3中修改叠加fling-step参数的方法为:
为了防止叠加过程中重复计数频率造成的高估,采用互补低通滤波器过滤了滑冲效应时程曲线,其结果是具有更长周期和更早起始时间的单周期正弦波,则修正的正弦波周期表示为:
log(Tf2)=0.645M-1.45
可以看出Tf2和Tf1的形式是一致,修正的起始时间移动了两个周期之差的一半,表示为
t2=t1-0.5(Tf2-Tf1)。
与现有技术相比,本发明的优点和积极效果在于,
本发明中,通过采用向已处理的地面运动叠加fling-step,实现包含地面永久位移的近断层地震加速度时程的拟合方法,得到的地震加速度记录,除了能够满足加速度反应谱、峰值加速度并能够反映出近断层地震动速度脉冲的特性,同时能够表现地面永久位移,在进行抗震设计时能够提供参考性极高的地震加速度行程的输入数据,满足工程应用的需求。
附图说明
图1为中国台湾集集地震TCU067台站记录的地面运动的E-W分量的地震加速度、速度及位移时程的示意图;
图2为叠加滑冲效应后中国台湾集集地震TCU067台站记录的地面运动的E-W分量的地震加速度、速度及位移时程的示意图;
图3为本发明提出人工生成断层地震动简化方法的流程示意图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和实施例对本发明做进一步说明。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在本发明的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请参阅图1-3,本发明提供人工生成断层地震动简化方法,包括以下步骤:
S1:形成初始地震时程曲线;
S2:对初始地震动叠加fling-step(滑冲);
S3:修改叠加fling-step参数。
步骤S1具体为根据规范的加速度反应谱,从实际地震记录中挑选与目标加速度反应谱符合较好的加速度记录作为初始时程a0(t),对加速度时程a0(t)进行积分,获得相应的速度时程v0(t)和位移时程d0(t),步骤S2具体为将fling-step参数化为正弦波的单个周期,并将其叠加在初始时程上,步骤S3具体为防止叠加过程中重复计数频率造成的高估,用互补低通滤波器过滤fling-step时程,将 fling-step转变为具有更长周期Tf和更早起始时间t的单周期正弦波。
步骤S2中fling-step参数的提取过程如下:
(1)Dsite:特定分量振幅
Figure BDA0003513409900000051
式中Rrup为破裂距离(km),Rx为距断层的水平走向的法向距离,Dfault是破裂平面上的平均滑移,a0表示描述了在Rrup=0距离处FW上位移,a4描述了在Rrup= 0距离处HW和FW位移之差,a3为允许衰减中的曲率,a2描述了时程曲线的斜率;
(2)Tf1:正弦波周期
从所有模拟时间历程中提取滑冲周期,并检查其对故障类型、幅度、倾角和距离的依赖性,正弦波周期的表达式
log(Tf1)=1.16M-6.42
(3)t1:起始时间
为了重建包含永久位移的时程,将起始时间t1设置为近似等于S波到达时间。
步骤S3中修改叠加fling-step参数的方法为:
为了防止叠加过程中重复计数频率造成的高估,采用互补低通滤波器过滤了滑冲效应时程曲线,其结果是具有更长周期和更早起始时间的单周期正弦波,则修正的正弦波周期表示为:
log(Tf2)=0.645M-1.45
可以看出Tf2和Tf1的形式是一致,修正的起始时间移动了两个周期之差的一半,表示为
t2=t1-0.5(Tf2-Tf1)。
实施例
人工生成断层地震动简化方法,包括以下步骤:
形成初始地震时程曲线
根据规范的加速度反应谱,从实际地震记录中挑选与目标加速度反应谱符合较好的加速度记录作为初始时程a0(t),对加速度时程a0(t)进行积分,获得相应的速度时程v0(t)和位移时程d0(t)。
确定初始地震波叠加fling-step参数
将滑冲效应参数化为正弦波的单个周期,使得加速度(af)、速度(vf)和位移 df)时间历程具有以下形式:
Figure BDA0003513409900000061
Figure BDA0003513409900000062
Figure BDA0003513409900000063
其中Dsite是位移的特定分量振幅,Tf是正弦波周期,t是叠加fling-step的起始时间,确定相关参数,以图1-3所示来说明参数。
(1)Dsite:特定分量振幅
Figure BDA0003513409900000064
式中Rrup为破裂距离(km),Rx为距断层的水平走向的法向距离,Dfault是破裂平面上的平均滑移,可以表示为
ln(Dfault)=1.15M-3.28 (5)
在公式(4)中a0表示描述了在Rrup=0距离处FW上位移,a4描述了在Rrup=0 距离处HW和FW位移之差,a3为允许衰减中的曲率,a2描述了时程曲线的斜率,具体如下:
Figure BDA0003513409900000071
(2)Tf2:修正的正弦波周期
从所有模拟时间历程中提取滑冲周期,并检查其对故障类型、幅度、倾角和距离的依赖性,正弦波周期的表达式
Figure BDA0003513409900000072
为了防止叠加过程中重复计数频率造成的高估,采用互补低通滤波器过滤了滑冲效应时程曲线,其结果是具有更长周期和更早起始时间的单周期正弦波,则修正的正弦波周期表示为:
log(Tf2)=0.645M-1.45 (8)
(3)t2:起始时间
为了重建包含永久位移的时程,将起始时间t1设置为近似等于S波到达时间,具体步骤如下:
对地震信号a0(t)进行等间隔Δt离散化后得长度为N的序列{xi},定义此信号的震动瞬态幅值变化差为
pi=xi+1-xi,0≤i≤N-2 (9)
同时定义物体震动幅值的变化量值
Figure BDA0003513409900000073
则序列{Ei}在物理意义上表示物体瞬态震动能量变化率。
再基于STA/LTA算法对{Ei}进行STA/LTA变换,基于其峰值特性确定信号到达时刻,序列{Ei}通过STA/LTA变换后得到序列{ei},其变换公式如下:
Figure BDA0003513409900000081
N4为STA/LTA的短尺度,N3为STA/LTA的长尺度,由公式(11)可见序列{ei} 相对序列{Ei}的起始时间延迟了(N3-N4+i)Δt,序列{ei}相的长度为N2=N-2- N3
en=max{ei},0≤n≤N2 (12)
en所在位置对应地震记录波上的时间为
tx=(N3-N4+1+n)Δt (13)
tn为地震波的大致初至时间,可以此值为中心确定一个包含了真实初至时间的狭窄时间段为[tn-sΔt,tn+sΔt],则此时间段对应序列{Qi}的子序列为
Figure BDA0003513409900000082
如果定义此子序列为{qi},则可得
Figure BDA0003513409900000083
假设地震信号的准确到达时刻为t1=t0+ts,t0为开始记录波形的绝对时间, ts为地震信号准确到达时间与开始记录波形时刻的相对时间,则可得ts∈[tn- sΔt,tn+sΔt]。
为了进一步精确自动拾取到达时刻,对序列{qi}基于二次方自回归模型法,精确地自动拾取初至,此模型的理想二次方程假设为:
Figure BDA0003513409900000084
基于公式(16)得到其逼近序列{ci'}
Figure BDA0003513409900000085
然后基于最小二乘法求解系数ω,g,f,令
Figure BDA0003513409900000091
Figure BDA0003513409900000092
由式(18)可得:
Figure BDA0003513409900000093
由式(19)可解得系数ω,g,f,然后基于式(15)求取序列{ci}最大值对应的 i,即为地震信号精确初至时间,得到地震信号到达的绝对精确时刻为:
t1=T0+(N3-N4+1+n+i-s)Δt (20)
由式(7)和式(8)可以看出Tf2和Tf1的形式是一致,修正的起始时间移动了两个周期之差的一半,表示为
t2=t1-0.5(Tf2-Tf1)。
本发明,通过采用向已处理的地面运动叠加fling-step,实现包含地面永久位移的近断层地震加速度时程的拟合方法,得到的地震加速度记录,除了能够满足加速度反应谱、峰值加速度并能够反映出近断层地震动速度脉冲的特性,同时能够表现地面永久位移,在进行抗震设计时能够提供参考性极高的地震加速度行程的输入数据,满足工程应用的需求。
以上,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (6)

1.人工生成断层地震动简化方法,其特征在于,包括以下步骤:
S1:形成初始地震时程曲线;
S2:对初始地震动叠加fling-step(滑冲);
S3:修改叠加fling-step参数。
2.根据权利要求1所述的人工生成断层地震动简化方法,其特征在于:所述步骤S1具体为根据规范的加速度反应谱,从实际地震记录中挑选与目标加速度反应谱符合较好的加速度记录作为初始时程a0(t),对加速度时程a0(t)进行积分,获得相应的速度时程v0(t)和位移时程d0(t)。
3.根据权利要求1所述的人工生成断层地震动简化方法,其特征在于:所述步骤S2具体为将fling-step参数化为正弦波的单个周期,并将其叠加在初始时程上。
4.根据权利要求1所述的人工生成断层地震动简化方法,其特征在于:所述步骤S3具体为防止叠加过程中重复计数频率造成的高估,用互补低通滤波器过滤fling-step时程,将fling-step转变为具有更长周期Tf和更早起始时间t的单周期正弦波。
5.根据权利要求1所述的人工生成断层地震动简化方法,其特征在于:所述步骤S2中fling-step参数的提取过程如下:
(1)Dsite:特定分量振幅
Figure FDA0003513409890000011
式中Rrup为破裂距离(km),Rx为距断层的水平走向的法向距离,Dfault是破裂平面上的平均滑移,a0表示描述了在Rrup=0距离处FW上位移,a4描述了在Rrup=0距离处HW和FW位移之差,a3为允许衰减中的曲率,a2描述了时程曲线的斜率;
(2)Tf1:正弦波周期
从所有模拟时间历程中提取滑冲周期,并检查其对故障类型、幅度、倾角和距离的依赖性,正弦波周期的表达式
log(Tf1)=1.16M-6.42
(3)t1:起始时间
为了重建包含永久位移的时程,将起始时间t1设置为近似等于S波到达时间。
6.根据权利要求1所述的人工生成断层地震动简化方法,其特征在于:所述步骤S3中修改叠加fling-step参数的方法为:
为了防止叠加过程中重复计数频率造成的高估,采用互补低通滤波器过滤了滑冲效应时程曲线,其结果是具有更长周期和更早起始时间的单周期正弦波,则修正的正弦波周期表示为:
log(Tf2)=0.645M-1.45
可以看出Tf2和Tf1的形式是一致,修正的起始时间移动了两个周期之差的一半,表示为
t2=t1-0.5(Tf2-Tf1)。
CN202210158778.XA 2022-02-21 2022-02-21 人工生成断层地震动简化方法 Pending CN114527506A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210158778.XA CN114527506A (zh) 2022-02-21 2022-02-21 人工生成断层地震动简化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210158778.XA CN114527506A (zh) 2022-02-21 2022-02-21 人工生成断层地震动简化方法

Publications (1)

Publication Number Publication Date
CN114527506A true CN114527506A (zh) 2022-05-24

Family

ID=81624228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210158778.XA Pending CN114527506A (zh) 2022-02-21 2022-02-21 人工生成断层地震动简化方法

Country Status (1)

Country Link
CN (1) CN114527506A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115220093A (zh) * 2022-07-18 2022-10-21 武汉大学 基于地震物理机制的空间互相关多点地震动模拟方法及装置
CN116973972A (zh) * 2023-06-06 2023-10-31 中国地震局地球物理研究所 一种适合工程应用的近断层地震动拟合方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115220093A (zh) * 2022-07-18 2022-10-21 武汉大学 基于地震物理机制的空间互相关多点地震动模拟方法及装置
CN116973972A (zh) * 2023-06-06 2023-10-31 中国地震局地球物理研究所 一种适合工程应用的近断层地震动拟合方法
CN116973972B (zh) * 2023-06-06 2024-01-12 中国地震局地球物理研究所 一种适合工程应用的近断层地震动拟合方法

Similar Documents

Publication Publication Date Title
CN114527506A (zh) 人工生成断层地震动简化方法
CN103365916B (zh) 地震事件参数估计获取方法和系统,地震事件搜索引擎
CN101201407B (zh) 相对无高频泄漏等效n点平滑谱模拟反褶积方法
CN102879817B (zh) 基于地面地震数据获取地下裂缝信息的控制方法
CN108646293B (zh) 基于黏声拟微分方程的黏声起伏地表正演模拟系统及方法
de Barros et al. Identification of foundation impedance functions and soil properties from vibration tests of the Hualien containment model
CN103869363B (zh) 微地震定位方法及装置
CN105093301B (zh) 共成像点反射角角道集的生成方法及装置
CN114442153B (zh) 一种近断层地震动拟合方法
CN108828661B (zh) 基于地震脉冲响应谱测定场地卓越周期的方法
CN106759538A (zh) 一种基于频域分析的低应变检测方法
CN111929728A (zh) 一种三维三分量超前精细化地质预报方法
CN109507726A (zh) 时间域弹性波多参数全波形的反演方法及系统
CN105093319A (zh) 基于三维地震数据的地面微地震静校正方法
CN115469360A (zh) 基于有限断层和等效速度脉冲的跨断层地震动场模拟方法
CN107807393A (zh) 基于地震干涉法的单台站集初至波增强方法
CN113238280A (zh) 一种基于格林函数的地震监测方法
CN104166159A (zh) 四维微地震监测的裂缝形态处理方法和系统
CN104570090B (zh) 全波形反演噪音滤波算子的提取及使用其噪音滤波的方法
CN113255482A (zh) 一种基于hht脉冲参数识别的远场类谐和地震动合成方法
CN113552633B (zh) 优化差分系数与纵横波分离fct的弹性波频散压制方法
CN109188515A (zh) 微地震监测裂缝震源点位置计算方法及系统
CN109164490A (zh) 一种提高沙漠地区弱反射成像精度的方法
Perez Velocity response envelope spectrum as a function of time, for the Pacoima Dam, San Fernando earthquake, February 9, 1971
CN103969684B (zh) 一种实现偶极子震源地震成像的方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination