CN114509921B - 一种光刻缺陷衍射光强差分检测方法 - Google Patents

一种光刻缺陷衍射光强差分检测方法 Download PDF

Info

Publication number
CN114509921B
CN114509921B CN202210039385.7A CN202210039385A CN114509921B CN 114509921 B CN114509921 B CN 114509921B CN 202210039385 A CN202210039385 A CN 202210039385A CN 114509921 B CN114509921 B CN 114509921B
Authority
CN
China
Prior art keywords
defect
diffraction
detected
field
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210039385.7A
Other languages
English (en)
Other versions
CN114509921A (zh
Inventor
谷洪刚
陈创创
刘世元
周玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202210039385.7A priority Critical patent/CN114509921B/zh
Publication of CN114509921A publication Critical patent/CN114509921A/zh
Application granted granted Critical
Publication of CN114509921B publication Critical patent/CN114509921B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本发明属于光刻缺陷检测相关技术领域,其公开了一种光刻缺陷衍射光强差分检测方法,包括以下步骤:(1)构造入射照明矩阵P(m,n,U0),扫描入射待测含缺陷光刻样品O(x,y),获得待测含缺陷样品的近场电场分布U(ξ,η);(2)获得待测含缺陷光刻样品的远场衍射光强分布I(x,y)矩阵;(3)求解远场衍射光强差分ΔI(x,y);(4)对得到的远场衍射光强差分ΔI(x,y)进行灵敏度响应分析,并基于得到的灵敏度响应分析结果进行缺陷位置求解;(5)重复步骤(1)‑步骤(4)直至整个待测光刻样品被完整扫描检测完毕,并输出所有检出的缺陷位置矩阵MXY。本发明解决了现有光刻缺陷检测技术检测范围受限及检测效率低的技术问题。

Description

一种光刻缺陷衍射光强差分检测方法
技术领域
本发明属于光学检测相关技术领域,更具体地,涉及一种光刻缺陷衍射光强差分检测方法。
背景技术
随着波长13.5nm的极紫外(Extreme Ultra-violet,EUV)光刻技术的量产应用,集成电路制造关键尺寸(CD)突破至7nm技术节点及以下,进一步逼近摩尔定律的极限。光刻掩模作为光刻工艺重要信息载体,其表面承载着芯片设计电路图形,经由光刻、刻蚀等工艺转移到硅片上。光刻掩模上的缺陷会经由光刻工艺批量复制到所有硅片中,而且光刻掩模的微小缺陷往往会导致硅片上更大范围的缺陷,进而大幅影响生产质量和良率。随着光刻工艺进入EUV光刻时代,采用反射式光刻曝光工艺,EUV光刻掩模结构复杂度及光刻图形复杂度要远高于传统透射式光刻掩模。加之硅片上的电路图形对应掩模等比缩小四倍,硅片上的集成电路CD特征尺寸已突破至10nm以下。
现有的EUV光刻缺陷检测通常是沿用传统光场显微透镜成像检测技术,检测灵敏度受限于光源波长和成像透镜的数值孔径(NA),其缺陷散射信号在CD趋近于7nm时已经完全丧失了灵敏度,导致检测范围受限及检测效率低。针对EUV光刻工艺的晶圆和掩模等光刻缺陷检测需求,传统广场显微镜成像技术已不再适用。近年以来,Lasertech公司的APMI(Actinic patterned mask defect inspection)基于EUV光源结合高倍率光场成像技术,是现有唯一具备EUV光刻掩模原波长缺陷检测的商用方案,但受限于EUV多层膜反射镜制造工艺复杂度,其数值孔径NA无法进一步提高,对于40nm以下的缺陷几乎丧失了灵敏度。扫描电子显微镜(SEM)具备较高的成像分辨率,是为数不多的重要检测方案,但受限于其检测工艺复杂度高,检测效率低,且对样品有损伤,应用场景仅限于离线抽检,无法满足光刻工艺在线快速、有效、无损检测需求。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种光刻缺陷衍射光强差分检测方法,其利用衍射光强差分算法对待测样品的衍射光强信息进行处理以实现待测样品高精度缺陷识别与定位,由此解决了现有光刻缺陷检测技术检测范围受限及检测效率低的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种光刻缺陷衍射光强差分检测方法,所述方法主要包括以下步骤:
(1)构造入射照明矩阵P(m,n,U0)以用于照明探针叠层,扫描入射待测含缺陷光刻样品O(x,y),获得待测含缺陷样品的近场电场分布U(ξ,η);
(2)通过菲涅尔远场衍射获得待测含缺陷光刻样品的远场衍射光强分布I(x,y)矩阵;
(3)基于含缺陷光刻样品远场衍射光强分布I(x,y)矩阵及无缺陷标准样品远场衍射光强分布I*(x,y)求解远场衍射光强差分ΔI(x,y);
(4)对得到的远场衍射光强差分ΔI(x,y)进行灵敏度响应分析,并基于得到的灵敏度响应分析结果进行缺陷位置求解;
(5)重复步骤(1)-步骤(4)直至整个待测光刻样品被完整扫描检测完毕,并输出所有检出的缺陷位置矩阵MXY
进一步地,步骤(1)之前包括确定检测工艺参数的步骤,检测工艺参数包括光源波长、入射照明探针光场分布及入射角。
进一步地,采用的探针的直径DP值为5μm,相邻照明探针交叠比例为50%~70%;光源波长λ=13.5nm。
进一步地,待测含缺陷样品的近场电场分布U(ξ,η)为:
U(ξ,η)=Γ{P(m,n,U0),O(x,y)}
Figure BDA0003469556020000031
其中,Lx、Ly为待测光刻样品尺寸,DP表示入射照明探针光斑直径,Overlap表示相邻探针重叠比例,m,n为照明探针扫描位置矩阵,Γ{P(m,n,U0),O(x,y)}表示入射照明在(m,n)位置处以相干波前U0入射到待测光刻样品O(x,y)后所求的出射电场分布函数。
进一步地,入射照明矩阵P(m,n,U0)为3维矩阵,m,n代表照明探针数量及位置分布坐标,即照明探针沿待测光刻样品x,y方向分别分布m行n列照明探针位置坐标,U0为每组照明探针光场分布矩阵。
进一步地,远场衍射光强分布I(x,y)矩阵为:
Figure BDA0003469556020000032
其中,含缺陷光刻样品远场衍射光强I(x,y)为近场电场分布矩阵U(ξ,η)菲涅尔衍射积分的电场平方;λ为照明波长;z为远场探测器与待测光刻样品之间距离。
进一步地,步骤(2)中,采用的衍射系统菲涅尔数NF小于0.1。
进一步地,远场衍射光强差分ΔI(x,y)的计算公式为:ΔI(x,y)=|I(x,y)-I*(x,y)|。
进一步地,通过截取邻近衍射差分响应下照明探针交叠区域照明探针中心坐标以对(xi,yi)衍射差分响应ΔI(i)uniform极值进行加权归一化,进而对缺陷精确位置(X,Y)进行近似求解,所采用的公式为:
Figure BDA0003469556020000033
Figure BDA0003469556020000041
其中,k为所检测缺陷位置临近区域重叠照明探针数量,max(ΔI(i)uniform)为k组衍射差分光强矩阵归一化后分别对其求极值,其范围在(0,1)之间。
进一步地,差分信号交叠区域L(x,y)的计算公式为:
Figure BDA0003469556020000042
其中,∩{∑m,nPsingal(m,n)}表示为衍射差分信号响应对应所有入射照明探针位置交集;∪{∑m,nPnoise(m,n)}表示为衍射差分丢失信噪比对应所有入射照明探针位置并集。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,本发明提供的光刻缺陷衍射光强差分检测方法主要具有以下有益效果:
1.本发明通过待测样品与无缺陷标准样品进行衍射差分快速求解,以实现待测样品高效率缺陷识别与定位。
2.本发明所提供的光刻缺陷衍射光强差分检测方法具备高精度、高效率、高正确率缺陷检测优势,能够实现半导体前道工艺光刻掩膜、晶圆等缺陷高精度、高效率、高正确率的检测。
附图说明
图1是本发明提供的一种光刻缺陷衍射光强差分检测方法的流程示意图;
图2中的201、202分别是示例性缺陷光刻结构标准图形和有缺陷图形;
图3中的301、302、303分别是示例性入射照明探针扫描轨迹及对应远场衍射光强谱;
图4中的401、402、403、404、405、406分别是零级光强滤波下衍射光强差分对比示意图;
图5是示例性缺陷位置求解示意图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:203-断线,204-切边,205-桥接,206-颗粒。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
请参阅图1及图2,本发明提供的一种光刻缺陷衍射光强差分检测方法,所述检测方法主要包括以下步骤:
步骤101,输入待测含缺陷光刻样品,确定检测工艺参数。其中,检测工艺参数包括光源波长、入射照明探针光场分布、入射角等。
本实施方式中,所述照明探针直径DP典型值为5μm,相邻照明探针交叠比例Overlap典型值为50%~70%;工艺参数包含光源波长λ=13.5nm、入射照明探针光场分布U0,远场探测器与待测光刻样品之间距离z=50mm。
含缺陷光刻样品缺陷形态及位置见表1:
表1
Figure BDA0003469556020000051
Figure BDA0003469556020000061
步骤102,构造入射照明矩阵P(m,n,U0),以用于照明探针叠层,扫描入射待测含缺陷光刻样品O(x,y),获得样品近场电场分布U(ξ,η),所述样品近场电场分布U(ξ,η)定义为:
U(ξ,η)=Γ{P(m,n,U0),O(x,y)}
Figure BDA0003469556020000062
其中,Lx、Ly为待测光刻样品尺寸,DP表示入射照明探针光斑直径,Overlap表示相邻探针重叠比例,m,n为照明探针扫描位置矩阵,Γ{P(m,n,U0),O(x,y)}表示入射照明在(m,n)位置处以相干波前U0入射到待测光刻样品O(x,y)后所求的出射电场分布函数。
本实施方式中,入射照明矩阵P(m,n,U0)为3维矩阵,m,n代表照明探针数量及位置分布坐标,即照明探针沿待测光刻样品x,y方向分别分布m行n列照明探针位置坐标,U0为每组照明探针光场分布矩阵。
Γ{P(m,n,U0),O(x,y)},对于3D光刻纳米结构,其采用标量衍射求解方式会引入较大近似误差,需采用基于麦克斯韦物质方程组的严格矢量衍射求解理论,求解出衍射样品近场电场分布矩阵U(ξ,η)。
图3中301示出了入射照明探针扫描轨迹,302示出了入射照明矩阵P(m,n,U0)叠层扫描入射待测含缺陷光刻样品O(x,y),Overlap典型值设定为0.5。
步骤103,通过菲涅尔远场衍射获得含缺陷光刻样品远场衍射光强分布I(x,y)矩阵,所述含缺陷光刻样品远场衍射光强分布I(x,y)定义为:
Figure BDA0003469556020000063
其中,含缺陷光刻样品远场衍射光强I(x,y)为近场电场分布矩阵U(ξ,η)菲涅尔衍射积分的电场平方,λ为照明波长,z为远场探测器与待测光刻样品之间距离。
光刻缺陷尺寸小于光刻图形尺寸,衍射光强高频信号中包含更多的缺陷衍射信号信息,这要求衍射系统需遵从远场夫琅禾费衍射模型,即衍射系统菲涅尔数NF典型值<0.1,其中所述菲涅尔数NF可表示为:
Figure BDA0003469556020000071
为了保证远场探测器的采样灵敏度带宽,一般会通过高通滤波器将远场衍射光强I(x,y)的零级衍射低频信息进行滤波以保留高频分量,提高缺陷位置处衍射光强高频分量的信噪比。
图3中303示出了对应302入射照明矩阵P(m,n,U0)叠层扫描入射待测含缺陷光刻样品O(x,y)后远场获得的衍射光强分布矩阵I(x,y)。
步骤104,求解远场衍射光强差分ΔI(x,y),其中无缺陷标准样品远场衍射光强分布I*(x,y)为已知输入条件,所述远场衍射光强差分ΔI(x,y)定义为:
ΔI(x,y)=|I(x,y)-I*(x,y)|。
其中105为提供无缺陷标准样品的步骤,106为求解得到无缺陷标准样品的远场衍射光强分布矩阵的步骤;无缺陷标准样品远场衍射光强分布I*(x,y)可通过两种方式获得:一是通过无缺陷样品设计版图输入至衍射光强计算模型求解得出;二是通过无缺陷样品进行衍射实验标定测量采样获得。其中,实测衍射光强I(x,y)引入了探测器噪声,探测器动态范围16bits,读出噪声6e服从高斯分布。
步骤107,对得到的远场衍射光强差分ΔI(x,y)进行灵敏度响应分析,以对缺陷进行判别分析。
其中,实测衍射光强I(x,y),为了保证远场探测器的采样灵敏度带宽,一般的会通过高通滤波器将远场衍射光强I(x,y)的零级衍射低频信息进行滤波以保留高频分量,提高缺陷位置处衍射光强高频分量的信噪比。
图4中401示出了含缺陷位置处衍射光强高通滤波后的信噪比分布,对比402示出的无高通滤波前的信噪比分布,反应缺陷信息的±1、2级次的衍射光强信噪比通过高通滤波后提升了3倍;403示出了含缺陷位置处经过高通滤波后的衍射差分信号,404示出了无高通滤波前的衍射差分信号,405、406分别为403和404图中水平白线上的信噪比分布曲线,反映缺陷信息的差分光强信噪比提升了3倍。
步骤108,基于得到的灵敏度响应分析结果进行缺陷位置求解。其中,通过截取邻近衍射差分响应下照明探针交叠区域照明探针中心坐标(xi,yi)加权归一化衍射差分响应ΔI(i)uniform极值,对缺陷精确位置(X,Y)进行近似求解。所采用的公式为:
Figure BDA0003469556020000081
Figure BDA0003469556020000082
其中,k为所检测缺陷位置临近区域重叠照明探针数量,max(ΔI(i)uniform)为k组衍射差分光强矩阵归一化后分别对其求极值,其范围在(0,1)之间。
其中,差分信号交叠区域L(x,y)定位可由如下公式定义:
Figure BDA0003469556020000083
其中,∩{∑m,nPsingal(m,n)}表示为衍射差分信号响应对应所有入射照明探针位置交集;∪{∑m,nPnoise(m,n)}表示为衍射差分丢失信噪比对应所有入射照明探针位置并集。
步骤109,重复自行步骤102-步骤108,直至整个待测光刻样品被完整扫描检测完毕,输出所有检出的缺陷位置矩阵MXY
图5中601示出了含缺陷光刻样品中通过本发明方法识别到的缺陷位置,601位置对应断线203,602位置对应切边204,603位置对应桥接205,604位置对应颗粒206。求解的缺陷精确位置(X,Y)坐标距离缺陷设计位置坐标偏离度可控制在百纳米范围内。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种光刻缺陷衍射光强差分检测方法,其特征在于,所述方法包括以下步骤:
(1)构造入射照明矩阵P(m,n,U0)以用于照明探针叠层,扫描入射待测含缺陷光刻样品O(x,y),获得待测含缺陷样品的近场电场分布U(ξ,η);
(2)通过菲涅尔远场衍射获得待测含缺陷光刻样品的远场衍射光强分布I(x,y)矩阵;
(3)基于含缺陷光刻样品远场衍射光强分布I(x,y)矩阵及无缺陷标准样品远场衍射光强分布I*(x,y)求解远场衍射光强差分ΔI(x,y);
(4)对得到的远场衍射光强差分ΔI(x,y)进行灵敏度响应分析,并基于得到的灵敏度响应分析结果进行缺陷位置求解;
(5)重复步骤(1)-步骤(4)直至整个待测光刻样品被完整扫描检测完毕,并输出所有检出的缺陷位置矩阵MXY
2.如权利要求1所述的光刻缺陷衍射光强差分检测方法,其特征在于:步骤(1)之前包括确定检测工艺参数的步骤,检测工艺参数包括光源波长、入射照明探针光场分布及入射角。
3.如权利要求2所述的光刻缺陷衍射光强差分检测方法,其特征在于:采用的探针的直径DP值为5μm,相邻照明探针交叠比例为50%~70%;光源波长λ=13.5nm。
4.如权利要求1所述的光刻缺陷衍射光强差分检测方法,其特征在于:待测含缺陷样品的近场电场分布U(ξ,η)为:
U(ξ,η)=T{P(m,n,U0),O(x,y)}
Figure FDA0003469556010000011
其中,Lx、Ly为待测光刻样品尺寸,DP表示入射照明探针光斑直径,Overlap表示相邻探针重叠比例,m,n为照明探针扫描位置矩阵,T{P(m,n,U0),O(x,y)}表示入射照明在(m,n)位置处以相干波前U0入射到待测光刻样品O(x,y)后所求的出射电场分布函数。
5.如权利要求1所述的光刻缺陷衍射光强差分检测方法,其特征在于:入射照明矩阵P(m,n,U0)为3维矩阵,m,n代表照明探针数量及位置分布坐标,即照明探针沿待测光刻样品x,y方向分别分布m行n列照明探针位置坐标,U0为每组照明探针光场分布矩阵。
6.如权利要求1所述的光刻缺陷衍射光强差分检测方法,其特征在于:远场衍射光强分布I(x,y)矩阵为:
Figure FDA0003469556010000021
其中,含缺陷光刻样品远场衍射光强I(x,y)为近场电场分布矩阵U(ξ,η)菲涅尔衍射积分的电场平方;λ为照明波长;z为远场探测器与待测光刻样品之间距离。
7.如权利要求1所述的光刻缺陷衍射光强差分检测方法,其特征在于:步骤(2)中,采用的衍射系统菲涅尔数NF小于0.1。
8.如权利要求1所述的光刻缺陷衍射光强差分检测方法,其特征在于:远场衍射光强差分ΔI(x,y)的计算公式为:ΔI(x,y)=|I(x,y)-I*(x,y)|。
9.如权利要求1所述的光刻缺陷衍射光强差分检测方法,其特征在于:通过截取邻近衍射差分响应下照明探针交叠区域照明探针中心坐标以对(xi,yi)衍射差分响应ΔI(i)uniform极值进行加权归一化,进而对缺陷精确位置(X,Y)进行近似求解,所采用的公式为:
Figure FDA0003469556010000031
Figure FDA0003469556010000032
其中,k为所检测缺陷位置临近区域重叠照明探针数量,max(ΔI(i)uniform)为k组衍射差分光强矩阵归一化后分别对其求极值,其范围在(0,1)之间。
10.如权利要求1所述的光刻缺陷衍射光强差分检测方法,其特征在于:差分信号交叠区域L(x,y)的计算公式为:
Figure FDA0003469556010000033
其中,∩{∑m,nPsingal(m,n)}表示为衍射差分信号响应对应所有入射照明探针位置交集;∪{∑m,nPnoise(m,n)}表示为衍射差分丢失信噪比对应所有入射照明探针位置并集。
CN202210039385.7A 2022-01-13 2022-01-13 一种光刻缺陷衍射光强差分检测方法 Active CN114509921B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210039385.7A CN114509921B (zh) 2022-01-13 2022-01-13 一种光刻缺陷衍射光强差分检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210039385.7A CN114509921B (zh) 2022-01-13 2022-01-13 一种光刻缺陷衍射光强差分检测方法

Publications (2)

Publication Number Publication Date
CN114509921A CN114509921A (zh) 2022-05-17
CN114509921B true CN114509921B (zh) 2023-06-16

Family

ID=81550697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210039385.7A Active CN114509921B (zh) 2022-01-13 2022-01-13 一种光刻缺陷衍射光强差分检测方法

Country Status (1)

Country Link
CN (1) CN114509921B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69224060D1 (de) * 1992-04-27 1998-02-19 Canon Kk Verfahren und Gerät zur Inspektion
CN101236359A (zh) * 2006-11-30 2008-08-06 Asml荷兰有限公司 检查方法和设备、光刻设备和光刻处理单元
CN101930183A (zh) * 2009-06-19 2010-12-29 Asml荷兰有限公司 光刻设备和器件制造方法
CN103345124A (zh) * 2013-06-27 2013-10-09 上海华力微电子有限公司 一种准确和定量的缺陷检测确认光刻工艺窗口的方法
CN109283796A (zh) * 2017-07-21 2019-01-29 中芯国际集成电路制造(上海)有限公司 一种光刻仿真系统
TW202125669A (zh) * 2019-11-18 2021-07-01 韓商格林資訊及通信有限公司 半導體微影製程中的晶圓缺陷檢測系統

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7704684B2 (en) * 2003-12-01 2010-04-27 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating three-dimensional nanoscale structures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69224060D1 (de) * 1992-04-27 1998-02-19 Canon Kk Verfahren und Gerät zur Inspektion
CN101236359A (zh) * 2006-11-30 2008-08-06 Asml荷兰有限公司 检查方法和设备、光刻设备和光刻处理单元
CN101930183A (zh) * 2009-06-19 2010-12-29 Asml荷兰有限公司 光刻设备和器件制造方法
CN103345124A (zh) * 2013-06-27 2013-10-09 上海华力微电子有限公司 一种准确和定量的缺陷检测确认光刻工艺窗口的方法
CN109283796A (zh) * 2017-07-21 2019-01-29 中芯国际集成电路制造(上海)有限公司 一种光刻仿真系统
TW202125669A (zh) * 2019-11-18 2021-07-01 韓商格林資訊及通信有限公司 半導體微影製程中的晶圓缺陷檢測系統

Also Published As

Publication number Publication date
CN114509921A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
US9594311B2 (en) Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
TWI797382B (zh) 在極端紫外光光罩上所檢測到之缺陷處理
CN111480179A (zh) 使用机器学习检验光罩
JP6025489B2 (ja) 検査装置および検査装置システム
US10634623B2 (en) Phase contrast monitoring for extreme ultra-violet (EUV) masks defect inspection
TWI660164B (zh) 檢測基板之方法、度量衡設備及微影系統
JP2006250845A (ja) パターン欠陥検査方法とその装置
US6023328A (en) Photomask inspection method and apparatus
US11703460B2 (en) Methods and systems for optical surface defect material characterization
EP3092657A1 (en) Extreme ultra-violet (euv) inspection systems
US7243331B2 (en) Method and system for controlling the quality of a reticle
CN114509921B (zh) 一种光刻缺陷衍射光强差分检测方法
JP4666982B2 (ja) 光学特性測定装置、露光装置及びデバイス製造方法
WO2012157181A1 (ja) パターン検査装置および検査方法
US7262850B2 (en) Method for inspection of periodic grating structures on lithography masks
US11727556B2 (en) Defect detection for multi-die masks
JP7306805B2 (ja) フォトリソグラフィマスクを検査する方法及び方法を実行するためのマスク計測装置
US20240231247A1 (en) Metrology method and apparatus
JP2004072114A (ja) 露光装置において照明源を特性付けるための方法
JP2023064098A (ja) 半導体試料製造のためのマスク検査
JP2002365786A (ja) マスクの欠陥検査方法
TW202312099A (zh) 用於半導體取樣製造的遮罩檢查
CN118225800A (zh) 一种基于远场衍射差分光强不对称的光刻缺陷检测方法
WO2022233546A1 (en) Method for determining a stochastic metric relating to a lithographic process
TW202407638A (zh) 半導體樣品製造的遮罩檢查

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant