CN114524976A - 一种m-SiO2@EDTMPA复合材料以及制备方法和应用 - Google Patents

一种m-SiO2@EDTMPA复合材料以及制备方法和应用 Download PDF

Info

Publication number
CN114524976A
CN114524976A CN202210383792.XA CN202210383792A CN114524976A CN 114524976 A CN114524976 A CN 114524976A CN 202210383792 A CN202210383792 A CN 202210383792A CN 114524976 A CN114524976 A CN 114524976A
Authority
CN
China
Prior art keywords
edtmpa
sio
composite material
phosphonic acid
mesoporous silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210383792.XA
Other languages
English (en)
Other versions
CN114524976B (zh
Inventor
李志伟
邱晓庆
李小红
张治军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN202210383792.XA priority Critical patent/CN114524976B/zh
Publication of CN114524976A publication Critical patent/CN114524976A/zh
Application granted granted Critical
Publication of CN114524976B publication Critical patent/CN114524976B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于材料加工领域,公开一种m‑SiO2@EDTMPA复合材料以及制备方法和应用。所述复合材料为80~100nm的球形颗粒,由介孔二氧化硅m‑SiO2以及装载在其介孔孔道中的乙二胺四亚甲基膦酸EDTMPA组成。制备方法:按质量比(0.5~3)∶1将乙二胺四亚甲基膦酸和介孔二氧化硅混合后,加热至乙二胺四亚甲基膦酸熔融,然后保持3~15min,冷却后即可获得m‑SiO2@EDTMPA复合材料。所述m‑SiO2@EDTMPA复合材料作为阻燃剂的应用。本发明将熔融后的乙二胺四亚甲基膦酸装入到纳米尺度的介孔二氧化硅中,在15min内就能将乙二胺四亚甲基膦酸纳米化和复合化,因此在聚合物中显示出良好的阻燃性能。

Description

一种m-SiO2@EDTMPA复合材料以及制备方法和应用
技术领域
本发明属于材料加工领域,具体涉及一种m-SiO2@EDTMPA复合材料以及制备方法和应用。
背景技术
乙二胺四亚甲基膦酸(EDTMPA)有较强的螯合性,能与铁离子、铜、铝、锌、钙、镁等离子形成稳定的络合物;它在温度200℃时仍有良好的阻垢效果,常用于工业循环冷却水、锅炉用水、电厂循环水的阻垢缓蚀剂,还可用作无氰电镀的络合剂;该产品生产简单、产量高,但用途单一,需要扩展其用途。
乙二胺四亚甲基膦酸含有阻燃功能的磷、氮元素,但是由于其酸性较强,无法直接用作阻燃剂使用。另外,乙二胺四亚甲基膦酸常为微米级固体颗粒,如果用于聚合物中,由于大的尺度会对聚合物力学性能产生明显的不利影响。
发明内容
为克服乙二胺四亚甲基膦酸因酸性较强而不能直接作为阻燃剂使用的不足之处,本发明的目的在于提供一种m-SiO2@EDTMPA复合材料以及制备方法和应用。
为实现上述目的,本发明采取的技术方案如下:
一种m-SiO2@EDTMPA复合材料,所述复合材料为80~100nm的球形颗粒,由介孔二氧化硅m-SiO2以及装载在其介孔孔道中的乙二胺四亚甲基膦酸EDTMPA组成。
制备方法:按质量比(0.5~3)∶1将乙二胺四亚甲基膦酸和介孔二氧化硅混合后,加热至乙二胺四亚甲基膦酸熔融,然后保持3~15min,冷却后即可获得m-SiO2@EDTMPA复合材料;介孔二氧化硅的直径为80~100nm,介孔孔径为3~12nm。
所述m-SiO2@EDTMPA复合材料作为阻燃剂应用在聚合物中。
较好地,每100质量份聚合物添加3~7质量份阻燃剂。
较好地,所述聚合物为聚丙烯、聚乙烯、聚氨酯、尼龙、环氧树脂或不饱和树脂。
有益效果:本发明将熔融后的乙二胺四亚甲基膦酸装入到纳米尺度的介孔二氧化硅中,在15min内就能将乙二胺四亚甲基膦酸纳米化和复合化;乙二胺四亚甲基膦酸装入到纳米尺度的介孔二氧化硅中后,可以避免乙二胺亚甲基膦酸对聚合物的不利影响,乙二胺四亚甲基膦酸快速复合化后,复合材料中含有磷、氮、硅阻燃元素,因此在聚合物中显示出良好的阻燃性能。
附图说明
图1:原料m-SiO2(a)、EDTMPA(b)与实施例1-4所得产物SiP1(c)、SiP2(d)、SiP3(e)、SiP4(f)的扫描电子显微镜图。
图2:原料m-SiO2 (a)与实施例1-4所得产物SiP1(b)、SiP2(c)、SiP3(d)、SiP4(e)的透射电子显微镜及实施例2所得产物SiP2(c)的能量散射X射线谱图。
图3:实施例1-4所得产物与对比样品的氧指数测试数据图。
图4:实施例2得产物与对比样品在锥形量热测试获得的热释放率曲线图。
图5:在EP中分别添加实施例2得产物、对比样品以及纯EP的抗拉强度-应变曲线图。
具体实施方式
下面结合具体实施例对本发明的技术方案做进一步详细、清楚地描述,但本发明的保护范围并不局限于此。
下面实施例以及对比样品中的介孔二氧化硅由河南河大纳米材料工程研究中心有限公司提供,其直径为 80~100nm,介孔孔径为3~12nm。
实施例1
称取乙二胺四亚甲基膦酸(EDTMPA)0.5 g、介孔二氧化硅(m-SiO2)1 g,混合均匀后加热到EDTMPA熔融,保持3min,冷却后即可获得纳米复合阻燃剂m-SiO2@EDTMPA,标记为SiP1。
实施例2
称取乙二胺四亚甲基膦酸(EDTMPA)1 g、介孔二氧化硅(m-SiO2)1 g,混合均匀后加热到EDTMPA熔融,保持5min,冷却后即可获得纳米复合阻燃剂m-SiO2@EDTMPA,标记为SiP2。
实施例3
称取乙二胺四亚甲基膦酸(EDTMPA)2 g、介孔二氧化硅(m-SiO2)1 g,混合均匀后加热到EDTMPA熔融,保持15min,冷却后即可获得纳米复合阻燃剂m-SiO2@EDTMPA,标记为SiP3。
实施例4
称取乙二胺四亚甲基膦酸(EDTMPA)3 g、介孔二氧化硅(m-SiO2)1 g,混合均匀后加热到EDTMPA熔融,保持15min,冷却后即可获得纳米复合阻燃剂m-SiO2@EDTMPA,标记为SiP4。
图1是原料m-SiO2(a)、EDTMPA(b)与实施例1-4所得产物SiP1(c)、SiP2(d)、SiP3(e)、SiP4(f)的扫描电子显微镜图。从图上可以看出:乙二胺四亚甲基膦酸(EDTMPA)在实验条件下与介孔二氧化硅(m-SiO2)相互作用,由微米尺度变成了80~100nm的纳米球形颗粒。
图2是原料m-SiO2 (a)与实施例1-4所得产物SiP1(b)、SiP2(c)、SiP3(d)、SiP4(e)的透射电子显微镜及实施例2所得产物SiP2(c)的能量散射X射线谱图。透射电子显微镜结果与图1扫描电子显微镜结果一致,乙二胺四亚甲基膦酸在实验条件下与介孔二氧化硅相互作用,由微米尺度变成了80~100nm的纳米球形颗粒。对应的X射线图谱表明:乙二胺四亚甲基膦酸与介孔二氧化硅复合的比较均匀。
阻燃性能
为了研究获得的纳米复合材料的阻燃性能,按照表1配方制备环氧树脂(EP)复合材料,进行氧指数测试;按照表2配方制备EP复合材料,进行锥形量热测试。表中,样品EP/3Si/P使用的阻燃剂为m-SiO2 和 EDTMPA的简单混合物(没有加热形成复合物),其中m-SiO21.5份,EDTMPA 1.5份;固化剂为间苯二胺,固化条件:先温度80℃固化2h,然后150℃固化3h。
Figure 975247DEST_PATH_IMAGE001
Figure 9193DEST_PATH_IMAGE002
测试方法:
(1)极限氧指数LOI测试:参照 GB/T 2406-1993,将所得样板制样(自撑材料,型式IV,样品尺寸100 mm× 6.5mm × 3 mm)用于测试极限氧指数LOI。
(2)锥形量热测试:依据标准ISO 5660 测试锥形量热,样品尺寸为125 mm× 13mm× 3 mm,热辐射为35kW/m2
图3是实施例1-4所得产物与对比样品的氧指数测试数据图。该实验条件下,纯环氧树脂的LOI为24.6。从图3可以看出,添加所有制备的纳米复合样品(EP/SiP1、EP/SiP2、EP/SiP3、EP/SiP4)以及简单的混合样品(EP/3Si/P)都能提高环氧树脂的氧指数。其中,EP/SiP2样品在添加5份和7份时的氧指数数值最高,显示出最好的阻燃性能,但在添加3份时的氧指数也已经到达应用要求(一般氧指数超过28,就属阻燃材料),说明在m-SiO2和 EDTMPA质量比为1∶1的时候,阻燃性能最好。考虑到阻燃剂添加量高的话,会影响其他性能,而且会增加成本,所以,本发明优先每100质量份树脂添加3质量份阻燃剂。
图4是实施例2得产物以及与对比样品在锥形量热测试获得的热释放率曲线图。从图4可以看出:EP/SiP2-3样品即在100质量份EP中添加3质量份SiP2时,能将环氧树脂的热释放速率峰值从837kW/m2降低到466.5kW/m2,比简单的混合样品(EP/3Si/P,625.6kW/m2)效果更好,说明乙二胺四亚甲基膦酸与介孔二氧化硅形成的复合物由于纳米效应增强了二者的协同阻燃作用。
图5是在EP中分别添加实施例2得产物、对比样品以及纯EP的抗拉强度-应变曲线图(EP):EP/EDTMPA-3代表在100质量份EP中添加3质量份EDTMPA,EP/SiP2-3代表在100质量份EP中添加3质量份SiP2。从图上可以看出:添加3份EDTMPA之后,由于EDTMPA的大尺度,与EP界面相容性差,其抗拉强度明显降低;而添加3份实施例2SiP2样品,由于纳米化的原因,其尺度在80~100nm,与EP相容性明显提升,抗拉强度比直接添加3份EDTMPA时要提高很多,显示出纳米化的优势。

Claims (5)

1.一种m-SiO2@EDTMPA复合材料,其特征在于:所述复合材料为80~100nm的球形颗粒,由介孔二氧化硅m-SiO2以及装载在其介孔孔道中的乙二胺四亚甲基膦酸EDTMPA组成。
2.如权利要求1所述的m-SiO2@EDTMPA复合材料的制备方法,其特征在于:按质量比(0.5~3)∶1将乙二胺四亚甲基膦酸和介孔二氧化硅混合后,加热至乙二胺四亚甲基膦酸熔融,然后保持3~15min,冷却后即可获得m-SiO2@EDTMPA复合材料;所述介孔二氧化硅的直径为80~100nm,介孔孔径为3~12nm。
3.如权利要求1所述的m-SiO2@EDTMPA复合材料作为阻燃剂应用在聚合物中。
4.如权利要求3所述的m-SiO2@EDTMPA的应用,其特征在于:每100质量份聚合物添加3~7质量份阻燃剂。
5.如权利要求3所述的m-SiO2@EDTMPA的应用,其特征在于:所述聚合物为聚丙烯、聚乙烯、聚氨酯、尼龙、环氧树脂或不饱和树脂。
CN202210383792.XA 2022-04-13 2022-04-13 一种m-SiO2@EDTMPA复合材料以及制备方法和应用 Active CN114524976B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210383792.XA CN114524976B (zh) 2022-04-13 2022-04-13 一种m-SiO2@EDTMPA复合材料以及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210383792.XA CN114524976B (zh) 2022-04-13 2022-04-13 一种m-SiO2@EDTMPA复合材料以及制备方法和应用

Publications (2)

Publication Number Publication Date
CN114524976A true CN114524976A (zh) 2022-05-24
CN114524976B CN114524976B (zh) 2023-01-13

Family

ID=81628195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210383792.XA Active CN114524976B (zh) 2022-04-13 2022-04-13 一种m-SiO2@EDTMPA复合材料以及制备方法和应用

Country Status (1)

Country Link
CN (1) CN114524976B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080286187A1 (en) * 2007-05-15 2008-11-20 Korea Atomic Energy Research Institute Mesoporous silica particles and preparation method thereof
JP2009067614A (ja) * 2007-09-11 2009-04-02 Kao Corp 複合中空メソポーラスシリカ粒子
CN102766471A (zh) * 2012-03-29 2012-11-07 广东省宜华木业股份有限公司 一种介孔二氧化硅纳米复合阻燃剂的制备方法
CN110845799A (zh) * 2019-11-14 2020-02-28 中广核俊尔(上海)新材料有限公司 一种低气味耐刮擦的聚丙烯复合材料及其制备方法
CN113501986A (zh) * 2021-07-22 2021-10-15 同济大学 乙二胺四亚甲基膦酸金属盐@氮化硼微片/聚乙烯醇复合膜及其制备方法
US20220073547A1 (en) * 2018-12-20 2022-03-10 Lanxess Corporation Method of Preparing Phosphorus-Containing Flame Retardants and Their Use in Polymer Compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080286187A1 (en) * 2007-05-15 2008-11-20 Korea Atomic Energy Research Institute Mesoporous silica particles and preparation method thereof
JP2009067614A (ja) * 2007-09-11 2009-04-02 Kao Corp 複合中空メソポーラスシリカ粒子
CN102766471A (zh) * 2012-03-29 2012-11-07 广东省宜华木业股份有限公司 一种介孔二氧化硅纳米复合阻燃剂的制备方法
US20220073547A1 (en) * 2018-12-20 2022-03-10 Lanxess Corporation Method of Preparing Phosphorus-Containing Flame Retardants and Their Use in Polymer Compositions
CN110845799A (zh) * 2019-11-14 2020-02-28 中广核俊尔(上海)新材料有限公司 一种低气味耐刮擦的聚丙烯复合材料及其制备方法
CN113501986A (zh) * 2021-07-22 2021-10-15 同济大学 乙二胺四亚甲基膦酸金属盐@氮化硼微片/聚乙烯醇复合膜及其制备方法

Also Published As

Publication number Publication date
CN114524976B (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
Yu et al. Preparation of hyperbranched aromatic polyamide grafted nanoparticles for thermal properties reinforcement of epoxy composites
Wei et al. Graphene nanoplatelets in epoxy system: dispersion, reaggregation, and mechanical properties of nanocomposites
Alamri et al. Characterization of epoxy hybrid composites filled with cellulose fibers and nano‐SiC
Liu et al. Organoclay-modified high performance epoxy nanocomposites
Liu et al. Morphology and performance of epoxy nanocomposites modified with organoclay and rubber
Mohanty et al. Effect of alumina nanoparticles on the enhancement of impact and flexural properties of the short glass/carbon fiber reinforced epoxy based composites
Martone et al. Thermo-mechanical characterization of epoxy nanocomposites with different carbon nanotube distributions obtained by solvent aided and direct mixing.
CN110114306A (zh) 六方氮化硼粉末、其生产方法、树脂组合物和树脂片材
Nohales et al. Morphology, flexural, and thermal properties of sepiolite modified epoxy resins with different curing agents
Konnola et al. Structure and thermo-mechanical properties of CTBN-grafted-GO modified epoxy/DDS composites
KR101239356B1 (ko) 소수성 고분자로 표면처리된 세라믹 나노 분말의 제조방법 및 이에 따라 제조되는 세라믹 나노 분말
Hongxia et al. Mechanical properties of novel bismaleimide nanocomposites with Si3N4 nanoparticles
Mustafa et al. Improving the tensile, toughness, and flexural properties of epoxy resin based nanocomposites filled with ZrO2 and Y2O3 nanoparticles
Acar et al. Synthesis and characterization of graphene-epoxy nanocomposites
CN114524976B (zh) 一种m-SiO2@EDTMPA复合材料以及制备方法和应用
Majeed et al. Effect of Ading Nanocarbon Black on the Mechanical Properties of Epoxy
Bondioli et al. Preparation and characterization of epoxy resins filled with submicron spherical zirconia particles
Ameer et al. Enhanced thermal expansion, mechanical properties, and adhesion analysis of epoxy/ZrO2 nano composites
Pour et al. Fabrication and characterization of superparamagnetic nanocomposites based on epoxy resin and surface-modified γ-Fe 2 O 3 by epoxide functionalization
Ramamoorthi et al. Experimental investigations of influence of halloysite nanotube on mechanical and chemical resistance properties of glass fiber reinforced epoxy nano composites
Lin et al. Study on phenolic resins modified by copper nanoparticles
Fathalian et al. Effect of nanosilica on the mechanical and thermal properties of carbon fiber/polycarbonate laminates
Zhang et al. Fabrication and mechanical properties of multiwalled carbon nanotube/nanonickel reinforced epoxy resin composites
Guo et al. Differential scanning calorimetry investigation on vinyl ester resin curing process for polymer nanocomposite fabrication
Srivastava et al. Reinforcement of ball shaped MoS2 nanoparticles in epoxy resin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant