CN114525395A - 一种风电空心主轴锻后热处理工艺 - Google Patents

一种风电空心主轴锻后热处理工艺 Download PDF

Info

Publication number
CN114525395A
CN114525395A CN202210186492.2A CN202210186492A CN114525395A CN 114525395 A CN114525395 A CN 114525395A CN 202210186492 A CN202210186492 A CN 202210186492A CN 114525395 A CN114525395 A CN 114525395A
Authority
CN
China
Prior art keywords
wind power
main shaft
hollow main
forging
power hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210186492.2A
Other languages
English (en)
Inventor
张帅
肖广帅
白云欣
沈玉婷
贾聪香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongyu Heavy Industry Co Ltd
Original Assignee
Tongyu Heavy Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongyu Heavy Industry Co Ltd filed Critical Tongyu Heavy Industry Co Ltd
Priority to CN202210186492.2A priority Critical patent/CN114525395A/zh
Publication of CN114525395A publication Critical patent/CN114525395A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)

Abstract

本发明提供了一种风电空心主轴锻后热处理工艺,具体涉及大型风电主轴制造领域,其包括:提供一风电空心主轴锻件,将所述风电空心主轴锻件进行第一次空冷,然后装炉进行第一次保温处理,将所述风电空心主轴锻件从所述热处理炉中取出进行第二次空冷,将热处理炉加热至300~350℃,进行第二次保温处理,将热处理炉升温至640~660℃,进行第三次保温处理,最后冷却。本发明风电空心主轴锻后热处理工艺能够匹配新的锻造工艺,利用风电空心主轴锻件的余热进行热处理,能够大幅度缩短锻后热处理周期,节省生产成本,提高风电空心主轴的生产效率,保证风电空心主轴的产品质量。

Description

一种风电空心主轴锻后热处理工艺
技术领域
本发明涉及大型风电主轴制造领域,特别是涉及一种风电空心主轴锻后热处理工艺。
背景技术
现在的风电空心主轴锻造主要使用自由锻压机进行锻造,锻造速率较慢,需要使用多火次锻造,导致锻造成形时间较长,风电空心主轴的平均锻造时长为1.5小时,锻造完成的风电空心主轴锻件的中心温度较低,由于锻造余量较大,风电空心主轴锻件的有效截面较大,无法利用锻造余热进行热处理。使用传统工艺锻造的风电空心主轴锻件的心部累计的变形能较小,很难进行动态再结晶。传统工艺锻造的风电空心主轴锻件的锻后热处理周期为7~10天,生产效率较低。
随着风电技术的发展,风电空心主轴的尺寸也在不断增大,为了更好的生产风电空心主轴,提高风电空心主轴的生产效率,开发了新的风电空心主轴生产工艺,利用模锻挤压机、法兰端成形模具和内孔挤扩成形模具对风电空心主轴进行生产,能够有效提高风电空心主轴的生产效率。传统的锻后热处理工艺已经不能匹配新的生产工艺,为保证风电空心主轴的成品质量,需要制定相应的风电空心主轴锻件锻后热处理工艺。
发明内容
本发明的目的在于提供一种风电空心主轴锻后热处理工艺,其能够利用锻件的余热进行锻后热处理,有效缩短锻后热处理周期,确保风电空心主轴的成品质量。
为满足上述技术目的及其相关技术目的,本发明提供了一种风电空心主轴锻后热处理工艺,其包括:
提供一风电空心主轴锻件;
将热处理炉加热至860~880℃待料,将所述风电空心主轴锻件进行第一次空冷,空冷时间为3~10分钟,然后装炉进行第一次保温处理,保温时间为5~8小时;
将所述风电空心主轴锻件从所述热处理炉中取出进行第二次空冷,当所述风电空心主轴锻件的表面温度小于或等于450℃时,对所述风电空心主轴锻件的端部和表面进行处理;
将热处理炉加热至300~350℃,将处理后的所述风电空心主轴锻件装炉,进行第二次保温处理,保温时间为6~15小时;
将热处理炉升温至640~660℃,进行第三次保温处理,保温时间为8~18小时;
进行第一次炉冷,炉冷至400℃以下,取出空冷,或进行第二次炉冷,炉冷至200℃以下,取出空冷。
在本发明风电空心主轴锻后热处理工艺一示例中,所述风电空心主轴锻件是通过模锻挤压机挤扩一次成形的。
在本发明风电空心主轴锻后热处理工艺一示例中,所述风电空心主轴锻件的累计拔长比大于3。
在本发明风电空心主轴锻后热处理工艺一示例中,所述风电空心主轴锻件的心部温度大于或等于1000℃,所述风电空心主轴锻件的表面温度小于或等于650℃。
在本发明风电空心主轴锻后热处理工艺一示例中,所述风电空心主轴锻件第一次空冷的时间为3~5分钟。
在本发明风电空心主轴锻后热处理工艺一示例中,在所述风电空心主轴锻件进行第一次空冷时,控制所述风电空心主轴锻件的表面温度上升100~150℃。
在本发明风电空心主轴锻后热处理工艺一示例中,在所述风电空心主轴锻件进行第一次空冷时,所述风电空心主轴锻件的表面温度测量点与直径较小一端的距离为300~400mm。
在本发明风电空心主轴锻后热处理工艺一示例中,在进行第三次保温处理前,所述热处理炉的升温速率为小于或等于60℃/h。
在本发明风电空心主轴锻后热处理工艺一示例中,在进行第一次炉冷时,所述热处理炉的降温速率为小于或等于50℃/h。
在本发明风电空心主轴锻后热处理工艺一示例中,在进行第二次炉冷时,所述热处理炉的降温速率为小于或等于30℃/h。
在本发明风电空心主轴锻后热处理工艺一示例中,对所述风电空心主轴锻件的端部和表面进行处理包括处理所述风电空心主轴锻件的毛刺和飞边。
本发明风电空心主轴锻后热处理工艺能够匹配新的锻造工艺,利用风电空心主轴锻件的余热进行热处理,能够大幅度缩短锻后热处理周期,节省生产成本,提高风电空心主轴的生产效率,保证风电空心主轴的产品质量。
附图说明
图1为本发明风电空心主轴锻后热处理工艺的一工艺曲线图;
图2为本发明风电空心主轴锻后热处理工艺的另一工艺曲线图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其它优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或者按照各制造商所建议的条件。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
请参阅图1和图2,图1为本发明风电空心主轴锻后热处理工艺的一种工艺曲线图;图2为本发明风电空心主轴锻后热处理工艺的另一工艺曲线图。本发明提供了一种风电空心主轴锻后热处理工艺,其步骤如下:
S1、提供一风电空心主轴锻件;
S2、将热处理炉加热至860~880℃待料,将所述风电空心主轴锻件进行第一次空冷,空冷时间为3~10分钟,然后装炉进行第一次保温处理,保温时间为5~8小时;
S4、将所述风电空心主轴锻件从所述热处理炉中取出进行第二次空冷,当所述风电空心主轴锻件的表面温度小于或等于450℃时,对所述风电空心主轴锻件的端部和表面进行处理;
S5、将热处理炉加热至300~350℃,将处理后的所述风电空心主轴锻件装炉,进行第二次保温处理,保温时间为6~15小时;
S6、将热处理炉升温至640~660℃,进行第三次保温处理,保温时间为8~18小时;
S7、进行第一次炉冷,炉冷至400℃以下,取出空冷,或进行第二次炉冷,炉冷至200℃以下,取出空冷。
本发明所处理的风电空心主轴锻件是通过新的挤压扩孔工艺生产的,使用模锻挤压机和挤压扩孔模具使坯料一次性锻造成形,该工艺生产的风电空心主轴锻件储存的变形能较大,再结晶的动力大,能够进行动态再结晶,动态再结晶的过程是细化晶粒的过程。新的风电空心主轴锻件生产工艺的成形速度快,风电空心主轴锻件的温度较高,利用其自身的余热可以大幅缩短锻后热处理的周期。
在S2步骤中对风电空心主轴锻件进行了第一次空冷处理,能够降低锻件心部的温度,防止晶粒度快速长大,也可以使锻件的内外温度更加均匀。第一次保温处理为奥氏体化过程,利用锻件的余热和储存的变性能可以有效缩短该过程的时间,相较于传统工艺,第一次保温处理的时间缩短了约60%。
由于新工艺生产的风电空心主轴锻件的锻造余量小,锻件的截面小,过冷处理和空冷的效果好,细化晶粒效果相比于传统工艺更佳,从而提高了产品的质量。
在本发明风电空心主轴锻后热处理工艺一示例中,所述风电空心主轴锻件是通过模锻挤压机挤扩一次成形的。
在本发明风电空心主轴锻后热处理工艺一示例中,所述风电空心主轴锻件的累计拔长比大于3。
在本发明风电空心主轴锻后热处理工艺一示例中,所述风电空心主轴锻件的心部温度大于或等于1000℃,所述风电空心主轴锻件的表面温度小于或等于650℃。
在本发明风电空心主轴锻后热处理工艺一示例中,所述风电空心主轴锻件第一次空冷的时间为3~5分钟。
在本发明风电空心主轴锻后热处理工艺一示例中,在所述风电空心主轴锻件进行第一次空冷时,控制所述风电空心主轴锻件的表面温度上升100~150℃。
在本发明风电空心主轴锻后热处理工艺一示例中,在所述风电空心主轴锻件进行第一次空冷时,所述风电空心主轴锻件的表面温度测量点与直径较小一端的距离为300~400mm。
在本发明风电空心主轴锻后热处理工艺一示例中,在进行第三次保温处理前,所述热处理炉的升温速率为小于或等于60℃/h。
在本发明风电空心主轴锻后热处理工艺一示例中,在进行第一次炉冷时,所述热处理炉的降温速率为小于或等于50℃/h。
在本发明风电空心主轴锻后热处理工艺一示例中,在进行第二次炉冷时,所述热处理炉的降温速率为小于或等于30℃/h。
在本发明风电空心主轴锻后热处理工艺一示例中,对所述风电空心主轴锻件的端部和表面进行处理包括处理所述风电空心主轴锻件的毛刺和飞边。
实施例1
提供一5MW风电空心主轴锻件,将热处理炉加热至860℃待料,将所述风电空心主轴锻件进行第一次空冷,空冷时间为3分钟,用测温枪测量与锻件直径较小一端距离为300mm部位的表面温度,第一次空冷期间该部位的表面温度上升了100℃,然后将锻件装炉进行第一次保温处理,保温时间为5小时。
将所述风电空心主轴锻件从所述热处理炉中取出进行第二次空冷,当所述风电空心主轴锻件的表面温度为450℃时,将所述风电空心主轴锻件移动至割料区,处理所述风电空心主轴锻件的端部和表面的毛刺和飞边。
处理完成后,将热处理炉加热至300℃,将处理后的所述风电空心主轴锻件装炉,进行第二次保温处理,保温时间为6小时。第二次保温结束后,将热处理炉升温至640℃,升温速率为60℃/h,进行第三次保温处理,保温时间为8小时。第三次保温结束后,进行第一次炉冷,降温速率为50℃/h,炉冷至400℃以下,将所述风电空心主轴锻件取出空冷。
实施例2
提供一5MW风电空心主轴锻件,将热处理炉加热至880℃待料,将所述风电空心主轴锻件进行第一次空冷,空冷时间为5分钟,用测温枪测量与锻件直径较小一端距离为400mm部位的表面温度,第一次空冷期间该部位的表面温度上升了150℃,然后将锻件装炉进行第一次保温处理,保温时间为8小时。
将所述风电空心主轴锻件从所述热处理炉中取出进行第二次空冷,当所述风电空心主轴锻件的表面温度为440℃时,将所述风电空心主轴锻件移动至割料区,处理所述风电空心主轴锻件的端部和表面的毛刺和飞边。
处理完成后,将热处理炉加热至350℃,将处理后的所述风电空心主轴锻件装炉,进行第二次保温处理,保温时间为15小时。第二次保温结束后,将热处理炉升温至660℃,升温速率为50℃/h,进行第三次保温处理,保温时间为18小时。第三次保温结束后,进行第一次炉冷,降温速率为40℃/h,炉冷至400℃以下,将所述风电空心主轴锻件取出空冷。
实施例3
提供一4MW风电空心主轴锻件,将热处理炉加热至860℃待料,将所述风电空心主轴锻件进行第一次空冷,空冷时间为10分钟,用测温枪测量与锻件直径较小一端距离为300mm部位的表面温度,第一次空冷期间该部位的表面温度上升了150℃,然后将锻件装炉进行第一次保温处理,保温时间为6小时。
将所述风电空心主轴锻件从所述热处理炉中取出进行第二次空冷,当所述风电空心主轴锻件的表面温度为450℃时,将所述风电空心主轴锻件移动至割料区,处理所述风电空心主轴锻件的端部和表面的毛刺和飞边。
处理完成后,将热处理炉加热至330℃,将处理后的所述风电空心主轴锻件装炉,进行第二次保温处理,保温时间为10小时。第二次保温结束后,将热处理炉升温至650℃,升温速率为60℃/h,进行第三次保温处理,保温时间为13小时。第三次保温结束后,进行第一次炉冷,降温速率为50℃/h,炉冷至400℃以下,进行第二次炉冷,降温速率为30℃/h,炉冷至200℃以下,将所述风电空心主轴锻件取出空冷。
实施例4
提供一4MW风电空心主轴锻件,将热处理炉加热至870℃待料,将所述风电空心主轴锻件进行第一次空冷,空冷时间为4分钟,用测温枪测量与锻件直径较小一端距离为300mm部位的表面温度,第一次空冷期间该部位的表面温度上升了120℃,然后将锻件装炉进行第一次保温处理,保温时间为6小时。
将所述风电空心主轴锻件从所述热处理炉中取出进行第二次空冷,当所述风电空心主轴锻件的表面温度为450℃时,将所述风电空心主轴锻件移动至割料区,处理所述风电空心主轴锻件的端部和表面的毛刺和飞边。
处理完成后,将热处理炉加热至350℃,将处理后的所述风电空心主轴锻件装炉,进行第二次保温处理,保温时间为12小时。第二次保温结束后,将热处理炉升温至660℃,升温速率为55℃/h,进行第三次保温处理,保温时间为15小时。第三次保温结束后,进行第一次炉冷,降温速率为45℃/h,炉冷至400℃以下,进行第二次炉冷,降温速率为25℃/h,炉冷至200℃以下,将所述风电空心主轴锻件取出空冷。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种风电空心主轴锻后热处理工艺,其特征在于,包括:
提供一风电空心主轴锻件;
将热处理炉加热至860~880℃待料,将所述风电空心主轴锻件进行第一次空冷,空冷时间为3~10分钟,然后装炉进行第一次保温处理,保温时间为5~8小时;
将所述风电空心主轴锻件从所述热处理炉中取出进行第二次空冷,当所述风电空心主轴锻件的表面温度小于或等于450℃时,对所述风电空心主轴锻件的端部和表面进行处理;
将热处理炉加热至300~350℃,将处理后的所述风电空心主轴锻件装炉,进行第二次保温处理,保温时间为6~15小时;
将热处理炉升温至640~660℃,进行第三次保温处理,保温时间为8~18小时;
进行第一次炉冷,炉冷至400℃以下,取出空冷,或进行第二次炉冷,炉冷至200℃以下,取出空冷。
2.如权利要求1所述风电空心主轴锻后热处理工艺,其特征在于,所述风电空心主轴锻件的累计拔长比大于3。
3.如权利要求1所述风电空心主轴锻后热处理工艺,其特征在于,所述风电空心主轴锻件的心部温度大于或等于1000℃,所述风电空心主轴锻件的表面温度小于或等于650℃。
4.如权利要求1所述风电空心主轴锻后热处理工艺,其特征在于,所述风电空心主轴锻件第一次空冷的时间为3~5分钟。
5.如权利要求1所述风电空心主轴锻后热处理工艺,其特征在于,在所述风电空心主轴锻件进行第一次空冷时,控制所述风电空心主轴锻件的表面温度上升100~150℃。
6.如权利要求5所述风电空心主轴锻后热处理工艺,其特征在于,在所述风电空心主轴锻件进行第一次空冷时,所述风电空心主轴锻件的表面温度测量点与直径较小一端的距离为300~400mm。
7.如权利要求1所述风电空心主轴锻后热处理工艺,其特征在于,在进行第三次保温处理前,所述热处理炉的升温速率为小于或等于60℃/h。
8.如权利要求1所述风电空心主轴锻后热处理工艺,其特征在于,在进行第一次炉冷时,所述热处理炉的降温速率为小于或等于50℃/h。
9.如权利要求1所述风电空心主轴锻后热处理工艺,其特征在于,在进行第二次炉冷时,所述热处理炉的降温速率为小于或等于30℃/h。
10.如权利要求1所述风电空心主轴锻后热处理工艺,其特征在于,对所述风电空心主轴锻件的端部和表面进行处理包括处理所述风电空心主轴锻件的毛刺和飞边。
CN202210186492.2A 2022-02-28 2022-02-28 一种风电空心主轴锻后热处理工艺 Pending CN114525395A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210186492.2A CN114525395A (zh) 2022-02-28 2022-02-28 一种风电空心主轴锻后热处理工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210186492.2A CN114525395A (zh) 2022-02-28 2022-02-28 一种风电空心主轴锻后热处理工艺

Publications (1)

Publication Number Publication Date
CN114525395A true CN114525395A (zh) 2022-05-24

Family

ID=81625639

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210186492.2A Pending CN114525395A (zh) 2022-02-28 2022-02-28 一种风电空心主轴锻后热处理工艺

Country Status (1)

Country Link
CN (1) CN114525395A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560043A (zh) * 2012-02-17 2012-07-11 广州造船厂有限公司 35CrMo钢大型轴类锻件的热处理工艺
CN102806291A (zh) * 2012-08-24 2012-12-05 江苏凌飞锻造有限公司 一种风电主轴锻造方法
CN106755863A (zh) * 2016-12-15 2017-05-31 通裕重工股份有限公司 解决大截面方块类锻件产生探伤粗晶的工艺方法
CN110684885A (zh) * 2019-07-29 2020-01-14 河南中原特钢装备制造有限公司 均匀细化锻件晶粒度的锻造控制方法
CN112410514A (zh) * 2020-10-30 2021-02-26 张家港海锅新能源装备股份有限公司 风电用42CrMo花键轴锻件的生产方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560043A (zh) * 2012-02-17 2012-07-11 广州造船厂有限公司 35CrMo钢大型轴类锻件的热处理工艺
CN102806291A (zh) * 2012-08-24 2012-12-05 江苏凌飞锻造有限公司 一种风电主轴锻造方法
CN106755863A (zh) * 2016-12-15 2017-05-31 通裕重工股份有限公司 解决大截面方块类锻件产生探伤粗晶的工艺方法
CN110684885A (zh) * 2019-07-29 2020-01-14 河南中原特钢装备制造有限公司 均匀细化锻件晶粒度的锻造控制方法
CN112410514A (zh) * 2020-10-30 2021-02-26 张家港海锅新能源装备股份有限公司 风电用42CrMo花键轴锻件的生产方法

Similar Documents

Publication Publication Date Title
CN108746447B (zh) 一种高强耐蚀铝合金锻件制造工艺
JP6698940B2 (ja) 球状化構造の高炭素クロム軸受鋼の温間圧延リング成形方法
CN106363352B (zh) 一种高强度铝合金环锻件的制造工艺
CN105108456B (zh) 新能源汽车驱动电机轴的制造方法
CN108890218B (zh) 一种高强耐热铝合金锻件制造工艺
CN101579800B (zh) 一体式长轴内球笼精锻件温、冷锻造工艺
JP2022511697A (ja) 新規な中空軸製造方法
CN101602157A (zh) 一种减速机输出轴的生产工艺
CN111334727B (zh) 可用于提高高温合金铆钉成材率的高温合金线材制备方法
CN104646956A (zh) 一种球笼钟形壳的加工工艺
CN102441773A (zh) 弧齿锥齿轮热精锻及冷精整形复合工艺
CN104476145B (zh) 垫片的制作方法
CN103990947A (zh) Al-Mg合金轮毂的制造方法
CN103556094B (zh) 利用精锻机锻造生产tc4钛合金棒材的方法
CN114472776A (zh) 一种风塔用高颈法兰锻件胎模锻制坯及模具环轧成形工艺
CN115846579A (zh) 一种大型风机主轴复合仿型锻造方法
CN115608908A (zh) 一种超大功率巨型风电空心主轴的短流程制造工艺
CN112872284B (zh) 一种多台阶轴类锻件及其锻造方法
CN114525395A (zh) 一种风电空心主轴锻后热处理工艺
CN114260406B (zh) Gh4169合金模锻件的制造方法
CN102080147A (zh) 冷作模锻造工艺及利用锻造余热低温淬火方法
CN106001344A (zh) 一种锤上摔子的自由锻造工艺
CN114082873A (zh) 一种超塑性等温锻造成形方法
CN105522087A (zh) 制粒机压辊的胎模锻造工艺
CN109236866A (zh) 一种薄壁低椭圆度深沟球轴承套圈加工工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination