CN114518393A - 一种gnp-cnt印刷电极及其制备方法和应用 - Google Patents

一种gnp-cnt印刷电极及其制备方法和应用 Download PDF

Info

Publication number
CN114518393A
CN114518393A CN202210134187.9A CN202210134187A CN114518393A CN 114518393 A CN114518393 A CN 114518393A CN 202210134187 A CN202210134187 A CN 202210134187A CN 114518393 A CN114518393 A CN 114518393A
Authority
CN
China
Prior art keywords
electrode
gnp
cnt
nano
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210134187.9A
Other languages
English (en)
Inventor
朱爱萍
朱雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202210134187.9A priority Critical patent/CN114518393A/zh
Publication of CN114518393A publication Critical patent/CN114518393A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本案涉及一种GNP‑CNT印刷电极及其制备方法和应用,在碳印刷电极基础上,采用水性石墨烯纳米片/碳纳米管纳米传感涂料修饰得到GNP‑CNT印刷电极。本发明通过碳纳米技术简便地构建工作电极,CNT以单分散的状态分布在GNP纳米薄片之间,形成了由纳米管桥连纳米片的三维导电网络结构形貌,有利于形成高电子传输通道;具有大比表面,有效地增大电极反应速率;纳米涂料采用水性丙稀酸树脂作为粘结物质,具有亲水带负电特性,有利于多巴胺在电极表面进行静电吸附扩散;DA浓度为0.4~40μM范围呈现良好的线性关系,同时对其它神经介质如尿酸、抗坏血酸具有优异的抗干扰性,使准确、快速、简便测试多巴胺成为可能。

Description

一种GNP-CNT印刷电极及其制备方法和应用
技术领域
本发明涉及电化学和纳米分析检测技术领域,具体涉及一种GNP-CNT印刷电极及其制备方法和应用。
背景技术
多巴胺(DA)是人类和哺乳动物重要的神经递质,在肾脏、血管、消化系统、免疫系统和中枢神经系统中发挥着重要作用。低水平的DA与许多病理事件密切相关,如心力衰竭、帕金森病和神经肌肉紊乱。因此,迫切需要开发高效、快速、灵敏的DA检测方法有助于对疾病的早期诊断与治疗。目前测定DA的方法主要有荧光分析法、酶联法、气相色谱以及高效液相色谱法。但上述方法存在测试方法繁琐、所用仪器昂贵、重复性差等问题,因此,这些方法还未能推广到医院临床应用。电化学分析方法由于快速、灵敏已经引起科学研究与临床检测的广泛兴趣,但文献报道需要构建特殊的工作电极材料才能测定DA,复杂的电极制作限制了电化学传感方法的临床应用。
发明内容
针对现有技术中的不足之处,本发明提出了一种利用碳纳米技术简便地构建工作电极,制得的印刷电极能够快速测定血液中的多巴胺,很好的克服现有技术中存在的造价昂贵、灵敏度低等缺点。
为实现上述目的,本发明提供如下技术方案:
一种GNP-CNT印刷电极的制备方法,其特征在于,包括如下步骤:
1)取超分散剂DC-02加入水搅拌溶解后,加入碳纳米管(CNT),以1500r/min的转速分散10-15分钟;砂磨6-7小时;根据体系粘度分步加入石墨烯纳米片(GNP),加完后继续研磨10小时,得石墨烯/碳纳米管水性纳米悬浮液;
2)将82~85份的石墨烯/碳纳米管纳米悬浮液、18~15份的水性丙烯酸树脂、0.1~0.3份的流平剂和0.1~0.3份的润湿分散剂混合制得水性纳米涂料;
3)采用点胶机将所述纳米涂料涂布在碳印刷电极的工作电极上,湿膜厚度为9~13μm,于80℃烘干后得到石墨烯/碳纳米管纳米涂料修饰印刷电极,即GNP-CNT印刷电极。
优选地,所述步骤1)中各原料组成如下:水75~80份、超分散剂DC-022~5份、石墨烯纳米片16~18份、碳纳米管1.4~2.3份。
优选地,所述步骤3)的工作电极中参比电极为银/氯化银电极,对电极为碳电极。
本发明提供一种如上所述的制备方法制得的GNP-CNT印刷电极。
本发明进一步提供一种如上所述的GNP-CNT印刷电极的应用,是采用所述GNP-CNT印刷电极,以及电化学工作站测试人多巴胺浓度。
本发明制备的石墨烯纳米片与碳纳米管复合电极(印刷电极的工作电极),具有超高导电性、与多巴胺强π-π相互作用以及良好的亲水性,结果使得DA浓度处于0.4~40μM范围呈现非常良好的线性关系,同时对其它神经介质如尿酸、抗坏血酸具有优异的抗干扰性,使准确测试DA浓度成为可能。
与现有技术相比,本发明的有益效果是:本发明通过碳纳米技术简便地构建工作电极,制备方法简单,原料易得,且具有如下特点:
1、CNT以单分散的状态分布在GNP纳米薄片之间,形成了由纳米管桥连纳米片的三维导电网络结构形貌,有利于形成高电子传输通道;
2、形成微纳米表面具有大比表面,有效地增大电极反应速率;
3、CNT与GNP具有大π结构与检测物质DA可以形成电子给体-电子受体相互作用,对多巴胺氧化具有催化作用;
4、纳米涂料采用水性丙稀酸树脂作为粘结物质,具有亲水带负电特性,有利于DA在电极表面进行静电吸附扩散。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为GNP-CNT分散液的TEM图。
图2为水性纳米GNP-CNT涂膜的SEM图。
图3为GNP-CNT印刷电极测试DA的DPV图。
图4为GNP-CNT印刷电极测试DA的线性拟合图。
图5为GNP-CNT印刷电极测试人血清111#与112#样的DA浓度的电流电位图。
图6为GNP-CNT印刷电极抗干扰性能的DPV测试图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例
1)制备稳定的GNP-CNT纳米悬浮液,其组成包括水重量组成百分比:80;超分散剂DC-02:5;GNP:17.78;CNT:2.22。制备工艺:取配方量水加入DC-02搅拌溶解后,加入CNT,高速分散(1500r/min)12分钟;砂磨6小时;分三次加入GNP砂磨,每次间隔2小时,加完GNP后进一步研磨10小时。
2)制备GNP-CNT纳米涂料,上述GNP-CNT纳米悬浮液(固含量20%):84.11克;水性丙烯酸酯树脂(固含量35%):15.89克;流平剂:0.2克;润湿分散剂:0.15克。
3)GNP-CNT纳米涂料修饰印刷电极,在碳印刷电极的工作电极上(参比电极为银/氯化银电极,对电极为碳电极)采用点胶机涂膜,湿膜厚度为9-13μm厚度,80℃烘干后得到GNP-CNT印刷电极。
其中超分散剂DC-02(购买于扬州市维纳复合材料科技有限公司)的结构式为:
Figure BDA0003504061110000041
R为芳香基,主链具有疏水性,侧链具有亲水性;水性丙烯酸酯树脂的结构式为
Figure BDA0003504061110000042
具有亲水带负电特性,而DA带正电荷,有利于DA在电极表面进行静电吸附扩散。
如图1显示了本发明GNP-CNT分散液的TEM图像;从图中可以看出CNT呈现良好的分散状态并与GNP纳米片形成三维网络结构分布。图2则显示了本发明水性纳米GNP-CNT涂膜的SEM图像;说明了GNP与CNT形成了均匀分散的微纳形貌分布。
验证制得的GNP-CNT印刷电极对DA的电催化性能:
检测DA浓度范围在0.4μM~40μM,峰值电流随浓度的DPV图(图3),从图中可以看到峰值电流随浓度增大而增大。对其进行线性拟合得到图4,本发明制得的GNP-CNT印刷电极对DA具有很好的线性,检测限为3.14×10-7M,线性方程为IP(μA)=0.33744C(μM)+0.11425。
应用:
将40μL的人血清,滴在上述制备的GNP-CNT印刷电极的工作电极上,采用电化学工作站测试人血清111#与112#样的DA浓度。测试结果如图5所示,根据图4模拟的线性方程:111#与112#样的DA浓度分别为7.71μM与5.78μM。
干扰性测试:
如图6显示了本发明制备的GNP-CNT印刷电极测试10μM DA,10μM AA以及10μM UA的DPV图。说明DA的检测对抗坏血酸与尿酸具有优异的抗干扰性能。
对比试验:
作为对比,本案同时进行了直接采用碳印刷电极测试人血清111#与112#样的DA浓度,但在DPV图上没有任何信号;以及在不加水性丙烯酸酯的情况下制备GNP-CNT印刷电极,在此情况下制得的电极膜不稳定,检测可靠性不能满足临床应用的要求。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (4)

1.一种GNP-CNT印刷电极的制备方法,其特征在于,包括如下步骤:
1)将2~5份超分散剂DC-02加75~80份水搅拌溶解后,加入1.4~2.3份碳纳米管,以1500r/min的转速分散10-15分钟;砂磨6-7小时;分次加入16~18份石墨烯纳米片,加完后继续研磨10小时,得石墨烯/碳纳米管纳米悬浮液;
2)将82~85份的石墨烯/碳纳米管纳米悬浮液、15~18份的水性丙烯酸树脂、0.1~0.3份的流平剂和0.1~0.3份的润湿分散剂混合制得纳米涂料;
3)采用点胶机将所述纳米涂料涂布在碳印刷电极的工作电极上,湿膜厚度为9~13μm,烘干后得到石墨烯/碳纳米管纳米涂料修饰印刷电极,即GNP-CNT印刷电极。
2.如权利要求1所述的GNP-CNT印刷电极的制备方法,其特征在于,所述步骤3)的工作电极中参比电极为银/氯化银电极,对电极为碳电极。
3.一种如权利要求1或2所述的制备方法制得的GNP-CNT印刷电极。
4.一种如权利要求3所述的GNP-CNT印刷电极的应用,其特征在于,采用所述GNP-CNT印刷电极,通过电化学工作站测定多巴胺。
CN202210134187.9A 2022-02-14 2022-02-14 一种gnp-cnt印刷电极及其制备方法和应用 Pending CN114518393A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210134187.9A CN114518393A (zh) 2022-02-14 2022-02-14 一种gnp-cnt印刷电极及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210134187.9A CN114518393A (zh) 2022-02-14 2022-02-14 一种gnp-cnt印刷电极及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN114518393A true CN114518393A (zh) 2022-05-20

Family

ID=81597089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210134187.9A Pending CN114518393A (zh) 2022-02-14 2022-02-14 一种gnp-cnt印刷电极及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114518393A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108923A (zh) * 2010-07-12 2013-05-15 韩华石油化学株式会社 导电涂料组合物及使用其制备导电膜的方法
CN103308574A (zh) * 2013-05-21 2013-09-18 上海师范大学 一种碳纳米管-石墨烯复合膜修饰的电化学传感器及其制备方法和应用
CN103733271A (zh) * 2011-08-22 2014-04-16 拜耳知识产权有限责任公司 包含碳纳米管和石墨烯片材的分散体
CN109266081A (zh) * 2018-09-11 2019-01-25 东莞市鼎力薄膜科技有限公司 高效防静电液及其制备方法
CN112194818A (zh) * 2020-09-27 2021-01-08 东华大学 一种导电细菌纤维素复合膜为基底的铜/银基电极

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108923A (zh) * 2010-07-12 2013-05-15 韩华石油化学株式会社 导电涂料组合物及使用其制备导电膜的方法
CN103733271A (zh) * 2011-08-22 2014-04-16 拜耳知识产权有限责任公司 包含碳纳米管和石墨烯片材的分散体
CN103308574A (zh) * 2013-05-21 2013-09-18 上海师范大学 一种碳纳米管-石墨烯复合膜修饰的电化学传感器及其制备方法和应用
CN109266081A (zh) * 2018-09-11 2019-01-25 东莞市鼎力薄膜科技有限公司 高效防静电液及其制备方法
CN112194818A (zh) * 2020-09-27 2021-01-08 东华大学 一种导电细菌纤维素复合膜为基底的铜/银基电极

Similar Documents

Publication Publication Date Title
Sohouli et al. Electrochemical sensor based on modified methylcellulose by graphene oxide and Fe3O4 nanoparticles: Application in the analysis of uric acid content in urine
CN102426868B (zh) 水溶性石墨烯-贵金属纳米复合物及其制备方法和应用
Dalkiran et al. Amperometric xanthine biosensors based on chitosan-Co3O4-multiwall carbon nanotube modified glassy carbon electrode
Li et al. Electrochemical sensor based on dual-template molecularly imprinted polymer and nanoporous gold leaf modified electrode for simultaneous determination of dopamine and uric acid
Yang et al. Simultaneous voltammetric detection of dopamine and uric acid in the presence of high concentration of ascorbic acid using multi-walled carbon nanotubes with methylene blue composite film-modified electrode
Wang et al. Simultaneous determination of acetaminophen, theophylline and caffeine using a glassy carbon disk electrode modified with a composite consisting of poly (Alizarin Violet 3B), multiwalled carbon nanotubes and graphene
Zhang et al. Fabrication of poly (orthanilic acid)–multiwalled carbon nanotubes composite film-modified glassy carbon electrode and its use for the simultaneous determination of uric acid and dopamine in the presence of ascorbic acid
Goyal Determination of 8-Hydroxydeoxyguanosine: A potential biomarker of oxidative stress, using carbon-allotropic nanomaterials modified glassy carbon sensor
Li et al. A glassy carbon electrode modified with graphene and poly (acridine red) for sensing uric acid
Yu et al. Amperometric determination of nitrite by using a nanocomposite prepared from gold nanoparticles, reduced graphene oxide and multi-walled carbon nanotubes
Liu et al. Highly sensitive platinum nanoparticles-embedded porous graphene sensor for monitoring ROS from living cells upon oxidative stress
CN109613090B (zh) 海胆型普鲁士蓝-钯核壳结构负载氮掺杂石墨烯纳米复合材料及其制备得到的电极与应用
Tian et al. Amperometric detection of glucose based on immobilizing glucose oxidase on g-C3N4 nanosheets
Baghayeri et al. The role of pramipexole functionalized MWCNTs to the fabrication of Pd nanoparticles modified GCE for electrochemical detection of dopamine
Kumar et al. Preparation of electro-reduced graphene oxide supported walnut shape nickel nanostructures, and their application to selective detection of dopamine
Ran et al. Graphene oxide and electropolymerized p-aminobenzenesulfonic acid mixed film used as dopamine and serotonin electrochemical sensor
CN110297025A (zh) 一种纳米级Ni-Fe普鲁士蓝类似物材料及其制备方法与电化学检测邻硝基酚的应用
Beitollahi et al. Application of Fe3O4@ SiO2/GO nanocomposite for sensitive and selective electrochemical sensing of tryptophan
Huang et al. Graphene nanosheets/poly (3, 4-ethylenedioxythiophene) nanotubes composite materials for electrochemical biosensing applications
Lu et al. A 2D/2D NiCo-MOF/Ti 3 C 2 heterostructure for the simultaneous detection of acetaminophen, dopamine and uric acid by differential pulse voltammetry
Hwa et al. Development of biocompatible cellulose microfiber stabilized carbon nanofiber hydrogel for the efficient electrochemical determination of nicotinamide adenine dinucleotide in physiological fluids
CN113916959B (zh) 多孔道聚苯胺/石墨烯基复合微球负载的Pt-Au催化剂
Yasri et al. Azo dye functionalized graphene nanoplatelets for selective detection of bisphenol A and hydrogen peroxide
Pandey et al. Flexible Prussian blue/Carbon dots nanocomposite modified exfoliated graphite paper based sensor for simultaneous monitoring of hypertension and Parkinson disease
Kabaca et al. Ultra-sensitive electrochemical sensors for simultaneous determination of dopamine and serotonin based on titanium oxide-gold nanoparticles-poly Nile blue (in deep eutectic solvent)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination