CN114527009B - 一种在热模拟试验机上熔化凝固过程控制方法 - Google Patents

一种在热模拟试验机上熔化凝固过程控制方法 Download PDF

Info

Publication number
CN114527009B
CN114527009B CN202210124417.3A CN202210124417A CN114527009B CN 114527009 B CN114527009 B CN 114527009B CN 202210124417 A CN202210124417 A CN 202210124417A CN 114527009 B CN114527009 B CN 114527009B
Authority
CN
China
Prior art keywords
sample
temperature
heating
melting
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210124417.3A
Other languages
English (en)
Other versions
CN114527009A (zh
Inventor
钦祥斗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Iron and Steel Co Ltd
Original Assignee
Nanjing Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Iron and Steel Co Ltd filed Critical Nanjing Iron and Steel Co Ltd
Priority to CN202210124417.3A priority Critical patent/CN114527009B/zh
Publication of CN114527009A publication Critical patent/CN114527009A/zh
Application granted granted Critical
Publication of CN114527009B publication Critical patent/CN114527009B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/22Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element being a thermocouple
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0228Low temperature; Cooling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0258Non axial, i.e. the forces not being applied along an axis of symmetry of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0694Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

本发明公开了一种在热模拟试验机上熔化凝固过程控制方法,在加热的第一阶段采用力控制,可以有效避免由于试样受热膨胀导致的试样中间区域出现鼓包,防止鼓包对石英套管的挤压,造成石英套管损坏,导致试验失败;在加热的后段、保温、凝固阶段采用位移控制,可以有效的减少外部电流电压波动、力传感器波动导致的控制不稳现象,并根据加热阶段、熔化阶段、冷却阶段的试样体积变化,制定拉伸或压缩补偿设计,保障试验的平稳运行,得到缺陷较少的凝固试样。本发明能应用于连铸坯的裂纹产生原因研究,再现钢液的凝固过程,能够更加准确的测定材料的脆性区间,为铸坯的质量提升服务。

Description

一种在热模拟试验机上熔化凝固过程控制方法
技术领域
本发明属于热模拟试验控制领域,具体涉及一种在Gleeble系列热模拟试验机上试样熔化和凝固过程控制方法。
背景技术
钢铁材料的高温塑性试验是研究钢铁材料的不同脆性区间的重要方法之一,也是热模拟试验机的主要功能之一。高温热塑性试验是将试验钢种加热到一定温度(熔化点以下)保温一段时间使合金元素固溶在钢中,以一定温度冷却速度冷却至温度T,缓慢拉伸使试样断裂,测定其断面收缩率,来反映钢的塑性指标,为连铸坯矫直及热送提供理论依据。但该方法无法真正的模拟试验钢种的熔化和凝固过程,加之部分高端钢种的成分体系复杂,得到的实验结果无法准确的反映出试验钢种的真实脆性区间,因此,更加无法为工艺制定提供准确的实验结果。
Gleeble3800热模拟试验机采用是电阻加热方式,加热范围为0-1700℃,设备有对应的S型、R型热电偶测温通道,完全可以将钢铁材料加热熔化温度,但材料熔化后,会形成金属液,金属液体在强电流的作用下在石英套管中会加速流动,会导致热电偶脱落,金属液体飞溅到试验舱内,试验立即失败,并且污染试验舱,无法实现稳定的熔化和凝固过程,试验过程的控制难度非常大。
美标ASTM-E21-2009《金属材料高温拉伸标准试验方法》用于在高温下测定金属材料拉伸强度,屈服强度,延伸率以及断面率的测定,但该标准仅适用于有一定强度的固体试样,实验过程不包含试样的熔化和凝固控制,试验的目的是测定材料的高温下的力学性能。
发明内容
本发明的目的是设计一种能够稳定控制试样熔化、凝固的方法,实现材料在熔化、凝固后不出现缩孔、突起等缺陷,与后续的拉伸试验相结合,可以解决在常规高温塑性试验无法精准模拟材料的熔化、凝固过程的问题,能更准确的测定金属材料铸坯的性能;也可以将试样凝固冷却后,观察其中铸态组织形貌。
为了达到上述发明目的,本发明采用以下技术方案予以实现:
一种在热模拟试验机上熔化凝固过程控制方法,其特征在于包括如下步骤:
步骤(1)、将焊接好热电偶的试样套上石英保护套,在石英保护套的开口处均匀涂上高温水泥,安装入试验舱内,将试样固定使其轴向方向不发生滑动,实验舱内抽真空,并充入保护气体;
步骤(2)、将试样加热到温度T1并保温一段时间,使高温水泥能够完全干透,降温后打开实验舱,观察石英保护套的开口处高温水泥是否完整,若高温水泥不完整或有裂纹,返回步骤(1),若高温水泥完整无明显的裂纹,关闭实验舱,抽真空,充入保护气体;
步骤(3)、将试样加热至温度T2即试样熔点以下30-80℃,在加热过程中采用力控制,使试样保持在不受力状态,并记录温度-试样伸长量变化曲线,计算出单位温度的试样伸长量ΔL;
步骤(4)、将力控制转换为位移控制,将试样继续加热至温度T3即试样熔化开始温度,在加热过程中将试样缓慢拉伸,其拉伸过程运动符合公式L1=(Tx-T2)×ΔL,L1为该加热过程中的试样伸长量,Tx为试样实时温度;
步骤(5)、将试样继续加热至温度T4即试样完全熔化温度以上30-50℃,在加热过程中将试样缓慢压缩,其压缩过程运动符合公式
Figure BDA0003497940760000021
L2为该加热过程中的试样压缩量,D1为石英套管内径,D2为试样的直径,T为冷却水温度,L0为夹具中间的试样长度;
步骤(6)、将试样以温度T4进行保温,试样的中间区域为均热区,当试样实时保温时间tx小于等于t时,将试样缓慢压缩,压缩过程运动符合公式
Figure BDA0003497940760000022
其中L3为该保温过程中的试样压缩量,L为试样稳定均热区的长度,t为试样实现稳定均热所需的时间,当试样实时保温时间tx大于t时,试样保持原有状态;
步骤(7)、将试样冷却至温度T5即试样完全凝固温度以下30-50℃,在冷却过程中对试样进行补压,压缩过程运动符合公式L4=(T4-Tx)×ΔL,L4为该冷却过程中的试样压缩量;
步骤(8)、将位移控制转换为力控制,使试样保持在不受力状态,将试样冷却至后续试验温度或室温。
其中,所述温度T1优选为100-500℃。
本发明有益效果:
1、本发明对高温水泥进行等温烘干,可以有效的减少因快速加热导致的高温水泥开裂或脱落,防止熔化时钢液的溢出,造成凸起和缺陷。
2、本发明在加热的第一阶段采用力控制,可以有效避免由于试验受热膨胀导致的试样中间区域出现鼓包,防止鼓包对石英套管的挤压,造成石英套管损坏,导致试验失败。
3、本发明的在加热的后段、保温、凝固阶段采用位移控制,可以有效的减少外部电流电压波动、力传感器波动导致的控制不稳现象,并根据加热阶段、熔化阶段、冷却阶段的试样体积变化,制定拉伸或压缩补偿设计,保障试验的平稳运行,得到缺陷较少的凝固试样。
本发明在热模拟试验机上熔化凝固过程控制方法,能应用于连铸坯的裂纹产生原因研究,再现钢液的凝固过程,能够更加准确的测定材料的脆性区间,为铸坯的质量提升服务。基于本发明方法的应用,可以实现对9Ni和5Ni钢的连铸工艺进行有效调整,降低修磨成本。以产量26665吨为例,修磨率从10.3%降至8.5%,每吨的修磨的费用100元/吨,材质耗损300元/吨,本发明方法能够产生经济效益=26665吨×(10.3%-8.5%)×(100+300)元=191988元。社会效益方面,基于本发明方法研究高端钢种的高温塑性,可以缩短解决铸坯质量问题的时间,提高铸坯的成材率,降低能耗,对钢厂整体的竞争力的提高有促进作用,为相似钢种的铸坯问题的解决提供理论指导。
附图说明
图1为模拟试验的试样示意图;
图2为两种试验方法的断面收缩率对比图;
图3为两种测试方法抗拉强度对比图;
图4为液-固两相区断口宏观形貌;
图5为凝固过程的枝晶形貌。
具体实施方式
下面结合具体实施例对本发明技术方案做进一步详细说明。
实施例1
本实施例提供一种在热模拟试验机上熔化凝固过程控制方法,使用熔化凝固技术测定试验钢的高温脆性区间。该方法使用Gleeble3800热模拟试验机,对含镍量为9%的06Ni9DR钢铸坯性能进行模拟,将加热到1535℃,使其完全熔化,保温100s,将其冷却至要拉伸的试样温度,拉伸至断裂,具体试验过程如下:
步骤(1):选取06Ni9DR钢的成品板材或坯料,加工成图1所示的试样,测量试样的直径和石英套管的内径;
步骤(2):将步骤(1)中加工的06Ni9DR钢的试样焊接上热电偶,热电偶的焊接位置是试样两端安装螺母后,试样中间部分,垂直轴向的中心截面上,将石英套管安装到试样上,移动石英套管使热电偶丝位移石英管的中间位置,并在石英套管的开口处均匀的涂上高温水泥。
步骤(3):将步骤(2)中准备好的试样安装入Gleeble3800热模拟试验舱内,固定试样防止其在轴向方向移动,并确保石英套管的开口方向竖直向上,连接好热电偶,关闭试验舱门,抽真空充入保护气体,设计控制程序,让试样以2℃/s加热至200℃保温5min,再将试样以2℃/s加热至300℃(温度T1)保温3min,再以2℃/s冷却至室温,打开试验舱门,检查高温水泥是否完整无裂纹,如果出现裂纹回到步骤(2),若高温水泥完整无裂纹,关上试验舱门,抽真空充入保护气体。
步骤(4):将步骤(3)中烘烤完成的试样,采用力控制的方式,以5℃/s将试样加热到1420℃(温度T2,即试样熔点以下30-80℃),在此过程中试样保持在不受力的状态,根据温度-试样伸长量变化曲线,计算出单位温度的试样伸长量(也即单位温度的试样收缩量)ΔL=3.9x10-4mm/℃。
步骤(5):将力控制转换为位移控制,将试样以1℃/s继续加热至1485℃(温度T3,即试样熔化开始温度),在加热过程中试样缓慢拉伸,其拉伸量L1=(Tx-1420℃)×3.9×10-4mm/℃,Tx为试样实时温度。
步骤(6):将试样以1℃/s继续加热至1535℃(温度T4,即试样峰值/保温温度,试样完全熔化温度为1505℃),在此过程中将试样缓慢压缩,石英套管内径D1=10.2mm,试样的直径D2=10.02mm,Tx为试样实时温度,试样熔化开始温度T3=1485℃,冷却水温度T=25℃,夹具中间的试样长度L0=55mm,其压缩量
Figure BDA0003497940760000041
Figure BDA0003497940760000042
(单位为mm)。
步骤(7):将试样在1535℃保温,总的保温时间为100s,在保温过程中对试样进行缓慢压缩,D1、D2、T3、T的数值见步骤(6),试样保温温度T4=1535℃,试样稳定均热区的长度L=12mm,试样实现稳定均热所需的时间t=60s,当试样实时保温时间tx≤t时,压缩量
Figure BDA0003497940760000043
(单位mm),当试样实时保温时间tx>t时,试样维持原来状态。
步骤(8):将试样1℃/s冷却至温度1425℃,对试样进行补压,试样压缩量L4=(T4-Tx)×ΔL=(1535℃-Tx)×3.9x10-4(单位mm),Tx为试样实时温度。
步骤(9):将位移控制转换为力控制,使试样保持在不受力状态,以2℃/s将试样冷却至650℃、700℃、750℃、800℃、850℃、900℃、950℃、1000℃、1100℃、1200℃、1300℃、1350℃、1400℃,再次将力控制转换为位移控制,保温1min,以1×10-3s-1拉伸速率至试样断裂。
对比实施例:
使用Gleeble3800热模拟试验机,采用固溶法再次测定06Ni9DR钢的高温塑性,试验工艺为:将试样以10℃/s加热至1300℃保温5min,以2℃/s冷却至650℃、700℃、750℃、800℃、850℃、900℃、950℃、1000℃、1100℃、1200℃、保温1min,以1×10-3s-1拉伸速率至试样断裂,试验全过程采用位移控制。
对两种试验方法拉伸断裂的试样后进行断口测量,测定断口缩颈处的直径D3,计算出断后的试样缩颈处横截面积S1,代入公式Z=100%*(S0-S1)/S0计算试样的断面收缩率,其中S0为试样平行长度部分的原始横截面积,使用Origin软件绘制温度与断面收缩率曲线,如图2所示。对两种试验方法测定的应力应变曲线进行分析,绘制出温度-抗力强度曲线图,如图3所示。
通过对比两种试验方法的得到的结果可知:使用本发明熔化凝固法,实验钢在650~850℃区间断面收缩率小于40%,实验钢处在绝对脆性区间,在该温度下变形极易产生裂纹,当拉伸温度为875℃时,实验钢的断面收缩率为48.52%,仍然处在易产生裂纹的区间;当拉伸温度为900~1300℃时,实验钢的断面收缩率大于60%;随着拉伸温度的升高断面收缩率进一步的下降,实验钢进入第一脆性区间,实验钢没有明显的第二脆性区间。
使用固溶法,实验钢在750~800℃区间断面收缩率小于40%,在650~850℃区间断面收缩率小于60%,但是当拉伸温度875℃时,实验钢的断面收缩率为78.92%大于60%,已经处在塑性区间,从总体来看固溶法测定的实验钢的断面收缩率都要大于熔化凝固法测定的断面收缩率。
由图3抗拉强度曲线可知,两种方法的抗拉强度都是随着拉伸温度的降低逐渐的增大,拉伸温度小于1000℃时,固溶法的抗拉强度大于熔化凝固法测定的抗拉强度,拉伸温度大于1000℃时,固溶法的抗拉强度小于熔化凝固法测定的抗拉强度。
由对比的结果可知本发明熔化凝固法的优势:
(1)本发明熔化凝固法完整的模拟了试验钢种熔化凝固过程,成功地实现了钢水连续浇铸动态模拟试验,更加准确模拟了钢水连续浇铸的受力过程,再现了试样熔化后凝固的内部微观组织。
(2)采用本发明熔化凝固法测定,打破原有试验温度的限制,可以实现试验钢种的三个脆性区间温度的全覆盖,尤其是第一脆性区间的测定,由于测试温度高,由液体向固态凝固的过程无法再现,固溶法一直无法测定。
(3)本发明方法突破了固溶法试验必须使用铸坯加工试样的限制,可以使用成品材的切头或切尾部分加工成试验试样,大大降低了由于取样导致的铸坯浪费。
实施例2
本实施例提供一种在热模拟试验机上熔化凝固过程控制方法,使用熔化凝固技术研究试验钢种铸坯中枝晶的生长形貌。该方法使用Gleeble3800热模拟试验机,对06Ni9DR钢熔化凝固过程进行模拟,将加热到1535℃,使其完全熔化,保温100s,将其冷却至1460℃,迅速拉开使其断裂,具体控制过程如下:
步骤(1-7)与实例1相同;
步骤(8):将试样以1℃/s冷却至温度1460℃,对试样进行补压,试样压缩量L4=(1535℃-Tx)×3.9x10-4mm/℃,Tx为试样实时温度。
步骤(9):以5s-1的变形速率,对试样拉伸20mm,使试样断裂,停止试验程序,将试样冷却至室温。
将拉伸断裂的试样,使用扫描电镜进行观察,其形貌如图4和图5所示。结果表明,在1460℃时,试样心部没有完全凝固,快速拉断试样,钢液会迅速流出,冷却后,在扫描电镜下,可以观察到试样生长的枝晶形貌。

Claims (5)

1.一种在热模拟试验机上熔化凝固过程控制方法,其特征在于包括如下步骤:
步骤(1)、将焊接好的热电偶的试样套上石英保护套,在石英保护套的开口处均匀涂上高温水泥,安装入试验舱内,将试样固定使其轴向方向不发生滑动,实验舱内抽真空,并充入保护气体;
步骤(2)、将试样加热到温度T1并保温一段时间,使高温水泥能够完全干透,降温后打开实验舱,观察石英保护套的开口处高温水泥是否完整,若高温水泥不完整或有裂纹,返回步骤(1),若高温水泥完整无明显的裂纹,关闭实验舱,抽真空,充入保护气体;
步骤(3)、将试样加热至温度T2即试样熔点以下30-80℃,在加热过程中采用力控制,使试样保持在不受力状态,并记录温度-试样伸长量变化曲线,计算出单位温度的试样伸长量ΔL;
步骤(4)、将力控制转换为位移控制,将试样继续加热至温度T3即试样熔化开始温度,在加热过程中将试样缓慢拉伸,其拉伸过程运动符合公式L1=(Tx-T2)×ΔL,L1为该加热过程中的试样伸长量,Tx为试样实时温度;
步骤(5)、将试样继续加热至温度T4即试样完全熔化温度以上30-50℃,在加热过程中将试样缓慢压缩,其压缩过程运动符合公式
Figure FDA0003497940750000011
L2为该加热过程中的试样压缩量,D1为石英套管内径,D2为试样的直径,T为冷却水温度,L0为夹具中间的试样长度;
步骤(6)、将试样以温度T4进行保温,试样的中间区域为均热区,当试样实时保温时间tx小于等于t时,将试样缓慢压缩,压缩过程运动符合公式
Figure FDA0003497940750000012
其中L3为该保温过程中的试样压缩量,L为试样稳定均热区的长度,t为试样实现稳定均热所需的时间,当试样实时保温时间tx大于t时,试样保持原有状态;
步骤(7)、将试样冷却至温度T5即试样完全凝固温度以下30-50℃,在冷却过程中对试样进行补压,压缩过程运动符合公式L4=(T4-Tx)×ΔL,L4为该冷却过程中的试样压缩量;
步骤(8)、将位移控制转换为力控制,使试样保持在不受力状态,将试样冷却至后续试验温度或室温。
2.如权利要求1所述的一种在热模拟试验机上熔化凝固过程控制方法,其特征在于所述热模拟试验机采用Gleeble系列热模拟试验机。
3.如权利要求1所述的一种在热模拟试验机上熔化凝固过程控制方法,其特征在于还包括步骤(9),再次将力控制转换为位移控制,对试样进行拉伸断裂试验。
4.如权利要求1所述的一种在热模拟试验机上熔化凝固过程控制方法,其特征在于所述温度T1为100-500℃。
5.如权利要求1所述的一种在热模拟试验机上熔化凝固过程控制方法,其特征在于所述步骤(2)中,将试样进行分阶段加热到温度T1,分阶段加热过程中分阶段保温。
CN202210124417.3A 2022-02-09 2022-02-09 一种在热模拟试验机上熔化凝固过程控制方法 Active CN114527009B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210124417.3A CN114527009B (zh) 2022-02-09 2022-02-09 一种在热模拟试验机上熔化凝固过程控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210124417.3A CN114527009B (zh) 2022-02-09 2022-02-09 一种在热模拟试验机上熔化凝固过程控制方法

Publications (2)

Publication Number Publication Date
CN114527009A CN114527009A (zh) 2022-05-24
CN114527009B true CN114527009B (zh) 2023-07-04

Family

ID=81623043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210124417.3A Active CN114527009B (zh) 2022-02-09 2022-02-09 一种在热模拟试验机上熔化凝固过程控制方法

Country Status (1)

Country Link
CN (1) CN114527009B (zh)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1142778A1 (ru) * 1983-09-01 1985-02-28 Северо-Кавказский Ордена Дружбы Народов Горно-Металлургический Институт Способ определени остаточных газов в сварных швах
US5084229A (en) * 1990-05-31 1992-01-28 The United States Of America As Represented By The United States Department Of Energy Critical heat flux test apparatus
JPH0798289A (ja) * 1993-04-28 1995-04-11 Nippon Steel Corp 金属材料の凝固シュミレート方法及びその装置
CN2879162Y (zh) * 2006-01-24 2007-03-14 东北大学 一种强磁场下高温处理装置
JP2007178412A (ja) * 2005-12-27 2007-07-12 Texcell Kk 加熱計測用熱電対システム
JP2012152764A (ja) * 2011-01-24 2012-08-16 Jfe Steel Corp 連続鋳造における二次冷却強度評価ならびに制御方法
CN102888649A (zh) * 2012-10-10 2013-01-23 西北工业大学 一种制备Si-TaSi2共晶自生复合材料的方法
TW201421585A (zh) * 2012-09-25 2014-06-01 Hitachi Int Electric Inc 基板處理裝置、半導體裝置之製造方法及溫度檢測方法
CN104215521A (zh) * 2014-09-11 2014-12-17 中国科学院金属研究所 在室温到超高温下热-力-环境耦合作用测试装置及应用
CN105651617A (zh) * 2015-12-31 2016-06-08 内蒙古科技大学 一种防止拉伸试样断口熔化的处理方法
CN105842031A (zh) * 2016-05-09 2016-08-10 上海大学 高通量实验样品的制备设备
CN106769525A (zh) * 2016-11-28 2017-05-31 哈尔滨工业大学 高温真空环境下测试导体材料力学性能的系统及测试方法
CN107356625A (zh) * 2017-06-19 2017-11-17 江阴兴澄特种钢铁有限公司 一种测量抗大变形管线钢sh‑cct曲线的方法
CN107389445A (zh) * 2017-06-02 2017-11-24 江阴兴澄特种钢铁有限公司 一种应力松弛试验评价材料再热裂纹敏感性的方法
CN108018483A (zh) * 2017-12-04 2018-05-11 东北大学 一种高性能稀土-铁基巨磁致伸缩材料及其制备方法
CN108398336A (zh) * 2017-02-05 2018-08-14 鞍钢股份有限公司 一种获取高温拉伸试样断口的方法
CN208171735U (zh) * 2018-03-09 2018-11-30 江阴兴澄特种钢铁有限公司 一种原位融化连铸模拟试验装置
CN111208016A (zh) * 2020-02-12 2020-05-29 东北大学 连铸坯表面裂纹扩展临界应变测定及其裂纹扩展预测方法
CN112729978A (zh) * 2020-11-24 2021-04-30 河钢股份有限公司 用于Gleeble热模拟试验机压缩实验快速冷却方法
CN112834339A (zh) * 2020-12-31 2021-05-25 东北大学 一种连铸坯角部裂纹扩展临界应变的测定方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1142778A1 (ru) * 1983-09-01 1985-02-28 Северо-Кавказский Ордена Дружбы Народов Горно-Металлургический Институт Способ определени остаточных газов в сварных швах
US5084229A (en) * 1990-05-31 1992-01-28 The United States Of America As Represented By The United States Department Of Energy Critical heat flux test apparatus
JPH0798289A (ja) * 1993-04-28 1995-04-11 Nippon Steel Corp 金属材料の凝固シュミレート方法及びその装置
JP2007178412A (ja) * 2005-12-27 2007-07-12 Texcell Kk 加熱計測用熱電対システム
CN2879162Y (zh) * 2006-01-24 2007-03-14 东北大学 一种强磁场下高温处理装置
JP2012152764A (ja) * 2011-01-24 2012-08-16 Jfe Steel Corp 連続鋳造における二次冷却強度評価ならびに制御方法
TW201421585A (zh) * 2012-09-25 2014-06-01 Hitachi Int Electric Inc 基板處理裝置、半導體裝置之製造方法及溫度檢測方法
CN102888649A (zh) * 2012-10-10 2013-01-23 西北工业大学 一种制备Si-TaSi2共晶自生复合材料的方法
CN104215521A (zh) * 2014-09-11 2014-12-17 中国科学院金属研究所 在室温到超高温下热-力-环境耦合作用测试装置及应用
CN105651617A (zh) * 2015-12-31 2016-06-08 内蒙古科技大学 一种防止拉伸试样断口熔化的处理方法
CN105842031A (zh) * 2016-05-09 2016-08-10 上海大学 高通量实验样品的制备设备
CN106769525A (zh) * 2016-11-28 2017-05-31 哈尔滨工业大学 高温真空环境下测试导体材料力学性能的系统及测试方法
CN108398336A (zh) * 2017-02-05 2018-08-14 鞍钢股份有限公司 一种获取高温拉伸试样断口的方法
CN107389445A (zh) * 2017-06-02 2017-11-24 江阴兴澄特种钢铁有限公司 一种应力松弛试验评价材料再热裂纹敏感性的方法
CN107356625A (zh) * 2017-06-19 2017-11-17 江阴兴澄特种钢铁有限公司 一种测量抗大变形管线钢sh‑cct曲线的方法
CN108018483A (zh) * 2017-12-04 2018-05-11 东北大学 一种高性能稀土-铁基巨磁致伸缩材料及其制备方法
CN208171735U (zh) * 2018-03-09 2018-11-30 江阴兴澄特种钢铁有限公司 一种原位融化连铸模拟试验装置
CN111208016A (zh) * 2020-02-12 2020-05-29 东北大学 连铸坯表面裂纹扩展临界应变测定及其裂纹扩展预测方法
CN112729978A (zh) * 2020-11-24 2021-04-30 河钢股份有限公司 用于Gleeble热模拟试验机压缩实验快速冷却方法
CN112834339A (zh) * 2020-12-31 2021-05-25 东北大学 一种连铸坯角部裂纹扩展临界应变的测定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
氮微合金化HRB500E连铸坯高温力学性能的研究;任建华;吴光亮;耿德晴;;钢铁研究(第01期);全文 *
管线钢L245的高温热塑性;王志军;;物理测试(第05期);全文 *
高强度冷轧汽车用钢1500MS连铸板坯的高温力学性能;邓建军;王睿;;特殊钢(第01期);全文 *

Also Published As

Publication number Publication date
CN114527009A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
Liu et al. Flow and friction behaviors of 6061 aluminum alloy at elevated temperatures and hot stamping of a B-pillar
Xu et al. Electroplasticity in electrically-assisted forming: Process phenomena, performances and modelling
CN101787492B (zh) 一种高品质大规格芯棒坯制造方法
CN102513440B (zh) 获取优越高温力学性能镁合金成形件的方法及装置
CN103341586A (zh) 一种实现gh4738镍基高温合金涡轮盘成形方法
CN104148562B (zh) Ti2AlNb基合金铸锭的开坯方法
Tang et al. Behavior and modeling of microstructure evolution during metadynamic recrystallization of a Ni-based superalloy
CN111024513B (zh) 一种连铸坯中间裂纹萌生临界应变测定的方法
US20130037183A1 (en) Thermal treatment for the stress-relief of titanium alloy parts
CN106756688B (zh) 一种变形TiAl合金组织性能精确控制方法
Utada et al. Creep property and phase stability of sulfur-doped Ni-base single-crystal superalloys and effectiveness of CaO desulfurization
CN108265236A (zh) 一种06Cr14Ni7Mo不锈钢材料及其成形方法
CN111208016A (zh) 连铸坯表面裂纹扩展临界应变测定及其裂纹扩展预测方法
CN105238955A (zh) 一种高塑性锆合金及其制备方法
Xu et al. Influence of microstructural evolution on the hot deformation behavior of an Fe–Mn–Al Duplex lightweight steel
CN114527009B (zh) 一种在热模拟试验机上熔化凝固过程控制方法
CN108977707A (zh) 一种改性铝合金、熔铸方法
CN104764659A (zh) 一种半固态坯料多向压缩试验方法
CN108893692B (zh) 一种通过控制钛合金初始片层相厚度获得等轴组织的热变形方法
CN115386819A (zh) 一种超高强度钛合金的时效冲温控制方法
Yang et al. Constitutive Behavior of As-quenched Al-Cu-Mn Alloy
Zhong et al. Hot deformation behavior of a new tailored cobalt-based superalloy for turbine discs
CN113070463A (zh) 一种双金属柱塞泵缸体挤压铸造成型方法
CN108018460B (zh) 一种异形黄铜管制备方法
Dutta et al. Analysis of tensile flow and work hardening behavior of Zr-2.5 Nb alloy in the framework of Kocks—Mecking approach

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant