CN114503558B - 插值滤波器在仿射运动补偿中的适应性使用 - Google Patents

插值滤波器在仿射运动补偿中的适应性使用 Download PDF

Info

Publication number
CN114503558B
CN114503558B CN202080068491.7A CN202080068491A CN114503558B CN 114503558 B CN114503558 B CN 114503558B CN 202080068491 A CN202080068491 A CN 202080068491A CN 114503558 B CN114503558 B CN 114503558B
Authority
CN
China
Prior art keywords
block
motion vector
affine
max
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080068491.7A
Other languages
English (en)
Other versions
CN114503558A (zh
Inventor
蒂莫菲·米哈伊洛维奇·索洛维耶夫
马克西姆·鲍里索维奇·西切夫
陈焕浜
亚历山大·亚历山德罗维奇·卡拉布托夫
罗曼·伊戈列维奇·切尔尼亚克
谢尔盖·尤里耶维奇·伊科宁
杨海涛
伊蕾娜·亚历山德罗夫娜·阿尔希娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN114503558A publication Critical patent/CN114503558A/zh
Application granted granted Critical
Publication of CN114503558B publication Critical patent/CN114503558B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/537Motion estimation other than block-based
    • H04N19/54Motion estimation other than block-based using feature points or meshes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/527Global motion vector estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/55Motion estimation with spatial constraints, e.g. at image or region borders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本发明提供了一种由解码/编码设备实现的译码方法,用于对视频数据进行译码。所述方法包括以下步骤:确定在仿射模式下译码的块的控制点运动矢量(control point motion vector,CPMV);根据所述确定的CPMV,确定参考图像中与所述仿射译码块中的子块对应的参考区域;如果所述参考区域的大小大于预定义阈值,则将变量clipMVX设置为真(TRUE),否则将变量clipMVX设置为假(FALSE);推导所述仿射译码块的基于像素的运动矢量场,其中,如果所述变量clipMVX为真,则所述推导基于像素的运动矢量场还包括根据第一限幅范围进行运动矢量限幅,其中,所述第一限幅范围是根据所述确定的CPMV和所述仿射译码块的大小确定的。

Description

插值滤波器在仿射运动补偿中的适应性使用
相关申请交叉引用
本专利申请要求于2019年9月30日提交的申请号为62/908,594的美国临时专利申请、于2019年10月7日提交的申请号为62/912,049的美国临时专利申请、于2019年10月29日提交的PCT/CN2019/114161、于2019年10月29日提交的申请号为62/927,671的美国临时专利申请以及于2020年1月7日提交的申请号为62/958,291的美国临时专利申请的优先权的权益。上述专利申请的全部内容通过引用结合在本申请中。
技术领域
本发明实施例大体上涉及图像处理领域,更具体地涉及帧间预测,例如插值滤波器在仿射运动补偿或子块运动补偿中的适应性使用。
背景技术
视频译码(视频编码和解码)广泛用于数字视频应用,例如广播数字电视、互联网和移动网络上的视频传输、视频聊天和视频会议等实时会话应用、DVD和蓝光光盘、视频内容采集和编辑系统以及可携式摄像机的安全应用。
即使视频相对较短,也需要大量的视频数据来描述,当数据要在带宽容量受限的通信网络中进行流式传输或以其它方式传输时,这样可能会造成困难。因此,视频数据通常要先压缩,然后通过现代电信网络进行传输。由于内存资源可能有限,当在存储设备上存储视频时,该视频的大小也可能是一个问题。视频压缩设备通常在源侧使用软件和/或硬件对视频数据进行编码,然后进行传输或存储,从而减少表示数字视频图像所需的数据量。然后,对视频数据进行解码的视频解压缩设备在目的地侧接收压缩数据。在网络资源有限以及对更高视频质量的需求不断增长的情况下,需要改进压缩和解压缩技术,这些改进的技术在几乎不影响图像质量的情况下能够提高压缩比。
发明内容
本申请实施例提供了独立权利要求所述的用于编码和解码的方法和装置。
上述和其它目的通过独立权利要求所保护的主题实现。其它实现方式在从属权利要求、说明书和附图中是显而易见的。
特定实施例在所附独立权利要求中概述,其它实施例在从属权利要求中概述。
根据第一方面,本发明提供了一种由解码/编码设备实现的译码方法,用于对视频数据进行译码。所述方法包括以下步骤:确定在仿射模式下译码的块的控制点运动矢量(control point motion vector,CPMV);根据所述确定的CPMV,确定参考图像中与所述仿射译码块(affine coded block)中的子块对应的参考区域;如果所述参考区域的大小大于预定义阈值,则将变量clipMVX设置为真(TRUE),否则将变量clipMVX设置为假(FALSE);推导所述仿射译码块的基于像素的运动矢量场,其中,如果所述变量clipMVX为真,则所述推导基于像素的运动矢量场还包括根据第一运动矢量范围进行运动矢量限幅,其中,所述第一运动矢量范围是根据所述确定的CPMV和所述仿射译码块的大小确定的。
所述参考区域是一个矩形区域,包括执行当前块的运动补偿所需的所有参考样本,如图9所示,具有宽度W'和高度H'。
所述方法的优点是,即使所述参考图像中的所述参考区域很大,内存带宽要求也可以得到满足。
根据所述第一方面的一种实现方式,所述第一运动矢量范围的确定方式包括:确定所述仿射译码块的中心点的运动矢量;根据所述仿射译码块的中心点的运动矢量和相应块大小的预定义偏移,确定第二运动矢量范围,其中,所述块大小包括所述仿射译码块的大小。这样很方便确定限幅范围,避免在执行垂直方向和水平方向上的不对称缩放的情况下进行不必要的限幅。在提出的条件检查中,MV缩放仅在内存带宽确实大于阈值的情况下进行,所述阈值被设置为基于最坏情况下的理想内存带宽的预定义值。
根据所述第一方面的另一种实现方式,所述确定所述仿射译码块的中心点的运动矢量是根据以下等式执行的:
mv_center[0]=(mvBaseScaled[0]+dX[0]*(cbWidth>>1)+dY[0]*(cbHeight>>1)),
mv_center[1]=(mvBaseScaled[1]+dX[1]*(cbWidth>>1)+dY[1]*(cbHeight>>1)),
其中,mvBaseScaled表示所述块的左上顶点的运动矢量,cbWidth和cbHeight分别表示所述块的宽度和高度,dX[0]和dX[1]表示水平方向上每一个样本的运动矢量的水平分量水平分量和垂直分量的各自差值,dY[0]和dY[1]表示垂直方向上每一个样本的运动矢量的水平分量水平分量和垂直分量的各自差值,mv_center[0]和mv_center[1]分别表示所述中心点的运动矢量的水平分量水平分量和垂直分量。
根据所述第一方面的另一种实现方式,所述根据所述仿射译码块的中心点的运动矢量和相应块大小的预定义偏移,确定第二运动矢量范围是根据以下等式执行的:
mv_hor_min=mv_center[0]–deviationMV[log2CbWidth–3],
mv_ver_min=mv_center[1]–deviationMV[log2CbHeight–3],
mv_hor_max=mv_center[0]+deviationMV[log2CbWidth–3],
mv_ver_max=mv_center[1]+deviationMV[log2CbHeight–3],
其中,deviationMV[]表示为相应块大小预定义的偏移的表,mv_hor_min、mv_ver_min、mv_hor_max和mv_ver_max表示所述第二运动矢量范围。这种根据所述块的中心点的运动矢量和所述预定义偏移计算MV范围几乎不会产生任何额外的复杂度,而且保证内存带宽会小于所述预定义阈值。但是,对于6参数仿射运动模块,如果在水平方向和垂直方向上使用非对称缩放因子,这种方法可能会导致进行不必要的运动矢量限幅。例如,如果所述块在垂直方向使用缩放因子X进行缩放以及在水平方向使用缩放因子1/X进行缩放,根据上述MV范围计算应用MV限幅会导致大部分变换块丢失,因为没有额外条件,只是根据边界框(bounding box)执行限幅。所述边界框是根据所述块的中心点的运动矢量和所述预定义偏移获得的,所述预定义偏移对应于所述块的宽度/高度。因此,预测质量变差。然而,在这个特定的示例中,所述块中的所述参考区域几乎与所述块本身的区域相同,因为(1/X)*X等于1,因此内存带宽接近1(这绝对不是问题所在),所以在这种情况下,不需要为了限制内存带宽而进行运动矢量限幅。在内存带宽小于所需内存带宽阈值的情况下不应用额外的运动矢量限幅,提高了视频译码效率,因为进行额外不必要的运动矢量限幅会导致运动场质量下降,进而导致预测和重建信号的质量下降。通过本发明中提供的方法,MV限幅仅在真正需要时才执行,这样做与无条件应用MV限幅相比,译码效率得到提高。
根据所述第一方面的另一种实现方式,所述为相应块大小预定义的偏移与{64,128,272,560,1136}成正比,其中,64对应于尺寸等于8的块大小,128对应于尺寸等于16的块大小,272对应于尺寸等于32的块大小,560对应于尺寸等于64的块大小,或者1136对应于尺寸等于128的块大小。这里,块大小可以指的是块宽度/高度。这个过程可以针对运动矢量的垂直分量和水平分量水平分量分别执行。如果所述块的宽度等于8,高度等于16等,则对于运动矢量的水平分量水平分量,偏移对应于8,对于运动矢量的垂直分量,偏移对应于16。因此,这同样适用于矩形块,而不仅仅适用于方形块。
根据所述第一方面的另一种实现方式,在所述第一运动矢量范围确定之后,所述第一运动矢量范围是根据子采样参数SubWidthC和SubHeightC进行缩放的:
–hor_min=hor_min/SubWidthC,
–hor_max=hor_max/SubWidthC,
–ver_min=ver_min/SubHeightC,
–ver_max=ver_max/SubHeightC,
其中,hor_min、ver_min、hor_max和ver_max表示所述缩放后的第一运动矢量范围。这里最重要的是,这种缩放是在推导所述第一运动矢量范围之后执行的。这样有助于避免在第一运动矢量范围确定模块内设置区分亮度情况和色度情况的额外逻辑。
根据所述第一方面的另一种实现方式,所述方法还包括以下步骤:根据所述推导出的运动矢量场,通过双线性插值获得所述参考图像中的插值后样本;将高通滤波器应用于所述插值后样本。因此,所述方法有利地适用于基于增强型插值滤波器(enhancedinterpolation filter,EIF)的仿射运动补偿。
执行基于像素的运动补偿会产生额外的计算工作量,因为在插值过程中可以重复使用的操作结果较少。这就是基于像素的运动补偿很少与基于8抽头DCT的滤波器等一起使用的原因,相比之下,基于8抽头DCT的滤波器广泛用于基于块的运动补偿。相比于将基于块的运动补偿与基于8抽头DCT的插值滤波器一起使用,将基于像素的运动补偿与双线性插值一起使用可以保持复杂度,在一些情况下甚至可以降低复杂度,但是短抽头滤波器会产生可见的模糊伪影,使得这种基于像素的运动补偿不实用。同时,在双线性插值之后添加具有固定系数的简单3抽头高通滤波器,可以在复杂度可管理的情况下显而易见地提高重建信号的主观质量。
根据所述第一方面的另一种实现方式,所述仿射译码块中的所述子块的大小为4×4。
根据所述第一方面的另一种实现方式,所述预定义阈值为72。
根据所述第一方面的另一种实现方式,如果仿射帧间预测包括双向预测,则所述设置变量clipMVX包括:
推导列表0的变量clipMV0(clipMVX,X=0);
推导列表1的变量clipMV1(clipMVX,X=1);
将所述变量clipMV推导为clipMV0|clipMV1,其中,“|”表示或(OR)。
根据第二方面,本发明提供了一种编码器。所述编码器包括处理电路,用于执行所述第一方面或其任一实现方式提供的方法。
根据第三方面,本发明提供了一种解码器。所述解码器包括处理电路,用于执行所述第一方面或其任一实现方式提供的方法。
根据第四方面,本发明提供了一种计算机程序产品。所述计算机程序产品包括指令,当计算机执行所述指令时,所述指令使得所述计算机执行所述第一方面或其任一实现方式提供的方法。
根据第五方面,本发明提供了一种解码器。所述解码器包括:一个或多个处理器;非瞬时性计算机可读存储介质,与所述一个或多个处理器耦合并存储由所述一个或多个处理器执行的指令,其中,所述一个或多个处理器执行所述指令时,所述指令配置所述解码器执行所述第一方面或其任一实现方式提供的方法。
根据第六方面,本发明提供了一种编码器。所述编码器包括:一个或多个处理器;非瞬时性计算机可读存储介质,与所述一个或多个处理器耦合并存储由所述一个或多个处理器执行的指令,其中,所述一个或多个处理器执行所述指令时,所述指令配置所述编码器执行所述第一方面或其任一实现方式提供的方法。
根据第七方面,本发明提供了一种非瞬时性计算机可读存储介质。所述非瞬时性计算机可读存储介质包括程序代码,当计算机设备执行所述程序代码时,所述程序代码使得所述计算机设备执行所述第一方面或其任一实现方式提供的方法。
根据第八方面,本发明提供了一种对视频序列进行译码的解码器或编码器。所述解码器或编码器包括:确定单元,用于确定在仿射模式下译码的仿射译码块(affine codedblock)的控制点运动矢量(control point motion vector,CPMV),并根据所述确定的CPMV,确定参考图像中与所述仿射译码块中的子块对应的参考区域;预测单元,用于:如果所述参考区域的大小大于预定义阈值,则将变量clipMVX设置为真(TRUE),否则将变量clipMVX设置为假(FALSE);推导所述仿射译码块的基于像素的运动矢量场,其中,如果所述变量clipMVX为真,则所述推导基于像素的运动矢量场还包括根据第一运动矢量范围进行运动矢量限幅,其中,所述第一运动矢量范围是根据所述确定的CPMV和所述仿射译码块的大小确定的。
所述第八方面或其任一以下实现方式提供的解码器或编码器的优点对应于所述第一方面或其实现方式提供的方法的各个优点。
根据所述第八方面的一种实现方式,所述第一运动矢量范围的确定方式包括:确定所述仿射译码块的中心点的运动矢量;根据所述仿射译码块的中心点的运动矢量和相应块大小的预定义偏移,确定第二运动矢量范围,其中,所述块大小包括所述仿射译码块的大小。
根据所述第八方面的另一种实现方式,所述确定所述仿射译码块的中心点的运动矢量是根据以下等式执行的:
mv_center[0]=(mvBaseScaled[0]+dX[0]*(cbWidth>>1)+dY[0]*(cbHeight>>1)),
mv_center[1]=(mvBaseScaled[1]+dX[1]*(cbWidth>>1)+dY[1]*(cbHeight>>1)),
其中,mvBaseScaled表示所述块的左上顶点的运动矢量,cbWidth和cbHeight分别表示所述块的宽度和高度,dX[0]和dX[1]表示水平方向上每一个样本的运动矢量的水平分量水平分量和垂直分量的各自差值,dY[0]和dY[1]表示垂直方向上每一个样本的运动矢量的水平分量水平分量和垂直分量的各自差值,mv_center[0]和mv_center[1]分别表示所述中心点的运动矢量的水平分量水平分量和垂直分量。
根据所述第八方面的另一种实现方式,所述根据所述仿射译码块的中心点的运动矢量和相应块大小的预定义偏移,确定第二运动矢量范围是根据以下等式执行的:
mv_hor_min=mv_center[0]–deviationMV[log2CbWidth–3],
mv_ver_min=mv_center[1]–deviationMV[log2CbHeight–3],
mv_hor_max=mv_center[0]+deviationMV[log2CbWidth–3],
mv_ver_max=mv_center[1]+deviationMV[log2CbHeight–3],
其中,deviationMV[]表示为相应块大小预定义的偏移的表,mv_hor_min、mv_ver_min、mv_hor_max和mv_ver_max表示所述第二运动矢量范围。
根据所述第八方面的另一种实现方式,所述为相应块大小预定义的偏移与{64,128,272,560,1136}成正比,其中,64对应于尺寸等于8的块大小,128对应于尺寸等于16的块大小,272对应于尺寸等于32的块大小,560对应于尺寸等于64的块大小,或者1136对应于尺寸等于128的块大小。这里的“成正比(proportional)”表示MV精度可以不同,但与表中的给定值成正比。例如,因子为2时,偏移可以限定为{128,272,560,1136,2272}。
根据所述第八方面的另一种实现方式,在所述第一运动矢量范围确定之后,所述第一运动矢量范围是根据子采样参数SubWidthC和SubHeightC进行缩放的:
–hor_min=hor_min/SubWidthC,
–hor_max=hor_max/SubWidthC,
–ver_min=ver_min/SubHeightC,
–ver_max=ver_max/SubHeightC,
其中,hor_min、ver_min、hor_max和ver_max表示所述缩放后的第一运动矢量范围。
根据所述第八方面的另一种实现方式,所述解码器或编码器还用于执行以下步骤:根据所述推导出的运动矢量场,通过双线性插值获得所述参考图像中的插值后样本;将高通滤波器应用于所述插值后样本。
根据所述第八方面的另一种实现方式,所述仿射译码块中的所述子块的大小为4×4。
根据所述第八方面的另一种实现方式,所述预定义阈值为72。
根据所述第八方面的另一种实现方式,如果仿射帧间预测包括双向预测,则所述设置变量clipMVX包括:
推导列表0的变量clipMV0;
推导列表1的变量clipMV1;
将所述变量clipMV推导为clipMV0|clipMV1,其中,“|”表示或(OR)。
根据一个示例,本发明涉及一种对视频的当前图像中的当前图像块进行帧间预测的方法。所述方法由解码/编码设备使用,所述方法包括:
根据仿射运动模型参数或根据仿射运动模型参数可以推导出所依据的信息,计算子块大小M×N;
如果子块宽度M或子块高度N小于或等于预定义值,则执行增强型双线性插值滤波器(enhanced bi-linear Interpolation Filter,EIF)运动补偿过程,其中,所述执行EIF运动补偿过程包括:
以P×Q(例如1×1)子块为基础,根据所述仿射运动模型参数推导图像块(例如仿射图像块)中的相应子块的运动矢量;
对所述子块的运动矢量进行限幅,使得所述限幅后的运动矢量在运动矢量范围(例如第二运动矢量范围)内。
根据另一个示例,本发明涉及一种对视频的当前图像中的当前图像块进行帧间预测的装置。所述装置包括:
第一模块,用于根据仿射运动模型参数或根据仿射运动模型参数可以推导出所依据的信息,计算子块大小M×N;
第二模块,用于如果子块宽度M或子块高度N小于或等于预定义值,则执行增强型双线性插值滤波器(enhanced bi-linear Interpolation Filter,EIF)运动补偿过程,其中,所述执行EIF运动补偿过程包括:以P×Q(例如1×1)子块为基础,根据所述仿射运动模型参数推导图像块(例如仿射图像块)中的相应子块的运动矢量;对所述子块的运动矢量进行限幅,使得所述限幅后的运动矢量在运动矢量范围(例如第二运动矢量范围)内。
所述示例提供的方法可以由所述另一个示例提供的装置执行。
以下附图和说明书详细阐述了一个或多个实施例。其它特征、目的和优点在说明书、附图以及权利要求书中是显而易见的。
附图说明
下面参考所附附图和示意图更详细地描述本发明实施例。
图1A为用于实现本发明实施例的视频译码系统的一个示例的框图。
图1B为用于实现本发明实施例的视频译码系统的另一个示例的框图。
图2为用于实现本发明实施例的视频编码器的一个示例的框图。
图3为用于实现本发明实施例的视频解码器的一种示例性结构的框图。
图4为编码装置或解码装置的一个示例的框图。
图5为编码装置或解码装置的另一个示例的框图。
图6为基于控制点的仿射运动模型(4参数和6参数)的图示示例。
图7为仿射子块运动矢量场的图示示例。
图8为仿射译码块(子块)和中间EIF块(子块)的顶点坐标的图示示例。
图9为变换块(子块)在参考图像和对应边界框中的位置的图示示例。
图10为实现内容分发业务的内容供应系统3100的一种示例性结构的框图。
图11为终端设备的一个示例的结构的框图。
图12为根据本发明所述第一方面所述的方法的框图。
图13为根据本发明所述第五和第六方面所述的编码器和解码器的框图。
图14为根据本发明所述第八方面所述的编码器和解码器的框图。
在下文,相同的附图标记表示相同特征或至少在功能上等效的特征,除非另有明确规定。
具体实施方式
以下描述中,参考形成本发明一部分并以说明的方式示出本发明实施例的具体方面或可以使用本发明实施例的具体方面的附图。可以理解,本发明实施例可以在其它方面中使用,并且可以包括附图中未描述的结构变化或逻辑变化。因此,以下详细描述不应以限制性的意义来理解,且本发明的范围由所附权利要求书界定。
例如,可以理解,与描述方法有关的公开内容可以对用于执行所述方法的对应设备或系统同样适用,反之亦然。例如,如果描述一个或多个具体方法步骤,则对应的设备可以包括一个或多个单元(例如功能单元)来执行所描述的一个或多个方法步骤(例如,一个单元执行一个或多个步骤,或多个单元分别执行多个步骤中的一个或多个步骤),即使附图中未明确描述或示出这样的一个或多个单元。另一方面,例如,如果根据一个或多个单元(例如,功能单元)来描述具体装置,则对应的方法可以包括一个步骤来实现一个或多个单元的功能(例如,一个步骤实现一个或多个单元的功能,或多个步骤分别实现多个单元中一个或多个单元的功能),即使附图中未明确描述或说明该一个或多个步骤。此外,可以理解,除非另外明确说明,本文中描述的各种示例性实施例和/或方面的特征可以相互组合。
视频译码(video coding)通常指对构成视频或视频序列的图像序列进行的处理。在视频译码领域中,术语“帧(frame)”与“图像(picture/image)”可以用作同义词。视频译码(或通常为译码)包括视频编码和视频解码两部分。视频编码在源侧执行,通常包括处理(例如通过压缩)原始视频图像,以减少表示视频图像所需的数据量(从而更高效存储和/或传输)。视频解码在目的地侧执行,通常包括相对于编码器作逆处理,以重建视频图像。实施例涉及的视频图像(或通常称为图像)的“译码(coding)”应当理解为视频图像或相应视频序列的“编码(encoding)”或“解码(decoding)”。编码部分和解码部分也合称为编解码(CODEC)(编码和解码)。
在无损视频译码情况下,可以重建原始视频图像,即重建视频图像与原始视频图像具有相同的质量(假设存储或传输期间没有传输损耗或其它数据丢失)。在有损视频译码情况下,通过量化等执行进一步压缩,以减少表示视频图像的数据量,而解码器侧无法完全重建视频图像,即重建视频图像的质量比原始视频图像的质量低或差。
几个视频编码标准属于“有损混合型视频编解码器”组(即,将样本域中的空间预测和时间预测与变换域中用于进行量化的2D变换译码相结合)。视频序列中的每个图像通常分割为不重叠的块集合,通常在块级处执行译码。换句话说,在编码器侧,通常在块(视频块)级处对视频进行处理(即编码),例如,通过空间(帧内)预测和/或时间(帧间)预测来生成预测块;从当前块(当前处理的/待处理的块)中减去预测块,得到残差块;在变换域中变换残差块并量化残差块,以减少待发送(压缩)的数据量,而在解码器侧,对经编码或压缩块进行相对于编码器的逆处理,以重建当前块进行表示。此外,编码器和解码器具有相同的处理步骤,使得编码器和解码器生成相同的预测块(例如帧内预测和帧间预测)和/或重建块,以对后续块进行处理,即译码。
在以下视频译码系统10的实施例中,视频编码器20和视频解码器30根据图1至图3进行描述。
图1A为示例译码系统10的示意框图,例如可以利用本申请技术的视频译码系统10(或简称为译码系统10)。视频译码系统10中的视频编码器20(或简称为编码器20)和视频解码器30(或简称为解码器30)为两个示例,可以为根据本申请中描述的各种示例来执行技术的设备。
如图1A所示,译码系统10包括源设备12,源设备12用于将经编码图像数据21提供给目的地设备14等,以对经编码图像数据21进行解码。
源设备12包括编码器20,并且可以另外(即可选地)包括图像源16、预处理器(或预处理单元)18(例如图像预处理器18)和通信接口或通信单元22。
图像源16可以包括或可以是任何类型的用于捕获真实世界图像等的图像捕获设备;和/或任何类型的图像生成设备(例如用于生成计算机动画图像的计算机图形处理器);或者任何类型的用于获取和/或提供真实世界图像、计算机动画图像(例如屏幕内容、虚拟现实(virtual reality,VR)图像)和/或其任何组合(例如增强现实(augmented reality,AR)图像)的设备。图像源可以为任何类型的存储任一上述图像的存储器(memory/storage)。
为了区分预处理器18和预处理单元18执行的处理,图像或图像数据17也可以称为原始图像或原始图像数据17。
预处理器18用于接收(原始)图像数据17并对图像数据17执行预处理,得到预处理图像19或预处理图像数据19。预处理器18执行的预处理可以包括修剪(trimming)、颜色格式转换(例如从RGB转换为YCbCr)、调色或去噪等。可以理解的是,预处理单元18可以为可选组件。
视频编码器20用于接收预处理图像数据19并提供经编码图像数据21(下面结合图2等描述更多细节)。
源设备12中的通信接口22可以用于接收经编码图像数据21,并通过通信信道13将经编码图像数据21(或对经编码图像数据21进一步处理后得到的数据)发送给另一设备(例如目的地设备14)或任何其它设备,以便进行存储或直接重建。
目的地设备14包括解码器30(例如视频解码器30),并且可以另外(即可选地)包括通信接口或通信单元28、后处理器32(或后处理单元32)和显示设备34。
目的地设备14中的通信接口28用于(例如)直接从源设备12或从存储设备(例如经编码图像数据存储设备)等任何其它源,接收经编码图像数据21(或对经编码图像数据21进一步处理后得到的数据),并将经编码图像数据21提供给解码器30。
通信接口22和通信接口28可以用于经由源设备12与目的地设备14之间的直接通信链路(例如直接有线或无线连接)或者经由任何类型的网络(例如有线网络、无线网络或其任何组合,或者任何类型的私网和公网或其任何类型的组合)发送或接收经编码图像数据21或经编码数据21。
例如,通信接口22可以用于将经编码图像数据21封装成合适的格式(例如数据包),和/或通过任何类型的传输编码或处理方式来处理经编码图像数据,以便通过通信链路或通信网络进行传输。
例如,与通信接口22对应的通信接口28可以用于接收传输数据,并通过任何类型的对应传输解码或处理和/或解封装方式来处理传输数据,得到经编码图像数据21。
通信接口22和通信接口28都可以配置为图1A中从源设备12指向目的地设备14的通信信道13的箭头所表示的单向通信接口,或者配置为双向通信接口,并且可以用于发送和接收消息等,以建立连接、确认并交换与通信链路和/或数据传输(例如经编码图像数据传输)相关的任何其它信息,等等。
解码器30用于接收经编码图像数据21并提供经解码图像数据31或经解码图像31(下面结合图3或图5等描述更多细节)。
目的地设备14中的后处理器32用于对经解码图像数据31(也称为重建图像数据)(例如经解码图像31)进行后处理,以获得后处理图像数据33(例如后处理图像33)。例如,后处理单元32执行的后处理可以包括颜色格式转换(例如从YCbCr转换为RGB)、调色、修剪(trimming)或重采样,或者任何其它处理,以便提供经解码图像数据31由显示设备34等显示,等等。
目的地设备14中的显示设备34用于接收后处理图像数据33,以便向用户或观看者等显示图像。显示设备34可以为或可以包括任何类型的用于表示重建图像的显示器(例如集成或外部显示器或显示屏)。例如,显示器可以包括液晶显示器(liquid crystaldisplay,LCD)、有机发光二极管(organic light emitting diode,OLED)显示器、等离子显示器、投影仪、微型LED显示器、硅基液晶(liquid crystal on silicon,LCoS)显示器、数字光处理器(digital light processor,DLP)或任何类型的其它显示器。
尽管图1A将源设备12和目的地设备14作为单独的设备进行描述,但是在实施例中,设备还可以同时包括两种设备或两种功能,即源设备12或对应功能以及目的地设备14或对应功能。在这些实施例中,源设备12或对应功能以及目的地设备14或对应功能可以使用相同的硬件和/或软件或通过单独的硬件和/或软件或其任意组合来实现。
根据描述,图1A所示的源设备12和/或目的地设备14中的不同单元或功能的存在和(精确)划分可以根据实际设备和应用而不同,这对技术人员来说是显而易见的。
编码器20(例如视频编码器20)或解码器30(例如视频解码器30)或者编码器20和解码器30两者可以通过图1B所示的处理电路来实现,例如一个或多个微处理器、一个或多个数字信号处理器(digital signal processor,DSP)、一个或多个专用集成电路(application-specific integrated circuit,ASIC)、一个或多个现场可编程门阵列(field-programmable gate array,FPGA)、一个或多个离散逻辑、一个或多个硬件、一个或多个视频译码专用处理器或其任意组合。编码器20可以由处理电路46实现,以包含参照图2中的编码器20论述的各种模块和/或本文描述的任何其它编码器系统或子系统。解码器30可以由处理电路46实现,以包含参照图3中的解码器30论述的各种模块和/或本文描述的任何其它解码器系统或子系统。处理电路可以用于执行下文描述的各种操作。如图5所示,如果上述技术部分在软件中实现,则一种设备可以将该软件的指令存储在合适的非瞬时性计算机可读存储介质中,并且可以使用一个或多个处理器在硬件中执行这些指令,以执行本发明中的技术。视频编码器20或视频解码器30可以作为组合编解码器(CODEC)的一部分集成在单个设备中,如图1B所示。
源设备12和目的地设备14可以包括多种设备中的任一种,包括任何类型的手持设备或固定设备,例如笔记本电脑或膝上型电脑、手机、智能手机、平板或平板电脑、相机、台式电脑、机顶盒、电视机、显示设备、数字媒体播放器、视频游戏机、视频流设备(例如内容业务服务器或内容分发服务器)、广播接收器设备、广播发射器设备等,并且可以不使用或使用任何类型的操作系统。在一些情况下,源设备12和目的地设备14可以用于无线通信。因此,源设备12和目的地设备14可以是无线通信设备。
在一些情况下,图1A所示的视频译码系统10仅仅是示例性的,本申请中的技术可以适用于不一定包括编码设备与解码设备之间的任何数据通信的视频译码设置(例如视频编码或视频解码)。在其它示例中,从本地存储器中检索数据,通过网络流式传输,等等。视频编码设备可以对数据进行编码并将数据存储到存储器中,和/或视频解码设备可以从存储器检索数据并对数据进行解码。在一些示例中,编码和解码由相互不通信而只是将数据编码到存储器和/或从存储器检索数据并对数据进行解码的设备来执行。
为便于描述,本文(例如)参考由ITU-T视频编码专家组(Video Coding ExpertsGroup,VCEG)和ISO/IEC运动图像专家组(Motion Picture Experts Group,MPEG)的视频编码联合协作团队(Joint Collaboration Team on Video Coding,JCT-VC)开发的高效视频编码(High-Efficiency Video Coding,HEVC)或下一代视频译码标准通用视频编码(Versatile Video Coding,VVC)参考软件来描述本发明实施例。本领域普通技术人员理解本发明实施例不限于HEVC或VVC。
编码器和编码方法
图2为用于实现本申请技术的示例性视频编码器20的示意性框图。在图2的示例中,视频编码器20包括输入端201(或输入接口201)、残差计算单元204、变换处理单元206、量化单元208、反量化单元210、逆变换处理单元212、重建单元214、环路滤波器单元220、解码图像缓冲区(decoded picture buffer,DPB)230、模式选择单元260、熵编码单元270和输出端272(或输出接口272)。模式选择单元260可以包括帧间预测单元244、帧内预测单元254和分割单元262。帧间预测单元244可以包括运动估计单元和运动补偿单元(未示出)。图2所示的视频编码器20也可以称为混合视频编码器或基于混合视频编解码器的视频编码器。
残差计算单元204、变换处理单元206、量化单元208和模式选择单元260可以组成编码器20的前向信号路径,而反量化单元210、逆变换处理单元212、重建单元214、缓冲区216、环路滤波器220、解码图像缓冲区(decoded picture buffer,DPB)230、帧间预测单元244和帧内预测单元254可以组成视频编码器20的后向信号路径,其中,视频编码器20的后向信号路径对应于解码器(参见图3中的视频解码器30)的信号路径。反量化单元210、逆变换处理单元212、重建单元214、环路滤波器220、解码图像缓冲区(decoded picturebuffer,DPB)230、帧间预测单元244和帧内预测单元254还组成视频编码器20的“内置解码器”。
图像和图像分割(图像和块)
编码器20可以用于通过输入端201等接收图像17(或图像数据17)。图像17可以是组成视频或视频序列的一系列图像中的图像。接收到的图像或图像数据也可以是预处理图像19(或预处理图像数据19)。为简单起见,以下描述使用图像17。图像17还可以称为当前图像或待译码图像(尤其是在视频译码中将当前图像与同一视频序列(也就是同样包括当前图像的视频序列)中的其它图像(例如先前经编码和/或解码图像)区分开)。
(数字)图像为或可以视为由具有强度值的样本(sample)组成的二维阵列或矩阵。阵列中的样本也可以称为像素(pixel/pel)(图像元素的简称)。阵列或图像的水平方向和垂直方向(或轴线)上的样本数量限定了图像的大小和/或分辨率。为了表示颜色,通常采用3个颜色分量,即图像可以表示为或可以包括3个样本阵列。在RGB格式或颜色空间中,一个图像包括对应的红色、绿色和蓝色样本阵列。但是,在视频译码中,每个像素通常以亮度和色度格式或颜色空间表示,例如YCbCr,包括Y表示的亮度分量(有时也用L表示)和Cb和Cr表示的2个色度分量。亮度(luminance,简写为luma)分量Y表示亮度或灰度级强度(例如在灰度等级图像中两者相同),而2个色度(chrominance,简写为chroma)分量Cb和Cr表示色度或颜色信息分量。因此,YCbCr格式的图像包括由亮度样本值(Y)组成的亮度样本阵列和2个由色度值(Cb和Cr)组成的色度样本阵列。RGB格式的图像可以转换或变换为YCbCr格式,反之亦然。该过程还称为颜色转换或颜色变换。如果图像是单色的,则该图像可以只包括亮度样本阵列。相应地,图像可以为例如黑白格式的亮度样本阵列或4:2:0、4:2:2和4:4:4彩色格式的亮度样本阵列和2个对应的色度样本阵列。
在实施例中,视频编码器20可以包括图像分割单元(图2中未示出),用于将图像17分割成多个(通常不重叠的)图像块203。这些块还可以称为根块、宏块(H.264/AVC),或编码树块(coding tree block,CTB)或编码树单元(coding tree unit,CTU)(H.265/HEVC和VVC)。图像分割单元可以用于对视频序列中的所有图像使用相同的块大小和使用限定块大小的对应网格,或者在图像或图像子集或图像组之间改变块大小,并将每个图像分割成多个对应块。
在其它实施例中,视频编码器可以用于直接接收图像17中的块203,例如组成图像17的一个、几个或所有块。图像块203还可以称为当前图像块或待译码图像块。
与图像17类似,图像块203同样是或可以视为具有强度值(样本值)的样本组成的二维阵列或矩阵,但是图像块203的尺寸比图像17的尺寸小。换句话说,根据所采用的颜色格式,块203可以包括(例如)1个样本阵列(例如黑白图像17情况下的亮度阵列或彩色图像情况下的亮度阵列或色度阵列)或3个样本阵列(例如彩色图像17情况下的1个亮度阵列和2个色度阵列)或任何其它数量和/或类型的阵列。块203的水平方向和垂直方向(或轴线)上的样本数量限定了块203的大小。相应地,一个块可以为M×N(M列×N行)的样本阵列,或M×N的变换系数阵列等。
在实施例中,图2所示的视频编码器20可以用于逐块对图像17进行编码,例如对每个块203执行编码和预测。
在实施例中,图2所示的视频编码器20还可以用于使用条带(slice)(也称为视频条带)对图像进行分割和/或编码。一个图像可以分割成一个或多个条带(通常不重叠)或使用一个或多个条带(通常不重叠)进行编码,每个条带可以包括一个或多个块(例如CTU)或一个或多个块组(例如分块(tile)(H.265/HEVC和VVC)或砖(brick)(VVC))。
在实施例中,图2所示的视频编码器20还可以用于使用条带/分块组(也称为视频分块组)和/或分块(也称为视频分块)对图像进行分割和/或编码。一个图像可以分割成一个或多个条带/分块组(通常不重叠)或使用一个或多个条带/分块组(通常不重叠)进行编码;每个条带/分块组可以包括一个或多个块(例如CTU)或一个或多个分块等;每个分块可以为矩形等,可以包括一个或多个完整或部分块(例如CTU)等。
残差计算
残差计算单元204可以用于通过以下方式根据图像块203和预测块265(后续详细介绍了预测块265)来计算残差块205(也称为残差205)以得到样本域中的残差块205:例如,逐个样本(逐个像素)从图像块203的样本值中减去预测块265的样本值。
变换
变换处理单元206可以用于对残差块205的样本值进行离散余弦变换(discretecosine transform,DCT)或离散正弦变换(discrete sine transform,DST)等变换,得到变换域中的变换系数207。变换系数207也可以称为变换残差系数,表示变换域中的残差块205。
变换处理单元206可以用于应用DCT/DST(例如为H.265/HEVC指定的变换)的整数近似值。与正交DCT变换相比,这些整数化近似值通常通过某一因子进行缩放(scale)。为了维持经过正变换和逆变换处理的残差块的范数,应用其它缩放因子作为变换过程的一部分。缩放因子通常是根据某些约束条件来选择的,例如,缩放因子是用于移位运算的2的幂、变换系数的位深度、精度与实现成本之间的权衡等。例如,通过逆变换处理单元212等为逆变换(以及在视频解码器30侧,通过逆变换处理单元312等为对应的逆变换)指定具体的缩放因子;相应地,可以在编码器20侧,通过变换处理单元206等为正变换指定对应的缩放因子。
在实施例中,视频编码器20(对应地,变换处理单元206)可以用于输出一种或多种变换的类型等变换参数,例如直接输出或由熵编码单元270进行编码或压缩后输出,使得(例如)视频解码器30可以接收并使用变换参数进行解码。
量化
量化单元208可以用于通过应用标量量化或矢量量化等对变换系数207进行量化,得到量化系数209。量化系数209还可以称为量化变换系数209或量化残差系数209。
量化过程可以减小与部分或全部变换系数207相关的位深度。例如,可以在量化期间将n位变换系数向下取整到m位变换系数,其中,n大于m。可以通过调整量化参数(quantization parameter,QP)修改量化程度。例如,对于标量量化,可以应用不同程度的缩放来实现较细或较粗的量化。较小量化步长对应较细的量化,而较大量化步长对应较粗的量化。可以通过量化参数(quantization parameter,QP)表示合适的量化步长。例如,量化参数可以为一组预定义适用适的量化步长的索引。例如,较小的量化参数可以对应于精细量化(较小量化步长),较大的量化参数可以对应于粗糙量化(较大量化步长),反之亦然。量化可以包括除以量化步长,而反量化单元210等执行的对应反量化或解量化可以包括乘以量化步长。根据HEVC等一些标准的实施例可以使用量化参数来确定量化步长。一般而言,可以根据量化参数使用包括除法的等式的定点近似值来计算量化步长。可以引入其它缩放因子来进行量化和解量化,以恢复可能由于在量化步长和量化参数的等式的定点近似值中使用的缩放因子而修改的残差块的范数。在一种示例性实现方式中,可以合并逆变换和解量化的缩放。或者,可以使用自定义量化表,自定义量化表由编码器通过码流等方式向解码器指示(signal)。量化是有损操作,量化步长越大,损耗越大。
在实施例中,视频编码器20(对应地,量化单元208)可以用于输出量化参数(quantization parameter,QP),例如直接输出或由熵编码单元270进行编码后输出,使得(例如)视频解码器30可以接收并使用量化参数进行解码。
反量化
反量化单元210用于对量化系数进行量化单元208的反量化,得到解量化系数211,例如根据或使用与量化单元208相同的量化步长,进行量化单元208所进行的量化方案的反量化方案。解量化系数211还可以称为解量化残差系数211,对应于变换系数207,但是由于量化造成损耗,解量化系数211通常与变换系数不相同。
逆变换
逆变换处理单元212用于应用变换处理单元206应用的变换的逆变换,例如逆离散余弦变换(discrete cosine transform,DCT)或逆离散正弦变换(discrete sinetransform,DST),得到样本域中的重建残差块213(或对应的解量化系数213)。重建残差块213还可称为变换块213。
重建
重建单元214(例如加法器或求和器214)用于通过以下方式将变换块213(即重建残差块213)添加到预测块265以得到样本域中的重建块215:例如,逐个样本将重建残差块213的样本值和预测块265的样本值相加。
滤波
环路滤波器单元220(或简称“环路滤波器”220)用于对重建块215进行滤波,获得经滤波的块221,或通常用于对重建样本进行滤波,得到经滤波的样本值。例如,环路滤波器单元用于顺利进行像素转变或以其它方式提高视频质量。环路滤波器单元220可以包括一个或多个环路滤波器,例如去块效应滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或一个或多个其它滤波器,例如自适应环路滤波器(adaptive loop filter,ALF)、噪声抑制滤波器(noise suppression filter,NSF)或其任意组合。在一个示例中,环路滤波器单元220可以包括去块效应滤波器、SAO滤波器和ALF。滤波过程的顺序可以是去块效应滤波器、SAO滤波器和ALF。在另一个示例中,增加了一种称为亮度映射与色度缩放(luma mapping with chroma scaling,LMCS)(即自适应环内信号重塑(adaptive in-loopreshaper))的过程。这个过程在去块效应滤波之前执行。在另一个示例中,去块效应滤波过程也可以应用于内部子块边缘,例如仿射子块边缘、ATMVP子块边缘、子块变换(sub-blocktransform,SBT)边缘和帧内子分割(intra sub-partition,ISP)边缘。虽然环路滤波器单元220在图2中示为环内滤波器,但是在其它配置中,环路滤波器单元220可以实现为后环路滤波器。经滤波的块221也可称为经滤波的重建块221。
在实施例中,视频编码器20(对应地,环路滤波器单元220)可以用于输出环路滤波器参数(例如SAO滤波器参数或ALF参数或LMCS参数),例如直接输出或由熵编码单元270进行编码后输出,使得(例如)解码器30可以接收并使用相同的环路滤波器参数或相应的环路滤波器进行解码。
解码图像缓冲区
解码图像缓冲区(decoded picture buffer,DPB)230可以是存储参考图像或通常存储参考图像数据以供视频编码器20在对视频数据进行编码时使用的存储器。DPB 230可以由多种存储器设备中的任一种形成,例如动态随机存取存储器(dynamic random accessmemory,DRAM),包括同步DRAM(synchronous DRAM,SDRAM)、磁阻RAM(magnetoresistiveRAM,MRAM)、电阻RAM(resistive RAM,RRAM)或其它类型的存储器设备。解码图像缓冲区(decoded picture buffer,DPB)230可以用于存储一个或多个经滤波的块221。解码图像缓冲区230还可以用于存储同一当前图像或不同图像(例如先前的重建图像)中的其它先前经滤波的块(例如先前经滤波的重建块221),并可以提供先前完整的重建(即经解码)图像(和对应的参考块和样本)和/或部分重建的当前图像(和对应的参考块和样本),以进行帧间预测等。如果重建块215未由环路滤波器单元220进行滤波,则解码图像缓冲区(decodedpicture buffer,DPB)230还可以用于存储一个或多个未经滤波的重建块215,或通常存储未经滤波的重建样本,或未进行任何其它处理的重建块或重建样本。
模式选择(分割和预测)
模式选择单元260包括分割单元262、帧间预测单元244和帧内预测单元254,并且用于从解码图像缓冲区230或其它缓冲区(例如行缓冲区,图中未示出)接收或获取原始块203(当前图像17中的当前块203)等原始图像数据以及重建图像数据(例如同一(当前)图像和/或一个或多个先前的经解码图像中的经滤波和/或未经滤波的重建样本或块)。重建图像数据用作帧间预测或帧内预测等预测所需的参考图像数据,得到预测块265或预测值265。
模式选择单元260可以用于为当前块预测模式(包括不分割)确定或选择一种分割方式以及确定或选择一种预测模式(例如帧内预测模式或帧间预测模式),生成对应的预测块265,以对残差块205进行计算和对重建块215进行重建。
在实施例中,模式选择单元260可以用于选择分割方式和预测模式(例如从模式选择单元260支持的或可用的预测模式中选择),该预测模式提供最佳匹配或者说最小残差(最小残差是指传输或存储中更好的压缩),或者提供最小信令开销(最小信令开销是指传输或存储中更好的压缩),或者同时考虑或平衡以上两者。模式选择单元260可以用于根据率失真优化(rate distortion optimization,RDO)确定分割方式和预测模式,即选择提供最小率失真的预测模式。本文中的“最佳”、“最小”、“最优”等术语不一定指总体上“最佳”、“最小”、“最优”等,也可以指终止标准或选择标准满足的情况,例如,某个值超过或低于阈值或其它约束条件,可能导致“次优选择”,但会降低复杂度且减少处理时间。
换句话说,分割单元262可以用于将视频序列的图像分割成一系列编码树单元(coding tree unit,CTU),CTU 203还可以被进一步分割成更小的分割部分或子块(再次形成块),例如,使用四叉树(quad-tree,QT)分割、二叉树(binary-tree,BT)分割或三叉树(triple-tree,TT)分割或其任何组合迭代地进行,并对每个块分割部分或子块进行预测等,其中,所述模式选择包括选择分割块203的树结构,以及将预测模式应用于每个块分割部分或子块。
下文将详细地描述由视频编码器20执行的分割(例如由分割单元260执行)和预测处理(由帧间预测单元244和帧内预测单元254执行)。
分割
分割单元262可以用于将视频序列中的一个图像分割为一系列编码树单元(coding tree unit,CTU),分割单元262可以将编码树单元(coding tree unit,CTU)203分割(或划分)成较小的分割部分,例如方形或矩形小块。对于具有3个样本阵列的一个图像,CTU由N×N的亮度样本块和2个对应的色差样本块组成。CTU中的亮度块的最大允许大小在正在开发的通用视频编码(versatile video coding,VVC)中指定为128×128,但是将来可以指定为不同于128×128的值,例如256×256。图像的CTU可以聚集/分组为条带(slice)/分块(tile)组、分块或砖(brick)。一个分块覆盖一个图像的矩形区域,一个分块可以分成一个或多个砖。一个砖由一个分块内的多个CTU行组成。没有分割成多个砖的分块可以称为砖。然而,砖是分块的真子集,不称为分块。VVC支持两种分块组模式,即光栅扫描条带/分块组模式和矩形条带模式。在光栅扫描分块组模式中,一个条带/分块组包括图像的分块光栅扫描下的一系列分块。在矩形条带模式中,一个条带包括图像的多个砖,这些砖共同组成该图像的矩形区域。矩形条带内的各个砖按照条带的砖光栅扫描顺序排列。可以将这些较小块(还可以称为子块)进一步分割成甚至更小的分割部分。这也称为树分割或分层树分割。在根树级别0(层次级别0、深度0)等的根块可以递归地分割成两个或更多下一个较低树级别的块,例如树级别1(层次级别1、深度1)的节点。这些块可以又分割成两个或更多下一个较低级别的块,例如树级别2(层次级别2、深度2)等,直到分割结束(因为结束标准满足,例如达到最大树深度或最小块大小)。未进一步分割的块也称为树的叶块或叶节点。分割成2个分割部分的树称为二叉树(binary-tree,BT),分割成3个分割部分的树称为三叉树(ternary-tree,TT),分割成4个分割部分的树称为四叉树(quad-tree,QT)。
例如,编码树单元(coding tree unit,CTU)可以为或可以包括具有3个样本阵列的图像中的亮度样本组成的1个CTB以及该图像中的色度样本组成的2个对应CTB,或者可以为或可以包括黑白图像或使用3个单独颜色平面和语法结构进行译码的图像中的样本组成的1个CTB。这些语法结构用于对上述样本进行译码。相应地,编码树块(coding treeblock,CTB)可以为N×N的样本块,其中,N可以设为某个值,从而一个分量划分为多个CTB,这就是一种分割方式。编码单元(coding unit,CU)可以为或可以包括具有3个样本阵列的图像中的亮度样本组成的1个编码块以及色度样本组成的2个对应编码块,或者黑白图像或使用3个单独颜色平面和语法结构进行译码的图像中的样本组成的1个编码块。这些语法结构用于对上述样本进行译码。相应地,编码块(coding block,CB)可以为一个M×N的样本块,其中,M和N可以设为某个值,使得一个CTB划分为多个编码块,这就是一种分割方式。
在实施例中,例如根据HEVC,可以通过表示为编码树的四叉树结构将编码树单元(coding tree unit,CTU)划分为多个CU。在叶CU级决定是使用帧间(时间)预测还是帧内(空间)预测对图像区域进行译码。每个叶CU可以根据PU划分类型进一步划分为1个、2个或4个PU。一个PU内应用相同的预测过程,并以PU为单位向解码器发送相关信息。在根据PU划分类型进行预测过程获取残差块之后,可以根据与用于叶CU的编码树类似的其它四叉树结构将该CU分割成变换单元(transform unit,TU)。
在实施例中,例如根据当前开发的称为通用视频编码(Versatile Video Coding,VVC)的最新视频编码标准,组合式四叉树嵌套多类型树(使用二叉树和三叉树)划分分段(segmentation)结构,例如用于分割编码树单元。在编码树单元内的编码树结构中,一个CU可以为方形或矩形。例如,编码树单元(coding tree unit,CTU)首先通过四叉树结构进行分割。然后,四叉树叶节点通过多类型树结构进一步分割。多类型树结构有4种划分类型:垂直二叉树划分(SPLIT_BT_VER)、水平二叉树划分(SPLIT_BT_HOR)、垂直三叉树划分(SPLIT_TT_VER)和水平三叉树划分(SPLIT_TT_HOR)。多类型树叶节点称为编码单元(coding unit,CU),除非CU的大小对于最大变换长度而言太大,这样的分段用于预测和变换处理,无需任何进一步分割。这表示,在大多数情况下,CU、PU和TU在四叉树嵌套多类型树的编码块结构中的块大小相同。当最大支持变换长度小于CU的彩色分量的宽度或高度时,就会出现该异常。VVC制定了具有四叉树嵌套多类型树的编码树结构中的分割划分信息的唯一指示机制。在指示机制中,编码树单元(coding tree unit,CTU)作为四叉树的根首先通过四叉树结构进行分割。然后,每个四叉树叶节点(当大到足以进行分割时)进一步通过多类型树结构进行分割。在多类型树结构中,指示第一标志(mtt_split_cu_flag)来表示节点是否进一步分割;当节点进一步分割时,先指示第二标志(mtt_split_cu_vertical_flag)来表示划分方向,再指示第三标志(mtt_split_cu_binary_flag)来表示划分是二叉树划分还是三叉树划分。根据mtt_split_cu_vertical_flag和mtt_split_cu_binary_flag的值,解码器可以基于预定义规则或表格推导出CU的多类型树划分模式(MttSplitMode)。需要说明的是,对于某种设计,例如VVC硬件解码器中的64×64亮度块和32×32色度流水线设计,当亮度编码块的宽度或高度大于64时,禁止进行TT划分,如图6所示。当色度编码块的宽度或高度大于32时,也禁止TT划分。流水线设计将图像分为多个虚拟流水线数据单元(virtual pipelinedata unit,VPDU),每个VPDU定义为图像中的不重叠单元。在硬件解码器中,通过多个流水线阶段同时处理连续的VPDU。在大多数流水线阶段中,VPDU大小与缓冲区大小大致成正比,因此需要保持较小的VPDU。在大多数硬件解码器中,VPDU大小可以设置为最大变换块(transform block,TB)大小。但是,在VVC中,三叉树(ternary tree,TT)和二叉树(binarytree,BT)分割可能会增加VPDU的大小。
另外,需要说明的是,当树节点块的一部分超出图像下边界或右边界时,强制对该树节点块进行划分,直到每个经译码CU的所有样本都位于图像边界内。
例如,帧内子分割(Intra Sub-Partition,ISP)工具可以根据块大小将亮度帧内预测块垂直或水平地分为2个或4个子分割部分。
在一个示例中,视频编码器20中的模式选择单元260可以用于执行本文描述的分割技术的任意组合。
如上所述,视频编码器20用于从(例如预定的)预测模式集合中确定或选择最好或最优的预测模式。预测模式集合可以包括帧内预测模式和/或帧间预测模式等。
帧内预测
帧内预测模式集合可以包括35种不同的帧内预测模式,例如像DC(或均值)模式和平面模式的非方向性模式或者如HEVC中定义的方向性模式,或者可以包括67种不同的帧内预测模式,例如像DC(或均值)模式和平面模式的非方向性模式或者如VVC中定义的方向性模式。例如,若干种传统角度帧内预测模式自适应地替换为VVC中定义的非方形块的广角帧内预测模式。再如,为了避免DC预测的除法运算,仅使用较长边来计算非方形块的平均值。而且,平面模式的帧内预测结果还可以使用位置相关帧内预测组合(position dependentintra prediction combination,PDPC)方法修改。
帧内预测单元254用于根据帧内预测模式集合中的帧内预测模式,使用同一当前图像中的相邻块的重建样本来生成帧内预测块265。
帧内预测单元254(或通常称为模式选择单元260)还用于将帧内预测参数(或通常称为表示块的选定帧内预测模式的信息)以语法元素266的形式输出到熵编码单元270,以包含在经编码图像数据21中,使得(例如)视频解码器30可以接收并使用预测参数进行解码。
帧间预测
(可能的)帧间预测模式的集合取决于可用参考图像(即(例如)上述存储在DPB230中的至少部分经解码图像)和其它帧间预测参数,例如取决于是否使用整个参考图像或只使用参考图像的一部分(例如当前块的区域周围的搜索窗口区域)来搜索最佳匹配参考块,和/或例如取决于是否进行像素插值,例如二分之一/半像素、四分之一像素和/或1/16像素插值。
除上述预测模式外,还可以使用跳过模式、直接模式和/或其它帧间预测模式,
例如,扩展融合预测,这种模式的融合候选列表由以下5种候选类型按顺序组成:空间相邻CU的空间MVP、并置CU的时间MVP、FIFO表中的基于历史的MVP、成对平均MVP和零MV,而且基于双边匹配的解码器侧运动矢量修正(decoder side motion vectorrefinement,DMVR)可以用来提高融合模式的MV的精度;带有MVD的融合模式(merge modewith MVD,MMVD),其源自带有运动矢量差值的融合模式,MMVD标志在发送跳过标志和融合标志之后立即进行指示,以表示CU是否使用MMVD模式,而且可以应用CU级自适应运动矢量精度(adaptive motion vector resolution,AMVR)方案,AMVR支持以不同的精度对CU的MVD进行译码,根据当前CU的预测模式,当前CU的MVD可以适应性地进行选择,当CU使用融合模式进行译码时,组合的帧间/帧内预测(combined inter/intra prediction,CIIP)模式可以应用于当前CU,帧间和帧内预测信号的加权平均被执行以得到CIIP预测信号;仿射运动补偿预测,块的仿射运动场通过2个控制点(4参数)或3个控制点(6参数)运动矢量的运动信息来描述,基于子块的时间运动矢量预测(subblock-based temporal motion vectorprediction,SbTMVP)与HEVC中的时间运动矢量预测(temporal motion vectorprediction,TMVP)类似,但预测的是当前CU内的子CU的运动矢量,双向光流(bi-directional optical flow,BDOF)以前称为BIO,是一种需要很少计算量(特别是乘法次数和乘数大小方面)的简化版本;三角分割模式,在这种模式中,CU使用对角线划分或反对角线划分被均匀划分成2个三角形分割部分,此外,双向预测模式在简单平均的基础上进行了扩展,以支持2个预测信号的加权平均。
帧间预测单元244可以包括运动估计(motion estimation,ME)单元和运动补偿(motion compensation,MC)单元(两者在图2中未示出)。运动估计单元可以用于接收或获取图像块203(当前图像17中的当前图像块203)和经解码图像231,或者至少一个或多个先前的重建块(例如一个或多个其它/不同的先前经解码图像231的重建块),以进行运动估计。例如,视频序列可以包括当前图像和先前的经解码图像231,或换句话说,当前图像和先前的经解码图像231可以为一系列图像的一部分或组成一系列图像,这一系列图像组成视频序列。
例如,编码器20可以用于从多个其它图像中的同一或不同图像的多个参考块中选择参考块,并将参考图像(或参考图像索引)和/或参考块的位置(x坐标、y坐标)与当前块的位置之间的偏移(空间偏移)作为帧间预测参数提供给运动估计单元。这种偏移也称为运动矢量(motion vector,MV)。
运动补偿单元用于获取(例如接收)帧间预测参数,并根据或使用帧间预测参数执行帧间预测,得到帧间预测块265。由运动补偿单元执行的运动补偿可以包括根据通过运动估计确定的运动/块矢量来提取或生成预测块,还可以包括执行插值以获得子像素精度。插值滤波可以根据已知像素样本生成其它像素样本,从而有可能增加可以用于对图像块进行译码的候选预测块的数量。一旦接收到当前图像块的PU对应的运动矢量,运动补偿单元可以在其中一个参考图像列表中定位运动矢量指向的预测块。
运动补偿单元还可以生成与块和视频条带(slice)相关的语法元素,以供视频解码器30在解码视频条带中的图像块时使用。除条带和相应的语法元素之外或作为条带和相应的语法元素的替代,还可以生成或使用分块组(tile group)和/或分块以及相应的语法元素。
熵编码
熵编码单元270用于将熵编码算法或方案(例如可变长度编码(variable lengthcoding,VLC)方案、上下文自适应VLC(context adaptive VLC,CAVLC)方案、算术编码方案、二值化、上下文自适应二进制算术编码(context adaptive binary arithmetic coding,CABAC)、基于语法的上下文自适应二进制算术编码(syntax-based context-adaptivebinary arithmetic coding,SBAC)、概率区间分割熵(probability intervalpartitioning entropy,PIPE)编码或其它熵编码方法或技术)等应用于或不应用于(无压缩)量化系数209、帧间预测参数、帧内预测参数、环路滤波器参数和/或其它语法元素,得到可以通过输出端272以经编码码流21等形式输出的经编码图像数据21,使得(例如)视频解码器30可以接收并使用这些参数进行解码。可以将经编码码流21发送给视频解码器30,或者将其存储在存储器中以稍后由视频解码器30发送或检索。
视频编码器20的其它结构变型可以用于对视频流进行编码例如,基于非变换的编码器20可以在没有变换处理单元206的情况下针对某些块或帧直接量化残差信号。在另一种实现方式中,编码器20可以包括组合成单个单元的量化单元208和反量化单元210。
解码器和解码方法
图3示出了用于实现本申请中技术的视频解码器30的一个示例。视频解码器30用于接收(例如)由编码器20编码的经编码图像数据21(例如经编码码流21),得到经解码图像331。经编码图像数据或码流包括用于对该经编码图像数据进行解码的信息,例如表示经编码的视频条带(和/或分块组或分块)的图像块的数据以及相关语法元素。
在图3的示例中,解码器30包括熵解码单元304、反量化单元310、逆变换处理单元312、重建单元314(例如求和器314)、环路滤波器320、解码图像缓冲区(decoded picturebuffer,DPB)330、模式应用单元360、帧间预测单元344和帧内预测单元354。帧间预测单元344可以为或包括运动补偿单元。在一些示例中,视频解码器30可以执行大体上与参照图2的视频编码器100描述的编码回合互逆的解码回合。
如参照编码器20所述,反量化单元210、逆变换处理单元212、重建单元214、环路滤波器220、解码图像缓冲区(decoded picture buffer,DPB)230、帧间预测单元344和帧内预测单元354还组成视频编码器20的“内置解码器”。相应地,反量化单元310在功能上可以与反量化单元110相同,逆变换处理单元312在功能上可以与逆变换处理单元212相同,重建单元314在功能上可以与重建单元214相同,环路滤波器320在功能上可以与环路滤波器220相同,解码图像缓冲区330在功能上可以与解码图像缓冲区230相同。因此,视频编码器20的各个单元和功能的解释相应地适用于视频解码器30的各个单元和功能。
熵解码
熵解码单元304用于解析码流21(或通常称为经编码的图像数据21)并对经编码的图像数据21执行熵解码等,得到量化系数309和/或经解码的编码参数(图3中未示出)等,例如帧间预测参数(例如参考图像索引和运动矢量)、帧内预测参数(例如帧内预测模式或索引)、变换参数、量化参数、环路滤波器参数和/或其它语法元素中的任一个或全部。熵解码单元304可以用于应用与参照编码器20中的熵编码单元270描述的编码方案对应的解码算法或方案。熵解码单元304还可以用于将帧间预测参数、帧内预测参数和/或其它语法元素提供给模式应用单元360,以及将其它参数提供给解码器30中的其它单元。视频解码器30可以接收视频条带级和/或视频块级的语法元素。除条带和相应的语法元素之外或作为条带和相应的语法元素的替代,还可以接收和/或使用分块组和/或分块以及相应语法元素。
反量化
反量化单元310可以用于从经编码的图像数据21(例如通过熵解码单元304等解析和/或解码)接收量化参数(quantization parameters,QP)(或通常称为与反量化相关的信息)和量化系数,并根据这些量化参数对解码量化系数309进行反量化,得到解量化系数311。解量化系数311也可以称为变换系数311。反量化过程可以包括使用视频编码器20为视频条带(或分块或分块组)中的每个视频块确定的量化参数来确定量化程度,同样也确定需要进行的反量化的程度。
逆变换
逆变换处理单元312可以用于接收解量化系数311(也称为变换系数311),并对解量化系数311进行变换,得到样本域中的重建残差块213。重建残差块213也可以称为变换块313。变换可以为逆变换,例如逆DCT、逆DST、逆整数变换或概念上类似的逆变换过程。逆变换处理单元312还可以用于(例如通过熵解码单元304等解析和/或解码)从经编码的图像数据21接收变换参数或对应的信息,以确定要对解量化系数311进行的变换。
重建
重建单元314(例如加法器或求和器314)可以用于通过以下方式将重建残差块313添加到预测块365以得到样本域中的重建块315:例如,将重建残差块313的样本值和预测块365的样本值相加。
滤波
环路滤波器单元320(在译码环路中或之后)用于对重建块315进行滤波,得到经滤波的块321,从而顺利进行像素转变或以其它方式提高视频质量,等等。环路滤波器单元320可以包括一个或多个环路滤波器,例如去块效应滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或一个或多个其它滤波器,例如自适应环路滤波器(adaptive loop filter,ALF)、噪声抑制滤波器(noise suppression filter,NSF)或其任意组合。在一个示例中,环路滤波器单元220可以包括去块效应滤波器、SAO滤波器和ALF。滤波过程的顺序可以是去块效应滤波器、SAO滤波器和ALF。在另一个示例中,增加了一种称为亮度映射与色度缩放(luma mapping with chroma scaling,LMCS)(即自适应环内信号重塑(adaptive in-loop reshaper))的过程。这个过程在去块效应滤波之前执行。在另一个示例中,去块效应滤波过程也可以应用于内部子块边缘,例如仿射子块边缘、ATMVP子块边缘、子块变换(sub-block transform,SBT)边缘和帧内子分割(intra sub-partition,ISP)边缘。虽然环路滤波器单元320在图3中示为环内滤波器,但是在其它构造中,环路滤波器单元320可以实现为后环路滤波器。
解码图像缓冲区
然后,将图像中的经解码的视频块321存储在解码图像缓冲区330中,解码图像缓冲区330存储经解码图像331作为参考图像,以便用于其它图像的后续运动补偿和/或用于输出或显示。
解码器30用于通过输出端312等输出经解码图像311,向用户显示或供用户观看。
预测
帧间预测单元344在功能上可以与帧间预测单元244(特别是与运动补偿单元)相同,帧内预测单元354在功能上可以与帧内预测单元254相同,并根据从经编码的图像数据21(例如通过熵解码单元304等解析和/或解码)接收的分割和/或预测参数或相应的信息来执行划分或分割决策和执行预测。模式应用单元360可以用于根据重建图像、块或相应的样本(经滤波或未经滤波)对每个块执行预测(帧内预测或帧间预测),得到预测块365。
当视频条带译码为经帧内译码(I)条带时,模式应用单元360中的帧内预测单元354用于根据指示(signal)的帧内预测模式和来自当前图像的先前经解码块的数据为当前视频条带中的图像块生成预测块365。当将视频图像译码为帧间译码(即,B或P)条带时,模式应用单元360中的帧间预测单元344(例如运动补偿单元)用于根据运动矢量和从熵解码单元304接收的其它语法元素为当前视频条带中的视频块生成预测块365。对于帧间预测,可以根据其中一个参考图像列表内的其中一个参考图像生成这些预测块。视频解码器30可以根据存储在DPB 330中的参考图像,使用默认构建技术来构建参考帧列表0和列表1。除条带(例如视频条带)之外或作为条带的替代,相同或类似的过程可以应用于使用分块组(例如视频分块组)和/或分块(例如视频分块)的实施例或由这些实施例应用,例如,视频可以使用I、P或B分块组和/或分块进行译码。
模式应用单元360用于通过解析运动矢量或相关信息以及其它语法元素,确定当前视频条带中的视频块的预测信息,并使用该预测信息为正在解码的当前视频块生成预测块。例如,模式应用单元360使用接收到的一些语法元素来确定用于对视频条带中的视频块进行译码的预测模式(例如帧内预测或帧间预测)、帧间预测条带类型(例如B条带、P条带或GPB条带)、用于条带的一个或多个参考图像列表的构建信息、用于条带中的每个经帧间编码视频块的运动矢量、用于条带中的每个经帧间译码视频块的帧间预测状态以及其它信息,以对当前视频条带中的视频块进行解码。除条带(例如视频条带)之外或作为条带的替代,相同或类似的过程可以应用于使用分块组(例如视频分块组)和/或分块(例如视频分块)的实施例或由这些实施例应用,例如,视频可以使用I、P或B分块组和/或分块进行译码。
在实施例中,图3所示的视频解码器30可以用于使用条带(也称为视频条带)对图像进行分割和/或解码。一个图像可以分割成一个或多个条带(通常不重叠)或使用一个或多个条带(通常不重叠)进行解码,每个条带可以包括一个或多个块(例如CTU)、一个或多个块组(例如分块(H.265/HEVC和VVC)或砖(VVC))。
在实施例中,图3所示的视频解码器30可以用于使用条带/分块组(也称为视频分块组)和/或分块(也称为视频分块)对图像进行分割和/或解码。一个图像可以分割成一个或多个条带/分块组(通常不重叠)或使用一个或多个分块组(通常不重叠)进行解码;每个条带/分块组可以包括一个或多个块(例如CTU)或一个或多个分块等;每个分块可以为矩形等,可以包括一个或多个完整或部分块(例如CTU)等。
视频解码器30的其它变型可以用于对经编码的图像数据21进行解码。例如,解码器30可以在没有环路滤波器单元320的情况下生成输出视频流。例如,基于非变换的解码器30可以在没有逆变换处理单元312的情况下针对某些块或帧直接反量化残差信号。在另一种实现方式中,视频解码器30可以包括组合成单个单元的反量化单元310和逆变换处理单元312。
应当理解的是,在编码器20和解码器30中,可以对当前步骤的处理结果进一步处理,然后输出到下一步骤。例如,在插值滤波、运动矢量推导或环路滤波之后,可以对插值滤波、运动矢量推导或环路滤波的处理结果进行进一步的运算,例如限幅(clip)或移位(shift)运算。
需要说明的是,可以对当前块的推导运动矢量(包括但不限于仿射模式的控制点运动矢量,仿射模式、平面模式、ATMVP模式的子块运动矢量,时间运动矢量等)进行进一步运算。例如,根据运动矢量的表示位将运动矢量的值限制在预定义范围内。如果运动矢量的表示位为bitDepth,则范围为–2^(bitDepth–1)至2^(bitDepth–1)–1,其中“^”表示幂次方。例如,如果bitDepth设置为16,则范围为–32768~32767;如果bitDepth设置为18,则范围为–131072~131071。例如,对推导出的运动矢量(例如一个8×8块中的4个4×4子块的MV)的值进行限制,使得这4个4×4子块MV的整数部分之间的最大差值不超过N个像素,例如不超过1个像素。这里提供了两种根据bitDepth来限制运动矢量的方法。
图4为本发明一个实施例提供的视频译码设备400的示意图。视频译码设备400适用于实现本文描述的公开实施例。在一个实施例中,视频译码设备400可以是解码器(例如图1A中的视频解码器30)或编码器(例如图1A中的视频编码器20)。
视频编码设备400包括:用于接收数据的入端口410(或输入端口410)和接收单元(Rx)420;用于处理数据的处理器、逻辑单元或中央处理单元(central processing unit,CPU)430;用于发送数据的发送单元(Tx)440和出端口450(或输出端口450);用于存储数据的存储器460。视频译码设备400还可以包括与入端口410、接收单元420、发送单元440和出端口450耦合的光电(optical-to-electrical,OE)组件和电光(electrical-to-optical,EO)组件,用于光信号或电信号的出入。
处理器430通过硬件和软件来实现。处理器430可以实现为一个或多个CPU芯片、一个或多个核(例如多核处理器)、一个或多个FPGA、一个或多个ASIC和一个或多个DSP。处理器430与入端口410、接收单元420、发送单元440、出端口450和存储器460通信。处理器430包括译码模块470。译码模块470实现上文描述的公开实施例。例如,译码模块470执行、处理、准备或提供各种译码操作。因此,将译码模块470包含在内为视频译码设备400的功能提供了实质性的改进,并且影响了视频译码设备400不同状态的转换。或者,以存储在存储器460中并由处理器430执行的指令来实现译码模块470。
存储器460可以包括一个或多个磁盘、一个或多个磁带机以及一个或多个固态硬盘,并且可以用作溢出数据存储设备,以在选择程序来执行时存储这些程序以及存储在执行程序过程中读取的指令和数据。例如,存储器460可以是易失性和/或非易失性的,并且可以是只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、三态内容寻址存储器(ternary content-addressable memory,TCAM)和/或静态随机存取存储器(static random-access memory,SRAM)。
图5为一个示例性实施例提供的装置500的简化框图。装置500可以用作图1A的源设备12和目的地设备14中的任一个或两个。
装置500中的处理器502可以是中央处理单元。或者,处理器502可以是现有的或今后将研发出的能够操控或处理信息的任何其它类型的设备或多个设备。虽然可以使用如图所示的处理器502等单个处理器来实现所公开的实现方式,但使用一个以上处理器可以提高速度和效率。
在一种实现方式中,装置500中的存储器504可以是只读存储器(read onlymemory,ROM)设备或随机存取存储器(random access memory,RAM)设备。任何其它合适类型的存储设备都可以用作存储器504。存储器504可以包括处理器502通过总线512访问的代码和数据506。存储器504还可包括操作系统508和应用程序510,应用程序510包括至少一个程序,这个程序使得处理器502执行本文所述方法。例如,应用程序510可以包括应用1至N,还可以包括执行本文所述方法的视频译码应用。
装置500还可以包括一个或多个输出设备,例如显示器518。在一个示例中,显示器518可以是将显示器与触敏元件组合的触敏显示器,该触敏元件能够用于感测触摸输入。显示器518可以通过总线512与处理器502耦合。
虽然装置500中的总线512在本文中描述为单个总线,但是总线512可以包括多个总线。此外,辅助存储器514可以直接与装置500的其它组件耦合或可以通过网络访问,并且可以包括单个集成单元(例如一个存储卡)或多个单元(例如多个存储卡)。因此,装置500可以通过各种各样的配置实现。
仿射运动补偿预测
在ITU-T H.265中,只有平动运动模型应用于运动补偿预测(motioncompensation prediction,MCP)。但在现实世界中,存在许多种运动,例如放大/缩小(zoomin/out)、旋转(rotation)、透视运动(perspective motion)、平动运动和其它不规律运动。在VTM6中,应用了基于块的仿射变换运动补偿预测。如图6所示,块的仿射运动场是由2个(4参数)或3个(6参数)控制点运动矢量(control point motion vector,CPMV)的运动信息来描述的。
用于计算样本位置(x,y)上的运动矢量的通用等式为:
对于4参数仿射运动模型,样本位置(x,y)上的运动矢量被推导为:
对于6参数仿射运动模型,样本位置(x,y)上的运动矢量被推导为:
其中,(mv0x,mv0y)表示左上顶点控制点的运动矢量,(mv1x,mv1y)表示右上顶点控制点的运动矢量,(mv2x,mv2y)表示左下顶点控制点的运动矢量。
在使用6参数仿射运动模型的情况下,
在使用4参数仿射运动模型的情况下,
dVerX=-dHorY (1-10)
dVerY=dHorX (1-11)
与平动运动帧间预测一样,同样存在两种仿射运动帧间预测模式,即仿射融合模式(merge mode)和仿射AMVP模式。
基于块的仿射变换预测
为了简化运动补偿预测,应用了基于块的仿射变换预测。例如,为了推导每个8×8亮度子块的运动矢量,每个子块的中心样本的运动矢量(如图7所示)根据上述等式计算,并对结果取整以具有1/16分数精度。然后,应用运动补偿插值滤波器,以通过推导出的运动矢量生成每个子块的预测样本。色度分量的子块大小设置为4×4。
增强型双线性插值滤波器
增强型双线性插值滤波器(Enhanced bi-linear Interpolation Filter,EIF)可以用于预测块并以子块为基础。亮度信号和色度信号的滤波过程相同,该滤波过程包括以下步骤:
1.根据等式(1-1),从CPMV中推导出基于像素的运动矢量场;
2.通过将双线性插值用于分数偏移,根据推导出的运动矢量获得插值后样本;
3.使用固定的3抽头高通滤波器[–1,10,–1]和归一化因子8,执行水平滤波,然后执行垂直滤波。
前两个步骤对(w+2)×(h+2)区域执行,其中,w和h分别表示预测块的宽度和高度;为了应用第三步骤中的3抽头滤波器,在每个边界添加一个像素边距(margin)。原始仿射块(affine block)和在EIF的中间步骤中使用的对应(w+2)×(h+2)块如图8所示。
内存带宽计算
内存带宽计算为参考块与当前块的面积比。例如,对于8×8的双向预测块,在使用具有T抽头的插值滤波器的情况下,参考块的面积Sr等于2(8+T–1)(8+T–1),当前块的面积Sb等于8*8。所以内存带宽是对于ITU-T H.265、VVC和EVC中使用的8抽头DCTIF而言,/>
参考区域是一个矩形区域,包括执行当前块的运动补偿所需的所有参考样本,如图9所示,具有宽度W'和高度H'(边界框(bounding box))。
EIF和基于块的仿射运动补偿的适应性使用问题定义
最小子块大小8×8的子块仿射运动补偿比最小子块大小4×4的仿射运动补偿,对硬件更加友好。至少存在三个原因。
1.内存带宽。与ITU-T H.265相比,最小子块大小8×8的仿射运动补偿不会增加内存带宽,因为8×8的双向预测块是ITU-T H.265在内存带宽计算方面的最坏情况。在EVC中,8×8的双向预测块也不会改变内存带宽方面的最坏情况(在EVC 3.0中,8×4/4×8的双向预测块是最坏情况,在EVC 4.0中,4×16/16×4的块会是最坏情况)。基本上,在EVC和ITU-TH.265中,8×8的双向预测块可以出现在常规帧间预测中,因此这种最小块大小的仿射子块运动补偿不会增加运动补偿的复杂度。
2.乘法次数。8×8子块的运动补偿比4个4×4子块的运动补偿需要的乘法次数要少得多。
3.内存存取。在一些硬件实现方式中,可以读取的样本不少于16个。从这个角度来看,在8抽头DCTIF采用(8+8–1)*(8+8–1)个参考样本的情况下,8×8块利用内存的效率比4×4块高得多。
然而,最小子块大小8×8的子块仿射运动补偿相比于最小子块大小4×4的子块仿射运动补偿,性能下降更明显,尤其是快速旋转的内容。对于这些内容,可以使用EIF。EIF相比于最小子块大小8×8和4×4的子块仿射运动补偿,乘法较少。但是,EIF在没有仿射运动模型限制条件的情况下的内存带宽可能是巨大的。此外,为了有效地实现EIF的硬件,可能会出现一些额外的要求。例如,从硬件的角度来看,EIF可以存在以下要求。
A.内部缓冲区限制为N行,其中,N可以等于3、4、5或以上。这表示,在处理当前块(子块)的一行(line/row)的过程中,最多可以使用参考图像中的N行。
B.内存存取需要按顺序进行,这表示如果提取参考图像的第j行来获取当前块的第i行,则仅提取第(j+1)行、第(j+2)行等来获取当前块的第(i+1)行。
C.对于当前块的所有行(第一行除外),最多只能额外提取一行。
本发明是使用EIF和子块仿射运动补偿的适应性方案。
实施例1
EIF和基于块的仿射运动补偿的适应性使用(基本算法)
适应性使用EIF和子块仿射运动补偿的基本算法如下所述。
1.根据仿射运动模型参数,计算最佳子块大小M×N。
2.如果最优子块宽度M和最优子块高度N都大于或等于8,则执行M×N子块的子块运动补偿。
3.否则,检查EIF适用性条件:
a.EIF适用性条件1;
b.EIF适用性条件2;
c……
d.如果所有EIF适用性条件都满足,则执行EIF运动补偿;
e.否则,设置M=max(M,8),N=max(N,8),并执行M×N子块的子块运动补偿。
这种基本算法的一些步骤的详细信息如下所述。
步骤1.最优子块大小计算
一种推导仿射子块大小的方法以仿射控制点的运动矢量差值和仿射块的宽度和高度为基础。子块大小M×N可以根据等式(2-1)推导出,其中,MvPre表示运动矢量精度(例如,HEVC标准中的1/4像素精度或VVC和EVC标准中的1/16像素精度),仿射运动模型参数dHorX、dHorY、dVerX和dVerY是根据用于6参数模型的等式(1-4)至等式(1-7)和用于4参数模型的等式(1-8)至等式(1-11)计算的。
如有必要,等式(2-1)中推导出的M和N会调小,以确保w和h分别可以被M和N整除。
另一种方法是建立三维查找表,然后根据运动矢量差值、块大小和运动矢量精度直接从查找表中获取子块大小。例如,将M设置为Table_M[x][y][z],其中,x等于max(abs(v1x-v0x),abs(v1y-v0y)),y等于仿射块宽度,z等于运动矢量精度;将N设置为Table_N[x][y][z],其中,x等于max(abs(v2x-v0x),abs(v2y-v0y)),y等于仿射块高度,z等于运动矢量精度。
步骤3.EIF适用性条件
例如,EIF适用性条件可以如下所述。
1.内存带宽限制条件。这种限制条件保证了与当前仿射块(EIF块)对应的参考图像中的区域的大小不超过预定义的阈值T。与当前仿射块对应的参考图像中的区域的定义的示例如图9所示。
2.内部缓冲区限制为R行,其中,R是预定义值,例如可以是3、4、5或以上。这表示,在处理当前块(子块)的一行(line/row)的过程中,最多可以使用参考图像中的R行。
3.内存存取需要按顺序进行,这表示如果提取参考图像的第j行来获取当前块的第i行,则仅提取第(j+1)行、第(j+2)行等来获取当前块的第(i+1)行。
4.对于当前块的所有行(第一行除外),最多只能额外提取一行。
5.用于仿射运动模型参数的不等式如下所述:
a.其中,a、b、c、d、e、f、g、h是预定义值或正/负无穷大;
b.其中,a和b是预定义值。
在MPEG-5/EVC中使用实施例1的示例1
在本示例中,EIF子块大小等于4×4,在处理第一行R的过程中提取的行的最大数量等于3,dX[0]对应于dHorX,dX[1]对应于dHorY,dY[0]对应于dVerX,dY[1]对应于dVerY。
变量dX[0]、dX[1]、dY[0]和dY[1]具有1/512精度。
……
变量eifSubblockSize设置为4。
变量eifCanBeApplied推导如下:
–eifCanBeApplied设置为真(TRUE);
–阵列X[i]和Y[i]推导如下:
–X[0]=0,
–X[1]=(eifSubblockSize+1)*(dX[0]+(1<<9)),
–X[2]=(eifSubblockSize+1)*dY[0],
–X[3]=X[1]+X[2],
–Y[0]=0,
–Y[1]=(eifSubblockSize+1)*dX[1],
–Y[2]=(eifSubblockSize+1)*(dY[1]+(1<<9)),
–Y[3]=Y[1]+Y[2];
–变量Xmax设置为X[i]的最大值,其中,i等于0..3;
–变量Xmin设置为X[i]的最小值,其中,i等于0..3;
–变量Ymax设置为Y[i]的最大值,其中,i等于0..3;
–变量Ymin设置为Y[i]的最小值,其中,i等于0..3;
–变量W设置为(Xmax–Xmin+(1<<9)–1)>>9;
–变量H设置为(Ymax–Ymin+(1<<9)–1)>>9;
–如果(W+2)*(H+2)大于81,则变量eifCanBeApplied为假(FALSE);
–否则,
–如果dY[1]小于((–1)<<9),则变量eifCanBeApplied为假;
–否则,
–如果(max(0,dY[1])+Abs(dX[1]))*(1+eifSubblockSize)大于(1<<9),则变量eifCanBeApplied为假;
–如果eifCanBeApplied为假,则变量sizeSbX和sizeSbY修改如下:
–sizeSbX=max(8,sizeSbX),
–sizeSbY=max(8,sizeSbY)。
……
在MPEG-5/EVC中使用实施例1的示例2
在本示例中,EIF子块大小等于8×8,在处理第一行R的过程中提取的行的最大数量等于4,dX[0]对应于dHorX,dX[1]对应于dHorY,dY[0]对应于dVerX,dY[1]对应于dVerY。
变量dX[0]、dX[1]、dY[0]和dY[1]具有1/512精度。
……
变量eifSubblockSize设置为8。
变量eifCanBeApplied推导如下:
–eifCanBeApplied设置为真(TRUE);
–阵列X[i]和Y[i]推导如下:
–X[0]=0,
–X[1]=(eifSubblockSize+1)*(dX[0]+(1<<9)),
–X[2]=(eifSubblockSize+1)*dY[0],
–X[3]=X[1]+X[2],
–Y[0]=0,
–Y[1]=(eifSubblockSize+1)*dX[1],
–Y[2]=(eifSubblockSize+1)*(dY[1]+(1<<9)),
–Y[3]=Y[1]+Y[2];
–变量Xmax设置为X[i]的最大值,其中,i等于0..3;
–变量Xmin设置为X[i]的最小值,其中,i等于0..3;
–变量Ymax设置为Y[i]的最大值,其中,i等于0..3;
–变量Ymin设置为Y[i]的最小值,其中,i等于0..3;
–变量W设置为(Xmax–Xmin+(1<<9)–1)>>9;
–变量H设置为(Ymax–Ymin+(1<<9)–1)>>9;
–如果(W+2)*(H+2)大于225,则变量eifCanBeApplied为假(FALSE);
–否则,
–如果dY[1]小于((–1)<<9),则变量eifCanBeApplied为假;
–否则,
–如果(max(0,dY[1])+Abs(dX[1]))*(1+eifSubblockSize)大于2*(1<<9),则变量eifCanBeApplied为假;
–如果eifCanBeApplied为假,则变量sizeSbX和sizeSbY修改如下:
–sizeSbX=max(8,sizeSbX),
–sizeSbY=max(8,sizeSbY)。
……
在MPEG-5/EVC中使用实施例1的示例3
在本示例中,EIF子块大小等于8×8,在处理第一行R的过程中提取的行的最大数量等于5,dX[0]对应于dHorX,dX[1]对应于dHorY,dY[0]对应于dVerX,dY[1]对应于dVerY。
变量dX[0]、dX[1]、dY[0]和dY[1]具有1/512精度。
……
变量eifSubblockSize设置为8。
变量eifCanBeApplied推导如下:
–eifCanBeApplied设置为真(TRUE);
–阵列X[i]和Y[i]推导如下:
–X[0]=0,
–X[1]=(eifSubblockSize+1)*(dX[0]+(1<<9)),
–X[2]=(eifSubblockSize+1)*dY[0],
–X[3]=X[1]+X[2],
–Y[0]=0,
–Y[1]=(eifSubblockSize+1)*dX[1],
–Y[2]=(eifSubblockSize+1)*(dY[1]+(1<<9)),
–Y[3]=Y[1]+Y[2];
–变量Xmax设置为X[i]的最大值,其中,i等于0..3;
–变量Xmin设置为X[i]的最小值,其中,i等于0..3;
–变量Ymax设置为Y[i]的最大值,其中,i等于0..3;
–变量Ymin设置为Y[i]的最小值,其中,i等于0..3;
–变量W设置为(Xmax–Xmin+(1<<9)–1)>>9;
–变量H设置为(Ymax–Ymin+(1<<9)–1)>>9;
–如果(W+2)*(H+2)大于225,则变量eifCanBeApplied为假(FALSE);
–否则,
–如果dY[1]小于((–1)<<9),则变量eifCanBeApplied为假;
–否则,
–如果(max(0,dY[1])+Abs(dX[1]))*(1+eifSubblockSize)大于3*(1<<9),则变量eifCanBeApplied为假;
–如果eifCanBeApplied为假,则变量sizeSbX和sizeSbY修改如下:
–sizeSbX=max(8,sizeSbX),
–sizeSbY=max(8,sizeSbY)。
……
在MPEG-5/EVC中使用实施例1的示例4
在本示例中,EIF子块大小等于8×8,只检查内存带宽限制条件以决定是否应用EIF,dX[0]对应于dHorX,dX[1]对应于dHorY,dY[0]对应于dVerX,dY[1]对应于dVerY。
变量dX[0]、dX[1]、dY[0]和dY[1]具有1/512精度。
……
变量eifSubblockSize设置为8。
变量eifCanBeApplied推导如下:
–eifCanBeApplied设置为真(TRUE);
–阵列X[i]和Y[i]推导如下:
–X[0]=0,
–X[1]=(eifSubblockSize+1)*(dX[0]+(1<<9)),
–X[2]=(eifSubblockSize+1)*dY[0],
–X[3]=X[1]+X[2],
–Y[0]=0,
–Y[1]=(eifSubblockSize+1)*dX[1],
–Y[2]=(eifSubblockSize+1)*(dY[1]+(1<<9)),
–Y[3]=Y[1]+Y[2];
–变量Xmax设置为X[i]的最大值,其中,i等于0..3;
–变量Xmin设置为X[i]的最小值,其中,i等于0..3;
–变量Ymax设置为Y[i]的最大值,其中,i等于0..3;
–变量Ymin设置为Y[i]的最小值,其中,i等于0..3;
–变量W设置为(Xmax–Xmin+(1<<9)–1)>>9;
–变量H设置为(Ymax–Ymin+(1<<9)–1)>>9;
–如果(W+2)*(H+2)大于225,则变量eifCanBeApplied为假(FALSE);
–如果eifCanBeApplied为假,则变量sizeSbX和sizeSbY修改如下:
–sizeSbX=max(8,sizeSbX),
–sizeSbY=max(8,sizeSbY)。
……
在MPEG-5/EVC中使用实施例1的示例5
在本示例中,EIF子块大小等于4×4,只检查内存带宽限制条件以决定是否应用EIF,dX[0]对应于dHorX,dX[1]对应于dHorY,dY[0]对应于dVerX,dY[1]对应于dVerY。
变量dX[0]、dX[1]、dY[0]和dY[1]具有1/512精度。
……
变量eifSubblockSize设置为8。
变量eifCanBeApplied推导如下:
–eifCanBeApplied设置为真(TRUE);
–阵列X[i]和Y[i]推导如下:
–X[0]=0,
–X[1]=(eifSubblockSize+1)*(dX[0]+(1<<9)),
–X[2]=(eifSubblockSize+1)*dY[0],
–X[3]=X[1]+X[2],
–Y[0]=0,
–Y[1]=(eifSubblockSize+1)*dX[1],
–Y[2]=(eifSubblockSize+1)*(dY[1]+(1<<9)),
–Y[3]=Y[1]+Y[2];
–变量Xmax设置为X[i]的最大值,其中,i等于0..3;
–变量Xmin设置为X[i]的最小值,其中,i等于0..3;
–变量Ymax设置为Y[i]的最大值,其中,i等于0..3;
–变量Ymin设置为Y[i]的最小值,其中,i等于0..3;
–变量W设置为(Xmax–Xmin+(1<<9)–1)>>9;
–变量H设置为(Ymax–Ymin+(1<<9)–1)>>9;
–如果(W+2)*(H+2)大于81,则变量eifCanBeApplied为假(FALSE);
–如果eifCanBeApplied为假,则变量sizeSbX和sizeSbY修改如下:
–sizeSbX=max(8,sizeSbX),
–sizeSbY=max(8,sizeSbY)。
……
实施例2
EIF和基于块的仿射运动补偿的适应性使用(基本算法)
适应性使用EIF和子块仿射运动补偿的基本算法如下所述。
1.根据仿射运动模型参数,计算最佳子块大小M×N。
2.如果最优子块宽度M和最优子块高度N都大于或等于8,则执行M×N子块的子块运动补偿。
3.否则,检查EIF适用性条件:
a.EIF适用性条件1;
b.EIF适用性条件2;
c……
d.EIF适用性条件P;
e.如果所有EIF适用性条件都满足,则执行EIF运动补偿。EIF运动补偿过程包括:
i.检查EIF适用性条件P+1,
ii.检查EIF适用性条件P+2,
iii……
iv.检查EIF适用性条件P+K,
v.如果EIF适用性条件P+1至P+K中的一个条件不满足,则
–计算满足条件(未满足)的第一运动矢量范围,
–对根据仿射模型计算的运动矢量进行限幅,以保证这些矢量在第一运动矢量范围内;
f.否则,设置M'=max(M,8),N'=max(N,8),并执行M×N子块的子块运动补偿。
在一些示例中,P和K可以等于0,表示如果P等于0,则上述算法不包括步骤3.a至步骤3.d;如果K等于0,则上述算法不包括步骤3.e.i至步骤3.e.v。
这种基本算法的一些步骤的详细信息如下所述。
步骤1.最优子块大小计算
一种推导仿射子块大小的方法以仿射控制点的运动矢量差值和仿射块的宽度和高度为基础。子块大小M×N可以根据等式(2-1)推导出,其中,MvPre表示运动矢量精度(例如,HEVC标准中的1/4像素精度或VVC和EVC标准中的1/16像素精度),仿射运动模型参数dHorX、dHorY、dVerX和dVerY是根据用于6参数模型的等式(1-4)至等式(1-7)和用于4参数模型的等式(1-8)至等式(1-11)计算的。
如有必要,等式(2-1)中推导出的M和N会调小,以确保w和h分别可以被M和N整除。
另一种方法是建立三维查找表,然后根据运动矢量差值、块大小和运动矢量精度直接从查找表中获取子块大小。例如,将M设置为Table_M[x][y][z],其中,x等于max(abs(v1x-v0x),abs(v1y-v0y)),y等于仿射块宽度,z等于运动矢量精度;将N设置为Table_N[x][y][z],其中,x等于max(abs(v2x-v0x),abs(v2y-v0y)),y等于仿射块高度,z等于运动矢量精度。
步骤3.EIF适用性条件
例如,EIF适用性条件可以如下所述。
1.内存带宽限制条件。这种限制条件保证了与当前仿射块(EIF块)对应的参考图像中的区域的大小不超过预定义的阈值T。与当前仿射块对应的参考图像中的区域的定义的示例如图9所示。
2.内部缓冲区限制为R行,其中,R是预定义值,例如可以是3、4、5或以上。这表示,在处理当前块(子块)的一行(line/row)的过程中,最多可以使用参考图像中的R行。
3.内存存取需要按顺序进行,这表示如果提取参考图像的第j行来获取当前块的第i行,则仅提取第(j+1)行、第(j+2)行等来获取当前块的第(i+1)行。
4.对于当前块的所有行(第一行除外),最多只能额外提取一行。
5.用于仿射运动模型参数的不等式如下所述:
a.其中,a、b、c、d、e、f、g、h是预定义值或正/负无穷大;
b.其中,a和b是预定义值。
在一个示例中,基本算法如下所述。
1.根据仿射运动模型参数,计算最佳子块大小M×N。
2.如果最优子块宽度M和最优子块高度N都大于或等于8,则执行M×N子块的子块运动补偿。
3.否则,检查EIF适用性条件:
a.EIF适用性条件1:内部缓冲区限制为R行,其中,R是预定义值,例如可以是3、4、5或以上。这表示,在处理当前块(子块)的一行(line/row)的过程中,最多可以使用参考图像中的R行。
b.EIF适用性条件2:内存存取需要按顺序进行,这表示如果提取参考图像的第j行来获取当前块的第i行,则仅提取第(j+1)行、第(j+2)行等来获取当前块的第(i+1)行。
c.EIF适用性条件3:对于当前块的所有行(第一行除外),最多只能额外提取一行。
d……
e.EIF适用性条件P。
f.如果所有EIF适用性条件都满足,则执行EIF运动补偿。EIF运动补偿过程包括:
i.检查EIF适用性条件P+1:检查内存带宽限制条件。这种限制条件保证了与当前仿射块(EIF块)对应的参考图像中的区域的大小不超过预定义的阈值T。与当前仿射块对应的参考图像中的区域的定义的示例如图9所示。
ii……
iii.检查EIF适用性条件P+K。
iv.如果EIF适用性条件P+1至P+K中的一个条件不满足,则
1.计算满足条件(未满足)的第一运动矢量范围,
2.对根据仿射模型计算的运动矢量进行限幅,以保证这些矢量在第一运动矢量范围内。
g.否则,设置M'=max(M,8),N'=max(N,8),并执行M×N子块的子块运动补偿。
在一些示例中,N可以等于3,这表示上述算法不包括步骤3.d和步骤3.e。在一些示例中,K可以等于1,这表示上述算法不包括步骤3.f.ii和步骤3.f.iii。
实施例3
EIF和基于块的仿射运动补偿的适应性使用(基本算法)
适应性使用EIF和子块仿射运动补偿的基本算法如下所述。
1.根据仿射运动模型参数,计算最佳子块大小M×N。
2.如果最优子块宽度M和最优子块高度N都大于或等于8,则执行M×N子块的子块运动补偿。
3.否则,检查EIF适用性条件:
a.EIF适用性条件1;
b.EIF适用性条件2;
c……
d.EIF适用性条件P;
e.如果所有EIF适用性条件都满足,则执行EIF运动补偿。EIF运动补偿过程包括:
i.检查EIF适用性条件P+1,
ii.检查EIF适用性条件P+2,
iii……
iv.检查EIF适用性条件P+K,
v.如果EIF适用性条件P+1至P+K中的一个条件不满足,则
–计算满足条件(未满足)的第一运动矢量范围,
–将第二运动矢量范围设置为第一运动矢量范围,
vi.否则,
–计算第三运动矢量范围,
–将第二运动矢量范围设置为第三运动矢量范围,
vii.对根据仿射模型计算的运动矢量进行限幅,以保证这些矢量在第二运动矢量范围内;
f.否则,设置M'=max(M,8),N'=max(N,8),并执行M×N子块的子块运动补偿。
在一些示例中,P和K可以等于0,表示如果P等于0,则上述算法不包括步骤3.a至步骤3.d;如果K等于0,则上述算法不包括步骤3.e.i至步骤3.e.v。
这种基本算法的一些步骤的详细信息如下所述。
步骤1.最优子块大小计算
一种推导仿射子块大小的方法以仿射控制点的运动矢量差值和仿射块的宽度和高度为基础。子块大小M×N可以根据等式(2-1)推导出,其中,MvPre表示运动矢量精度(例如,HEVC标准中的1/4像素精度或VVC和EVC标准中的1/16像素精度),仿射运动模型参数dHorX、dHorY、dVerX和dVerY是根据用于6参数模型的等式(1-4)至等式(1-7)和用于4参数模型的等式(1-8)至等式(1-11)计算的。
如有必要,等式(2-1)中推导出的M和N会调小,以确保w和h分别可以被M和N整除。
另一种方法是建立三维查找表,然后根据运动矢量差值、块大小和运动矢量精度直接从查找表中获取子块大小。例如,将M设置为Table_M[x][y][z],其中,x等于max(abs(v1x-v0x),abs(v1y-v0y)),y等于仿射块宽度,z等于运动矢量精度;将N设置为Table_N[x][y][z],其中,x等于max(abs(v2x-v0x),abs(v2y-v0y)),y等于仿射块高度,z等于运动矢量精度。
步骤3.EIF适用性条件
例如,EIF适用性条件可以如下所述。
1.内存带宽限制条件。这种限制条件保证了与当前仿射块(EIF块)对应的参考图像中的区域的大小不超过预定义的阈值T。与当前仿射块对应的参考图像中的区域的定义的示例如图9所示。
2.内部缓冲区限制为R行,其中,R是预定义值,例如可以是3、4、5或以上。这表示,在处理当前块(子块)的一行(line/row)的过程中,最多可以使用参考图像中的R行。
3.内存存取需要按顺序进行,这表示如果提取参考图像的第j行来获取当前块的第i行,则仅提取第(j+1)行、第(j+2)行等来获取当前块的第(i+1)行。
4.对于当前块的所有行(第一行除外),最多只能额外提取一行。
5.用于仿射运动模型参数的不等式如下所述:
a.其中,a、b、c、d、e、f、g、h是预定义值或正/负无穷大;
b.其中,a和b是预定义值。
在一个示例中,基本算法如下所述。
1.根据仿射运动模型参数,计算最佳子块大小M×N。
2.如果最优子块宽度M和最优子块高度N都大于或等于8,则执行M×N子块的子块运动补偿。
3.否则,检查EIF适用性条件:
a.EIF适用性条件1:内部缓冲区限制为R行,其中,R是预定义值,例如可以是3、4、5或以上。这表示,在处理当前块(子块)的一行(line/row)的过程中,最多可以使用参考图像中的R行。
b.EIF适用性条件2:内存存取需要按顺序进行,这表示如果提取参考图像的第j行来获取当前块的第i行,则仅提取第(j+1)行、第(j+2)行等来获取当前块的第(i+1)行。
c.EIF适用性条件3:对于当前块的所有行(第一行除外),最多只能额外提取一行。
d……
e.EIF适用性条件P。
f.如果所有EIF适用性条件都满足,则执行EIF运动补偿。EIF运动补偿过程包括:
i.检查EIF适用性条件P+1:检查内存带宽限制条件。这种限制条件保证了与当前仿射块(EIF块)对应的参考图像中的区域的大小不超过预定义的阈值T。与当前仿射块对应的参考图像中的区域的定义的示例如图9所示。(本部分会在实施例4中更改)
ii……
iii.检查EIF适用性条件P+K。
iv.如果EIF适用性条件P+1至P+K中的一个条件不满足,则
1.计算满足条件(未满足)的第一运动矢量范围,(本部分会在实施例4中更改)
2.将第二运动矢量范围设置为第一运动矢量范围。
v.否则,
1.计算第三运动矢量范围,
2.将第二运动矢量范围设置为第三运动矢量范围。
vi.对根据仿射模型计算的运动矢量进行限幅,以保证这些矢量在第二运动矢量范围内。
g.否则,设置M=max(M,8),N=max(N,8),并执行M×N子块的子块运动补偿。
在一些示例中,N可以等于3,这表示上述算法不包括步骤3.d和步骤3.e。在一些示例中,K可以等于1,这表示上述算法不包括步骤3.f.ii和步骤3.f.iii。
在一个示例中,步骤3.f.i和步骤3.f.iv.1实施如下。
使用EIF时的仿射块的内存存取消耗计算
当EIF用于大小为W×H的仿射块的运动补偿时,执行以下步骤计算内存存取消耗。
1.推导仿射块的每个顶点样本的位置。
2.推导块(将其表示为EIF中间块)的每个顶点样本的位置(在EIF的步骤3中使用)。
3.推导EIF中间块的每个顶点样本的运动矢量。
4.推导参考图像中的变换块的位置。
5.推导变换块的边界框大小。
6.根据变换块大小和滤波器长度,获取内存存取消耗(EIF使用双线性插值,因此滤波器长度等于2)。
这些步骤的实施细节如下所述。
步骤1.推导仿射块的每个顶点样本的位置
将(x0,y0)表示为仿射块的左上方样本的坐标。然后,仿射块的位置可以通过顶点样本的坐标(左上、右上、左下、右下)来描述:
步骤2.推导EIF中间块的每个顶点样本的位置
对(W+2)×(H+2)块执行执行EIF的步骤2中的双线性插值(在每个边界添加一个像素边距(margin))。这个(W+2)×(H+2)块表示为中间EIF块。中间EIF块的顶点样本的坐标(左上、右上、左下、右下)为:
仿射块和中间EIF块的顶点的坐标如图8所示。
步骤3.推导EIF中间块的每个顶点样本的运动矢量
根据等式(1-1)推导运动矢量。在一些示例中,运动矢量限幅可以用于保证不使用当前图像之外的具有一个CTU大小的边距的样本。
步骤4.推导参考图像中的变换块的位置
将矢量Vi的水平分量水平分量和垂直分量分别表示为Vix和Viy
参考图像中的变换块的位置可以通过顶点样本的坐标(左上、右上、左下、右下)来描述:
步骤5.推导变换块的边界框大小
参考图像中的变换块的边界框大小可以根据以下等式计算,其中,max函数返回参数的最大值,min函数返回参数的最小值:
参考图像中的变换块的位置和对应的边界框如图9所示。
在一个示例中,W'=Ceil(W')和H'=Ceil(H')在等式(2-5)之后执行。
在另一个示例中,W'=Floor(W')和H'=Floor(H')在等式(2-5)之后执行。
步骤6.获取内存存取消耗
一个参考图像中的仿射块的内存存取消耗可以通过变换块的边界框大小和仿射运动块T'的MC插值滤波器的长度(例如2、4、6、8等)来决定:
Mem=(W′+T′-1)*(H′+T′-1) (2-6)
对于EIF,使用的是双线性插值,因此滤波器长度为2,内存存取消耗等于
Mem=(W′+1)*(H′+1) (2-7)
EIF的仿射运动模型限制条件
将最坏情况下的目标内存带宽表示为其中,W和H分别表示当前块的宽度和高度,Swc表示根据最坏情况下的目标内存带宽的当前块的最大允许内存存取消耗。为了保证EIF内存带宽不大于最坏情况下的目标内存带宽,仿射块的内存存取消耗应当限制为以下条件:
或者
(W′+1)*(H′+1)≤T*W*H (2-8)
或者
(W′+1)*(H′+1)≤Swc
值T可以在编码器和解码器侧预定义,也可以在编解码器视频序列的参数集中指定,例如在序列级、图像级、条带级等的参数集中指定。
在一个示例中,如果每个样本的最大允许内存存取消耗定义为4×4块的内存存取消耗,则T可以推导如下,其中,T表示插值滤波器的长度:
/>
当T'等于6,限制条件如下所述:
(W′+1)*(H′+1)≤(4+6-1)*(4+6-1) (2-10)
在另一个示例中,如果每个样本的最大允许内存存取消耗定义为8×8块的内存存取消耗,则T可以推导如下,其中,T表示插值滤波器的长度:
在另一个示例中,每个样本的最大允许内存存取消耗可以根据当前块的预测方向不同,即,在当前块是单向预测时,使用阈值TUNI,在当前块是双向预测时,使用阈值TBI
例如,TUNI定义为4×4块的内存存取消耗,TBI定义为8×4块的内存存取消耗,则:
又如,TUNI定义为4×4块的内存存取消耗,TBI定义为8×8块的内存存取消耗,则:
上面示例中的T'表示用于平动运动块的运动补偿(motion compensation,MC)插值滤波器的长度,例如2、4、6、8等。
T、TUNI和TBI的值可能取决于当前块的宽度和高度。
对于双向预测仿射块,上述约束条件分别应用于列表0(list0)和列表1(list1)。
在另一个示例中,列表0和列表1的内存存取消耗计算为Mem0和Mem1,并且这些元素的总和有限制。例如,如果TBI定义为8×8块的内存存取消耗,则使用以下限制条件:
Mem0+Mem1≤2*(8+T′-1)*(8+T′-1) (2-16)
如果仿射块的运动矢量不能遵循约束条件(2-8),则块不能使用EIF运动补偿。
在一个示例中,如果仿射块不能使用EIF运动补偿,则使用最小子块大小为8×8的子块运动补偿,而不是使用EIF。
在另一个示例中,如果仿射块不能使用EIF运动补偿,则使用为仿射块的中心计算的运动矢量的平动运动补偿,而不是使用EIF。
在另一个示例中,如果仿射块不能使用EIF运动补偿,则根据W'和H'在不等式(2-8)满足时推导边界框(bounding box)。例如,W'和H'可以计算为:
之后,在根据等式(1-1)计算EIF中的MV的过程中,运动矢量的水平分量水平分量被限幅到范围[mv0x,mv0x+W′-1],运动矢量的垂直分量被限幅到范围[mv0y,mv0y+H′-1]。在一个示例中,如果块宽高比为k(W=kH),则H'的计算方式包括求解以下等式:
k(H′)2+(k+1)H′+1-TWH=0
执行以下步骤:H'=Floor(H'),W'=kH'。
在另一个示例中,步骤3.f.i和步骤3.f.iv.1实施如下。
使用EIF时的仿射块的内存存取消耗计算
执行以下步骤来计算内存存取消耗。
1.推导W×H子块的每个顶点样本的位置。
2.推导子块(将其表示为EIF中间子块)的每个顶点样本的位置(在EIF的步骤3中使用)。
3.推导EIF中间子块的每个顶点样本的运动矢量。
4.推导参考图像中的变换子块的位置。
5.推导变换子块的边界框大小。
6.根据变换子块大小的边界框大小以及滤波器长度(EIF使用双线性插值,因此滤波器长度等于2),获取内存存取消耗。
这些步骤的实施细节如下所述。
步骤1.推导仿射子块的每个顶点样本的位置
将(x0,y0)表示为仿射块的左上方样本的坐标。在本实施例中,为了计算内存存取消耗,假设仿射块的左上方样本的坐标等于(1,1)。位置(x0,y0)对于内存存取消耗计算没有意义,如果(x0,y0)=(1,1),等式就更简单。
然后,仿射块的位置可以通过顶点样本的坐标(左上、右上、左下、右下)来描述:
步骤2.推导EIF中间子块的每个顶点样本的位置
由于EIF在步骤3中使用3抽头滤波器,因此对(W+2)×(H+2)子块执行EIF的步骤2中的双线性插值(在每个边界添加一个像素边距(margin))。这个(W+2)×(H+2)子块表示为中间EIF子块。中间EIF块的顶点样本的坐标(左上、右上、左下、右下)为:
仿射子块和中间EIF子块的顶点的坐标如图8所示。
步骤3.推导EIF中间子块的每个顶点样本的运动矢量
初始运动矢量(mv0x,mv0y)对于内存存取消耗计算没有意义,如果(mv0x,mv0y)=(dHorX+dVerX,dHorY+dVerY),等式就更简单。
根据等式(1-1)推导运动矢量。
步骤4.推导参考图像中的变换块的位置
参考图像中的变换块的位置可以通过顶点样本的坐标(左上、右上、左下、右下)来描述:
步骤5.推导变换子块的边界框大小
参考图像中的变换子块的边界框大小可以根据以下等式计算,其中,max函数返回参数的最大值,min函数返回参数的最小值:
参考图像中的变换子块的位置和对应的边界框如图9所示。
在一个示例中,W'=Ceil(W')和H'=Ceil(H')在等式(3-5)之后执行。
在另一个示例中,W'=Floor(W')和H'=Floor(H')在等式(3-5)之后执行。
步骤6.获取内存存取消耗
一个参考图像中的仿射子块的内存存取消耗可以通过变换子块大小对应的边界框大小和仿射运动块T'的MC插值滤波器的长度(例如2、4、6、8等)来决定:
Mem=(W′+T′-1)*(H′+T′-1) (3-6)
对于EIF,使用的是双线性插值,因此滤波器长度为2,内存存取消耗等于
Mem=(W′+1)*(H′+1) (3-7)
EIF的仿射运动模型限制条件
将最坏情况下的目标内存带宽表示为其中,W和H分别表示当前子块的宽度和高度,Swc表示根据最坏情况下的目标内存带宽的当前子块的最大允许内存存取消耗。为了保证EIF内存带宽不大于最坏情况下的目标内存带宽,EIF子块的内存存取消耗应当限制为以下条件:
或者
(W′+1)*(H′+1)≤T*W*H (3-8)
或者
(W′+1)*(H′+1)≤Swc
值T可以在编码器和解码器侧预定义,也可以在编解码器视频序列的参数集中指定,例如在序列级、图像级、条带级等的参数集中指定。
在一个示例中,如果每个样本的最大允许内存存取消耗定义为4×4块的内存存取消耗,则T可以推导如下,其中,T表示插值滤波器的长度:
当T'等于6,限制条件如下所述:
(W′+1)*(H′+1)≤(4+6-1)*(4+6-1) (3-10)
在另一个示例中,如果每个样本的最大允许内存存取消耗定义为8×8块的内存存取消耗,则T可以推导如下,其中,T表示插值滤波器的长度:
在另一个示例中,每个样本的最大允许内存存取消耗可以根据当前块的预测方向不同,即,在当前块是单向预测时,使用阈值TUNI,在当前块是双向预测时,使用阈值TBI
例如,TUNI定义为4×4块的内存存取消耗,TBI定义为8×4块的内存存取消耗,则:
又如,TUNI定义为4×4块的内存存取消耗,TBI定义为8×8块的内存存取消耗,则:
上面示例中的T'表示用于平动运动块的运动补偿(motion compensation,MC)插值滤波器的长度,例如2、4、6、8等。
T、TUNI和TBI的值可能取决于当前块的宽度和高度。
对于双向预测仿射块,上述约束条件分别应用于列表0(list0)和列表1(list1)。
在另一个示例中,列表0和列表1的内存存取消耗计算为Mem0和Mem1,并且这些元素的总和有限制。例如,如果TBI定义为8×8块的内存存取消耗,则使用以下限制条件:
Mem0+Mem1≤2*(8+T′-1)*(8+T′-1) (3-16)
如果仿射块的运动矢量不能遵循约束条件(3-8),则块不能使用EIF运动补偿。
在一个示例中,如果仿射块不能使用EIF运动补偿,则使用最小子块大小8×8的子块运动补偿,而不是使用EIF。
在另一个示例中,如果仿射块不能使用EIF运动补偿,则使用为仿射块的中心计算的运动矢量的平动运动补偿,而不是使用EIF。
在另一个示例中,如果仿射块不能使用EIF运动补偿,则根据W'和H'在不等式(3-8)满足时推导边界框(bounding box)。例如,W'和H'可以计算为:
之后,在根据等式(1-1)计算EIF中的MV的过程中,运动矢量的水平分量水平分量被限幅到范围[mv0x,mv0x+W′-1],运动矢量的垂直分量被限幅到范围[mv0y,mv0y+H′-1]。在一个示例中,如果块宽高比为k(W=kH),则H'的计算方式包括求解以下等式:k(H′)2+(k+1)H′+1-TWH=0
执行以下步骤:H'=Floor(H'),W'=kH'。
在一个示例中,步骤3.f.iv.1实施如下。
8.5.4.5仿射运动矢量的限幅参数推导
该过程的输入包括:
–位置(xCb,yCb),以整样本为单位;
–两个变量cbWidth和cbHeight,表示当前译码块的宽度和高度;
–运动矢量的水平变化dX;
–运动矢量的垂直变化dY;
–运动矢量mvBaseScaled;
–图像的宽度pic_width,以样本为单位;
–图像的高度pic_height,以样本为单位。
–标志mvClippingMode,表示边界框约束条件的类型。
该过程的输出包括:
–hor_max、ver_max、hor_min和ver_min,表示运动矢量的最大和最小允许的水平分量和垂直分量。
中心运动矢量mv_center推导如下:
mv_center[0]=(mvBaseScaled[0]+dX[0]*(cbWidth>>1)+dY[0]*(cbHeight>>1)) (8-743)
mv_center[1]=(mvBaseScaled[1]+dX[1]*(cbWidth>>1)+dY[1]*(cbHeight>>1)) (8-743)
调用第8.5.3.10节详述的运动矢量的取整过程,其中,mv_center、设置为5的rightShift和设置为0的leftShift作为输入,取整后的运动矢量返回为mv_center。
运动矢量mv_center限幅如下:
mv_center[0]=Clip3(–217,217–1,mv_center[0]) (8-686)
mv_center[1]=Clip3(–217,217–1,mv_center[1]) (8-686)
变量mv_hor_min、mv_ver_min、mv_hor_max和mv_ver_max推导如下:
mv_hor_min=mv_center[0]–deviationA[log2CbWidth–3] (8-743)
mv_ver_min=mv_center[1]–deviationA[log2CbHeight–3] (8-743)
mv_hor_max=mv_center[0]+deviationB[log2CbWidth–3] (8-743)
mv_ver_max=mv_center[1]+deviationB[log2CbHeight–3] (8-743)
如果mvClippingMode设置为0,则变量deviationA和deviationB定义如下:
deviationA[k]={Ta1,Ta2,Ta3,Ta4,Ta5},
deviationB[k]={Tb1,Tb2,Tb3,Tb4,Tb5}。
(在一个示例中,值Ta1至Ta5、Tb1至Tb5可以为如下:
deviationA[k]={16,80,224,512,1088},
deviationB[k]{16,96,240,528,1104}。)
否则,变量deviationA和deviationB通过调用第XXX节详述的过程推导出。
变量hor_max_pic、ver_max_pic、hor_min_pic和ver_min_pic推导如下:
hor_max_pic=(pic_width+CtbSizeY–xCb–cbWidth+1)<<4 (8-743)
ver_max_pic=(pic_height+CtbSizeY–yCb–cbHeight+1)<<4 (8-743)
hor_min_pic=(–CtbSizeY–xCb)<<4 (8-743)
ver_min_pic=(–CtbSizeY–yCb)<<4 (8-743)
表示运动矢量的最大和最小允许的水平分量和垂直分量的输出hor_max、ver_max、hor_min和ver_min推导如下:
hor_max=min(hor_max_pic,mv_hor_max)<<5 (8-743)
ver_max=min(ver_max_pic,mv_ver_max)<<5 (8-743)
hor_min=max(hor_min_pic,mv_hor_min)<<5 (8-743)
ver_min=max(ver_min_pic,mv_ver_min)<<5 (8-743)
在MPEG-5/EVC中使用实施例3的示例1
在本示例中,EIF子块大小等于4×4,在处理第一行R的过程中提取的行的最大数量等于3,dX[0]对应于dHorX,dX[1]对应于dHorY,dY[0]对应于dVerX,dY[1]对应于dVerY。
变量dX[0]、dX[1]、dY[0]和dY[1]具有1/512精度。
8.5.3.7从仿射控制点运动矢量中推导运动矢量阵列的过程
该过程的输入包括:
–当前亮度译码块的左上方样本相对于当前图像的左上方亮度样本的亮度位置(xCb,yCb);
–两个变量cbWidth和cbHeight,表示亮度译码块(coding block)的宽度和高度;
–控制点运动矢量的数量numCpMv;
–控制点运动矢量cpMvLX[cpIdx],其中,cpIdx=0..numCpMv–1,X为0或1;
–参考索引refIdxLX,其中,X为0或1;
该过程的输出包括:
–水平方向上的亮度译码子块的数量(numSbXLX)和垂直方向上的亮度译码子块的数量(numSbYLX),其中,X为0或1;
–水平方向上的亮度译码子块的大小(sizeSbXLX)和垂直方向上的亮度译码子块的大小(sizeSbYLX),其中,X为0或1。
–亮度子块运动矢量阵列mvLX[xSbIdx][ySbIdx],其中,xSbIdx=0..numSbXLX–1,ySbIdx=0..numSbYLX–1,X为0或1;
–色度子块运动矢量阵列mvCLX[xSbIdx][ySbIdx],其中,xSbIdx=0..numSbXLX–1,ySbIdx=0..numSbYLX–1,X为0或1。
变量sizeSbXLX、sizeSbYLX、numSbXLX、numSbYLX和标志clipMV根据8.5.3.8推导出。
……
8.5.3.8仿射子块大小的推导过程
该过程的输入包括:
–两个变量cbWidth和cbHeight,表示亮度译码块(coding block)的宽度和高度;
–控制点运动矢量的数量numCpMv;
–控制点运动矢量cpMvLX[cpIdx],其中,cpIdx=0..numCpMv–1,X为0或1。
该过程的输出包括:
–水平方向上的亮度译码子块的大小sizeSbX和垂直方向上的亮度译码子块的大小sizeSbY;
–水平方向上的亮度译码子块的数量numSbX和垂直方向上的亮度译码子块的数量numSbY;
–标志clipMV,表示通过EIF和MV限幅待处理的当前块。
变量sizeSbX推导如下:
–变量eifSubblockSize设置为4;
–变量eifCanBeApplied推导如下:
–eifCanBeApplied设置为真(TRUE),
–clipMV设置为假(FALSE);
–阵列X[i]和Y[i]推导如下:
–X[0]=0,
–X[1]=(eifSubblockSize+1)*(dX[0]+(1<<9)),
–X[2]=(eifSubblockSize+1)*dY[0],
–X[3]=X[1]+X[2],
–Y[0]=0,
–Y[1]=(eifSubblockSize+1)*dX[1],
–Y[2]=(eifSubblockSize+1)*(dY[1]+(1<<9)),
–Y[3]=Y[1]+Y[2];
–变量Xmax设置为X[i]的最大值,其中,i等于0..3;
–变量Xmin设置为X[i]的最小值,其中,i等于0..3;
–变量Ymax设置为Y[i]的最大值,其中,i等于0..3;
–变量Ymin设置为Y[i]的最小值,其中,i等于0..3;
–变量W设置为(Xmax–Xmin+(1<<9)–1)>>9;
–变量H设置为(Ymax–Ymin+(1<<9)–1)>>9;
–如果(W+2)*(H+2)大于81,则变量clipMV设置为真;
–如果dY[1]小于((–1)<<9),则变量eifCanBeApplied为假;
–如果(max(0,dY[1])+Abs(dX[1]))*(1+eifSubblockSize)大于(1<<9),则变量eifCanBeApplied为假;
–如果eifCanBeApplied为假,则变量sizeSbX和sizeSbY修改如下:
–sizeSbX=max(8,sizeSbX),
–sizeSbY=max(8,sizeSbY)。
……
8.5.4帧间预测样本的解码过程
该过程的输入包括:
–亮度位置(xCb,yCb),表示相对于当前图像的左上方亮度样本的当前译码块(codingblock)的左上方亮度样本;
–两个变量nCbW和nCbH,表示当前译码块的宽度和高度;
–变量numSbXL0、numSbXL1和numSbYL0、numSbYL1,表示水平方向和垂直方向上的亮度译码子块的数量;
–1/16分数样本精度的亮度运动矢量mvL0[xSbIdx][ySbIdx](其中,xSbIdx=0..numSbXL0–1,ySbIdx=0..numSbYL0–1)和mvL1[xSbIdx][ySbIdx](其中,xSbIdx=0..numSbXL1–1,ySbIdx=0..numSbYL1–1);
–修正后的运动矢量refMvL0[xSbIdx][ySbIdx]和refMvL1[xSbIdx][ySbIdx],其中,xSbIdx=0..numSbX–1,ySbIdx=0..numSbY–1;
–1/32分数样本精度的色度运动矢量mmvCL0[xSbIdx][ySbIdx](其中,xSbIdx=0..numSbXL0–1,ySbIdx=0..numSbYL0–1)和mvCL1[xSbIdx][ySbIdx](其中,xSbIdx=0..numSbXL1–1,ySbIdx=0..numSbYL1–1);
–参考索引refIdxL0和refIdxL1;
–预测列表使用标志predFlagL0和predFlagL1;
–变量dmvrAppliedFlag,表示DMVR的使用;
–控制点运动矢量的数量numCpMv;
–控制点运动矢量cpMvL0[cpIdx](其中,cpIdx=0..numCpMv–1)和cpMvL1[cpIdx](其中,cpIdx=0..numCpMv–1)。
该过程的输出包括:
–亮度预测样本组成的(nCbWL)×(nCbHL)阵列predSamplesL,其中,nCbWL和nCbHL如下所述推导出;
–当ChromaArrayType不等于0时,分量Cb的色度预测样本组成的(nCbWC)×(nCbHC)阵列preSamplesCb,其中,nCbWC和nCbHC如下所述推导出;
–当ChromaArrayType不等于0时,分量Cr的色度残差样本组成的(nCbWC)×(nCbHC)阵列predSamplesCr,其中,nCbWC和nCbHC如下所述推导出。
变量nCbWL和nCbHL分别设置为nCbW和nCbH,变量nCbWC和nCbHC分别设置为nCbW/SubWidthC和nCbH/SubHeightC。
假设predSamplesL0L和predSamplesL1L为预测亮度样本值组成的(nCbW)×(nCbH)阵列,当ChromaArrayType不等于0时,假设predSampleL0Cb、predSampleL1Cb、predSampleL0Cr和predSampleL1Cr为预测色度样本值组成的(nCbW/SubWidthC)x(nCbH/SubHeightC)阵列。
在X为0或1的情况下,当predFlagLX等于1时,以下内容适用:
–参考图像由亮度样本的有序二维阵列refPicLXL组成,当ChromaArrayType不等于0时,色度样本组成的两个有序二维阵列refPicLXCb和refPicLXCr通过调用第8.5.4.1节详述的过程推导出,其中,refIdxLX作为该过程的输入。
–当前亮度译码子块(coding subblock)的宽度和高度sbWidth、sbHeight推导如下:
sbWidth=nCbW/numSbXLX (8-701)
sbHeight=nCbH/numSbYLX (8-702)
–如果affine_flag等于1,且变量sbWidth、sbHeight之一小于8,则以下内容适用:
–运动矢量的水平变化dX、运动矢量的垂直变化dY和基本运动矢量mvBaseScaled通过调用第8.5.3.9节详述的过程推导出,其中,亮度译码块宽度nCbW、亮度译码块高度nCbH、控制点运动矢量的数量numCpMv和控制点运动矢量cpMvLX[cpIdx](其中,cpIdx=0..numCpMv–1)作为该过程的输入。
–阵列predSamplesLXL通过调用第8.5.4.3节详述的增强型插值滤波器的插值过程推导出,其中,亮度位置(xSb,ySb)、亮度译码块宽度nCbW、亮度译码块高度nCbH、运动矢量的水平变化dX、运动矢量的垂直变化dY、基本运动矢量mvBaseScaled、参考阵列refPicLXL、样本bitDepthbitDepthY、图像宽度pic_width_in_luma_samples、图像高度pic_height_in_luma_samples和标志clipMV作为该过程的输入。
–如果ChromaArrayType不等于0,则以下内容适用:
–mvBaseScaled[0]=mvBaseScaled[0]/SubWidthC (8-703)
–mvBaseScaled[1]=mvBaseScaled[1]/SubHeightC (8-704)
–阵列predSamplesLXCb通过调用第8.5.4.3节详述的增强型插值滤波器的插值过程推导出,其中,色度位置(xSb/SubWidthC,ySb/SubHeightC)、色度译码块宽度nCbW/subWidthC、亮度译码块高度nCbH/SubHeightC、运动矢量的水平变化dX、运动矢量的垂直变化dY、基本运动矢量mvBaseScaled、参考阵列refPicLXCb、样本bitDepth bitDepthC、图像宽度pic_width_in_luma_samples/SubWidthC、图像高度pic_height_in_luma_samples/SubHeightC和标志clipMV作为该过程的输入。
–阵列predSamplesLXCb通过调用第8.5.4.3节详述的增强性插值滤波器的插值过程推导出,其中,色度位置(xSb/SubWidthC,ySb/SubHeightC)、色度译码块宽度nCbW/subWidthC、色度译码块高度nCbH/SubHeightC、运动矢量的水平变化dX、运动矢量的垂直变化dY、基本运动矢量mvBaseScaled、参考阵列refPicLXCb、样本bitDepthbitDepthC、图像宽度pic_width_in_luma_samples/SubWidthC、图像高度pic_height_in_luma_samples/SubHeightC和标志clipMV作为该过程的输入。
……
8.5.4.3增强型插值滤波器的插值过程
该过程的输入包括:
–位置(xCb,yCb),以整样本为单位;
–两个变量cbWidth和cbHeight,表示当前译码块的宽度和高度;
–运动矢量的水平变化dX;
–运动矢量的垂直变化dY;
–运动矢量mvBaseScaled;
–选定的参考图像样本阵列refPicLX;
–样本位深度bitDepth;
–图像的宽度pic_width,以样本为单位;
–图像的高度pic_height,以样本为单位;
–clipMV,表示是否要应用MV限幅。
该过程的输出包括:
–预测样本值组成的(cbWidth)x(cbHeight)阵列predSamplesLX。
每个1/32分数像样本位置p(等于xFrac或yFrac)的插值滤波器系数T[p]如表8-15所示。
变量shift0、shift1、offset0和offset1推导如下:
shift0设置为bitDepth–8,offset0等于0,
shift1设置为12–shift0,offset1等于2shift1–1。
变量hor_max、ver_max、hor_min和ver_min通过调用8.5.4.5详述的过程推导出,其中,以整样本为单位的位置(xCb,yCb)、表示当前译码块(coding block)的宽度和高度的两个变量cbWidth和cbHeight、运动矢量的水平变化dX、运动矢量的垂直变化dY、运动矢量mvBaseScaled、图像的以样本为单位的宽度pic_width、图像的以样本为单位的高度pic_height以及标志clipMV作为该过程的输入,hor_max、ver_max、hor_min和ver_min作为该过程的输出。
当x=–1..cbWidth且y=–1..cbHeight时,以下内容适用:
–运动矢量mvX推导如下:
mvX[0]=(mvBaseScaled[0]+dX[0]*x+dY[0]*y) (8-728)
mvX[1]=(mvBaseScaled[1]+dX[1]*x+dY[1]*y) (8-729)
mvX[0]=Clip3(hor_min,hor_max,mvX[0]) (8-730)
mvX[1]=Clip3(ver_min,ver_max,mvX[1]) (8-731)
–变量xInt、yInt、xFrac和yFrac推导如下:
xInt=xCb+(mvX[0]>>9)+x (8-730)
yInt=yCb+(mvX[1]>>9)+y (8-731)
xFrac=(mvX[0]>>4)&31 (8-732)
yFrac=(mvX[1]>>4)&31 (8-733)
–变量A和B推导如下:
A=(refPicLX[xInt][yInt]*T[xFrac][0]+
+refPicLX[xInt+1][yInt]*T[xFrac][1]+offset0)>>shift0 (8-736)
B=(refPicLX[xInt][yInt+1]*T[xFrac][0]+
+refPicLX[xInt+1][yInt+1]*T[xFrac][1]+offset0)>>shift0 (8-737)
–与位置(x,y)对应的样本值bx,y推导如下:
bx,y=(A*T[yFrac][0]+B*T[yFrac][1]+offset1)>>shift1 (8-740)
增强型插值滤波器系数eF[]表示为{–1,10,–1}。
变量shift2、shift3、offset2和offset3推导如下:
shift2设置为max(bit_depth–11,0),offset2等于2shift2–1,
shift3设置为(6–max(bit_depth–11,0)),offset3等于2shift3–1。
当x=0..cbWidth–1且y=–1..cbHeight时,以下内容适用:
–hx,y=(eF[0]*bx–1,y+eF[1]*bx,y+eF[2]*bx+1,y+offset2)>>shift2 (8-741)
当x=0..cbWidth–1且y=0..cbHeight–1时,以下内容适用:
–predSamplesLXL[x][y]=Clip3(0,(1<<bitDepth)–1,
(eF[0]*hx,y–1+eF[1]*hx,y+eF[2]*bx,y+1+offset3)>>shift3) (8-742)
表1:每个1/32分数样本位置p的插值滤波器系数T[p]的详述
/>
……
8.5.4.5仿射运动矢量的限幅参数推导
该过程的输入包括:
–位置(xCb,yCb),以整样本为单位;
–两个变量cbWidth和cbHeight,表示当前译码块的宽度和高度;
–运动矢量的水平变化dX;
–运动矢量的垂直变化dY;
–运动矢量mvBaseScaled;
–图像的宽度pic_width,以样本为单位;
–图像的高度pic_height,以样本为单位。
–标志mvClippingMode,表示边界框约束条件的类型。
该过程的输出包括:
–hor_max、ver_max、hor_min和ver_min,表示运动矢量的最大和最小允许的水平分量和垂直分量。
中心运动矢量mv_center推导如下:
mv_center[0]=(mvBaseScaled[0]+dX[0]*(cbWidth>>1)+dY[0]*(cbHeight>>1)) (8-743)
mv_center[1]=(mvBaseScaled[1]+dX[1]*(cbWidth>>1)+dY[1]*(cbHeight>>1)) (8-743)
调用第8.5.3.10节详述的运动矢量的取整过程,其中,mv_center、设置为5的rightShift和设置为0的leftShift作为输入,取整后的运动矢量返回为mv_center。
运动矢量mv_center限幅如下:
mv_center[0]=Clip3(–217,217–1,mv_center[0]) (8-686)
mv_center[1]=Clip3(–217,217–1,mv_center[1]) (8-686)
变量mv_hor_min、mv_ver_min、mv_hor_max和mv_ver_max推导如下:
mv_hor_min=mv_center[0]–deviationA[log2CbWidth–3] (8-743)
mv_ver_min=mv_center[1]–deviationA[log2CbHeight–3] (8-743)
mv_hor_max=mv_center[0]+deviationB[log2CbWidth–3] (8-743)
mv_ver_max=mv_center[1]+deviationB[log2CbHeight–3] (8-743)
如果mvClippingMode设置为0,则变量deviationA和deviationB定义如下:
deviationA[k]={16,80,224,512,1088},
deviationB[k]={16,96,240,528,1104}。
否则,变量deviationA和deviationB通过调用第XXX节详述的过程推导出。
变量hor_max_pic、ver_max_pic、hor_min_pic和ver_min_pic推导如下:
hor_max_pic=(pic_width+CtbSizeY–xCb–cbWidth+1)<<4 (8-743)
ver_max_pic=(pic_height+CtbSizeY–yCb–cbHeight+1)<<4 (8-743)
hor_min_pic=(–CtbSizeY–xCb)<<4 (8-743)
ver_min_pic=(–CtbSizeY–yCb)<<4 (8-743)
表示运动矢量的最大和最小允许的水平分量和垂直分量的输出hor_max、ver_max、hor_min和ver_min推导如下:
hor_max=min(hor_max_pic,mv_hor_max)<<5 (8-743)
ver_max=min(ver_max_pic,mv_ver_max)<<5 (8-743)
hor_min=max(hor_min_pic,mv_hor_min)<<5 (8-743)
ver_min=max(ver_min_pic,mv_ver_min)<<5 (8-743)
实施例4
算法1EIF和基于块的仿射运动补偿的适应性使用(基本算法)
适应性使用EIF和子块仿射运动补偿的基本算法如下所述。
1.根据仿射运动模型参数,计算最佳子块大小M×N。
2.如果最优子块宽度M和最优子块高度N都大于或等于8,则执行M×N子块的子块运动补偿。
3.否则,检查EIF适用性条件:
a.EIF适用性条件1;
b.EIF适用性条件2;
c……
d.EIF适用性条件P;
e.如果所有EIF适用性条件都满足,则执行EIF运动补偿。EIF运动补偿过程包括:
i.检查EIF适用性条件P+1,
ii.检查EIF适用性条件P+2,
iii……
iv.检查EIF适用性条件P+K,
v.如果EIF适用性条件P+1至P+K中的一个条件不满足,则
–计算满足条件(未满足)的第一运动矢量范围,
–将第二运动矢量范围设置为第一运动矢量范围,
vi.否则,
–计算第三运动矢量范围,
–将第二运动矢量范围设置为第三运动矢量范围,
vii.对根据仿射模型计算的运动矢量进行限幅,以保证这些矢量在第二运动矢量范围内;
f.否则,设置M=max(M,8),N=max(N,8),并执行M×N子块的子块运动补偿。
在一些示例中,P和K可以等于0,表示如果P等于0,则上述算法不包括步骤3.a至步骤3.d;如果K等于0,则上述算法不包括步骤3.e.i至步骤3.e.v。
这种基本算法的一些步骤的详细信息如下所述。
步骤1.最优子块大小计算
一种推导仿射子块大小的方法以仿射控制点的运动矢量差值和仿射块的宽度和高度为基础。子块大小M×N可以根据等式(2-1)推导出,其中,MvPre表示运动矢量精度(例如,HEVC标准中的1/4像素精度或VVC和EVC标准中的1/16像素精度),仿射运动模型参数dHorX、dHorY、dVerX和dVerY是根据用于6参数模型的等式(1-4)至等式(1-7)和用于4参数模型的等式(1-8)至等式(1-11)计算的。
如有必要,等式(2-1)中推导出的M和N会调小,以确保w和h分别可以被M和N整除。
另一种方法是建立三维查找表,然后根据运动矢量差值、块大小和运动矢量精度直接从查找表中获取子块大小。例如,将M设置为Table_M[x][y][z],其中,x等于max(abs(v1x-v0x),abs(v1y-v0y)),y等于仿射块宽度,z等于运动矢量精度;将N设置为Table_N[x][y][z],其中,x等于max(abs(v2x-v0x),abs(v2y-v0y)),y等于仿射块高度,z等于运动矢量精度。
在某个示例性实现方式中,步骤1实施如下:
8.5.3.8仿射子块大小的推导过程
该过程的输入包括:
–两个变量cbWidth和cbHeight,表示亮度译码块(coding block)的宽度和高度;
–控制点运动矢量的数量numCpMv;
–控制点运动矢量cpMvLX[cpIdx],其中,cpIdx=0..numCpMv–1,X为0或1;
–预测列表使用率标志predFlagLX,其中,X为0或1。
该过程的输出包括:
–水平方向上的亮度译码子块的大小sizeSbX和垂直方向上的亮度译码子块的大小sizeSbY;
sizeSbX设置为cbWidth,sizeSbY设置为cbHeight。
当predFlagLX等于1时,以下内容适用,其中,X为0和1:
–运动矢量的水平变化dX、运动矢量的垂直变化dY和基本运动矢量mvBaseScaled通过调用第8.5.3.9节详述的过程推导出,其中,亮度译码块宽度cbWidth、亮度译码块高度cbHeight、控制点运动矢量的数量numCpMv和控制点运动矢量cpMvLX[cpIdx](其中,cpIdx=0..numCpMv–1)作为该过程的输入。
–变量mvWx和mvWy推导如下:
–mvWx=max(abs(dX[0]),abs(dX[1])),
–mvWy=max(abs(dY[0]),abs(dY[1]))。
–变量sizeSbXTemp根据mvWx的值如表8-5所示。
–变量sizeSbYTemp根据mvWy的值如表8-5所示。
–变量sizeSbX修改如下:
–sizeSbX=min(sizeSbX,sizeSbXTemp)。
–变量sizeSbY修改如下:
–sizeSbY=min(sizeSbY,sizeSbYTemp)。
表8-5:mvWx的各种输入值的sizeSbXTemp的详述
mvWx 0 1 2 3 4 >4
sizeSbX cbWidth 32 16 8 8 4
表8-5:mvWy的各种输入值的sizeSbYTemp的详述
mvWx 0 1 2 3 4 >4
sizeSbY cbHeight 32 16 8 8 4
其中,第8.5.3.9节如下所述。
8.5.3.9从控制点运动矢量中推导仿射运动模型参数的过程
该过程的输入包括:
–两个变量cbWidth和cbHeight,表示亮度译码块(coding block)的宽度和高度;
–控制点运动矢量的数量numCpMv;
–控制点运动矢量cpMvLX[cpIdx],其中,cpIdx=0..numCpMv–1,X为0或1。
该过程的输出包括:
–运动矢量的水平变化dX;
–运动矢量的垂直变化dY;
–与亮度译码块的左上顶点对应的运动矢量mvBaseScaled。
变量log2CbW(也表示为log2CbWidth)和log2CbH(也表示为log2CbHeight)推导如下:
log2CbW=Log2(cbWidth) (8-688)
log2CbH=Log2(cbHeight) (8-689)
运动矢量的水平变化dX推导如下:
dX[0]=(cpMvLX[1][0]–cpMvLX[0][0])<<(7–log2CbW) (8-690)
dX[1]=(cpMvLX[1][1]–cpMvLX[0][1])<<(7–log2CbW) (8-691)
运动矢量的垂直变化dY推导如下:
–如果numCpMv等于3,则dY推导如下:
dY[0]=(cpMvLX[2][0]–cpMvLX[0][0])<<(7–log2CbH) (8-692)
dY[1]=(cpMvLX[2][1]–cpMvLX[0][1])<<(7–log2CbH) (8-693)
–否则(numCpMv等于2),dY推导如下:
dY[0]=–dX[1] (8-694)
dY[1]=dX[0] (8-695)
与亮度译码块的左上顶点对应的运动矢量mvBaseScaled推导如下:
mvBaseScaled[0]=cpMvLX[0][0]<<7 (8-696)
mvBaseScaled[1]=cpMvLX[0][1]<<7 (8-697)
步骤3.EIF适用性条件
例如,EIF适用性条件可以如下所述。
1.内存带宽限制条件。这种限制条件保证了与当前仿射块(EIF块)对应的参考图像中的区域的大小不超过预定义的阈值T。与当前仿射块对应的参考图像中的区域的定义的示例如图9所示。
2.内部缓冲区限制为R行,其中,R是预定义值,例如可以是3、4、5或以上。这表示,在处理当前块(子块)的一行(line/row)的过程中,最多可以使用参考图像中的R行。
3.内存存取需要按顺序进行,这表示如果提取参考图像的第j行来获取当前块的第i行,则仅提取第(j+1)行、第(j+2)行等来获取当前块的第(i+1)行。
4.对于当前块的所有行(第一行除外),最多只能额外提取一行。
5.用于仿射运动模型参数的不等式如下所述:
a.其中,a、b、c、d、e、f、g、h是预定义值或正/负无穷大;
b.其中,a和b是预定义值。
在一个具有特定EIF适用性条件的示例中,基本算法如下所述。
算法2.具有特定EIF适用性条件的EIF和基于块的仿射运动补偿的适应性使用
1.根据仿射运动模型参数,计算最佳子块大小M×N。
2.如果最优子块宽度M和最优子块高度N都大于或等于8,则执行M×N子块的子块运动补偿。
3.否则,检查EIF适用性条件:
a.EIF适用性条件1:内部缓冲区限制为R行,其中,R是预定义值,例如可以是3、4、5或以上。这表示,在处理当前块(子块)的一行(line/row)的过程中,最多可以使用参考图像中的R行。
b.EIF适用性条件2:内存存取需要按顺序进行,这表示如果提取参考图像的第j行来获取当前块的第i行,则仅提取第(j+1)行、第(j+2)行等来获取当前块的第(i+1)行。
c.EIF适用性条件3:对于当前块的所有行(第一行除外),最多只能额外提取一行。
d……
e.EIF适用性条件P。
f.如果所有EIF适用性条件都满足,则执行EIF运动补偿。EIF运动补偿过程包括:
i.检查EIF适用性条件P+1:检查内存带宽限制条件。这种限制条件保证了与当前仿射块(EIF块)对应的参考图像中的区域的大小不超过预定义的阈值T。与当前仿射块对应的参考图像中的区域的定义的示例如图9所示。
ii……
iii.检查EIF适用性条件P+K。
iv.如果EIF适用性条件P+1至P+K中的一个条件不满足,则
1.计算满足条件(未满足)的第一运动矢量范围,
2.将第二运动矢量范围设置为第一运动矢量范围。
v.否则,
1.计算第三运动矢量范围,
2.将第二运动矢量范围设置为第三运动矢量范围。
vi.对根据仿射模型计算的运动矢量进行限幅,以保证这些矢量在第二运动矢量范围内。
g.否则,设置M=max(M,8),N=max(N,8),并执行M×N子块的子块运动补偿。
在一些示例中,P可以等于3,这表示上述算法不包括步骤3.d和步骤3.e。在一些示例中,K可以等于1,这表示上述算法不包括步骤3.f.ii和步骤3.f.iii。
在一个示例性实现方式中,步骤3.a至步骤3.e实施如下:
当predFlagLX等于1时,以下内容适用,其中,X为0和1:
运动矢量的水平变化dX、运动矢量的垂直变化dY和基本运动矢量mvBaseScaled通过调用第8.5.3.9节详述的过程推导出,其中,亮度译码块宽度cbWidth、亮度译码块高度cbHeight、控制点运动矢量的数量numCpMv和控制点运动矢量cpMvLX[cpIdx](其中,cpIdx=0..numCpMv–1)作为该过程的输入。
如果dY[1]小于((–1)<<9),则变量eifCanBeAppliedX为假(FALSE)。
–否则,
–如果(max(0,dY[1])+Abs(dX[1]))*(1+eifSubblockSize)大于(1<<9),则变量eifCanBeAppliedX为假。
其中,第8.5.3.9节如上述示例所述。
变量eifCanBeAppliedX为真(TRUE)在这里表示所有EIF适用性条件1至P(算法2的步骤3.a至步骤3.e)满足。
算法2的步骤3.f.i的详细内容提供如下。
使用EIF时的仿射块的内存存取消耗计算
当EIF用于大小为W×H的仿射块的运动补偿时,执行以下步骤计算内存存取消耗。
1.推导仿射块的每个顶点样本的位置。
2.推导块(将其表示为EIF中间块)的每个顶点样本的位置(在EIF的步骤3中使用)。
3.推导EIF中间块的每个顶点样本的运动矢量。
4.推导参考图像中的变换块的位置。
5.推导变换块的边界框大小。
6.根据变换块大小和滤波器长度,获取内存存取消耗(EIF使用双线性插值,因此滤波器长度等于2)。
这些步骤的实施细节如下所述。
步骤1.推导仿射块的每个顶点样本的位置
将(x0,y0)表示为仿射块的左上方样本的坐标。然后,仿射块的位置可以通过顶点样本的坐标(左上、右上、左下、右下)来描述:
步骤2.推导EIF中间块的每个顶点样本的位置
对(W+2)×(H+2)块执行执行EIF的步骤2中的双线性插值(在每个边界添加一个像素边距(margin))。这个(W+2)×(H+2)块表示为中间EIF块。中间EIF块的顶点样本的坐标(左上、右上、左下、右下)为:
仿射块和中间EIF块的顶点的坐标如图8所示。
步骤3.推导EIF中间块的每个顶点样本的运动矢量
根据等式(1-1)推导运动矢量。在一些示例中,运动矢量限幅可以用于保证不使用当前图像之外的具有一个CTU大小的边距的样本。
步骤4.推导参考图像中的变换块的位置
将矢量Vi的水平分量和垂直分量分别表示为Vix和Viy
参考图像中的变换块的位置可以通过顶点样本的坐标(左上、右上、左下、右下)来描述:
步骤5.推导变换块的边界框大小
参考图像中的变换块的边界框大小可以根据以下等式计算,其中,max函数返回参数的最大值,min函数返回参数的最小值:
参考图像中的变换块的位置和对应的边界框如图9所示。
在一个示例中,W'=Ceil(W')和H'=Ceil(H')在等式(2-5)之后执行。
在另一个示例中,W'=Floor(W')和H'=Floor(H')在等式(2-5)之后执行。
步骤6.获取内存存取消耗
一个参考图像中的仿射块的内存存取消耗可以通过变换块的边界框大小和仿射运动块T'的MC插值滤波器的长度(例如2、4、6、8等)来决定:
Mem=(W′+T′-1)*(H′+T′-1) (2-6)
对于EIF,使用的是双线性插值,因此滤波器长度为2,内存存取消耗等于
Mem=(W′+1)*(H′+1) (2-7)
EIF的仿射运动模型限制条件
将最坏情况下的目标内存带宽表示为其中,W和H分别表示当前块的宽度和高度,Swc表示根据最坏情况下的目标内存带宽的当前块的最大允许内存存取消耗。为了保证EIF内存带宽不大于最坏情况下的目标内存带宽,仿射块的内存存取消耗应当限制为以下条件:
或者
(W′+1)*(H′+1)≤T*W*H (2-8)
或者
(W′+1)*(H′+1)≤Swc
值T可以在编码器和解码器侧预定义,也可以在编解码器视频序列的参数集中指定,例如在序列级、图像级、条带级等的参数集中指定。
在一个示例中,如果每个样本的最大允许内存存取消耗定义为4×4块的内存存取消耗,则T可以推导如下,其中,T表示插值滤波器的长度:
当T'等于6,限制条件如下所述:
(W′+1)*(H′+1)≤(4+6-1)*(4+6-1) (2-10)
在另一个示例中,如果每个样本的最大允许内存存取消耗定义为8×8块的内存存取消耗,则T可以推导如下,其中,T表示插值滤波器的长度:
在另一个示例中,每个样本的最大允许内存存取消耗可以根据当前块的预测方向不同,即,在当前块是单向预测时,使用阈值TUNI,在当前块是双向预测时,使用阈值TBI
例如,TUNI定义为4×4块的内存存取消耗,TBI定义为8×4块的内存存取消耗,则:
又如,TUNI定义为4×4块的内存存取消耗,TBI定义为8×8块的内存存取消耗,则:
上面示例中的T'表示用于平动运动块的运动补偿(motion compensation,MC)插值滤波器的长度,例如2、4、6、8等。
T、TUNI和TBI的值可能取决于当前块的宽度和高度。
对于双向预测仿射块,上述约束条件分别应用于列表0(list0)和列表1(list1)。
在另一个示例中,列表0和列表1的内存存取消耗计算为Mem0和Mem1,并且这些元素的总和有限制。例如,如果TBI定义为8×8块的内存存取消耗,则使用以下限制条件:
Mem0+Mem1≤2*(8+T′-1)*(8+T′-1) (2-16)
如果仿射块的运动矢量不能遵循约束条件(2-8),则块不能使用EIF运动补偿。
在一个示例中,如果仿射块不能使用EIF运动补偿,则使用最小子块大小为8×8的子块运动补偿,而不是使用EIF。
在另一个示例中,如果仿射块不能使用EIF运动补偿,则使用为仿射块的中心计算的运动矢量的平动运动补偿,而不是使用EIF。
在另一个示例中,如果仿射块不能使用EIF运动补偿,则根据W'和H'在不等式(2-8)满足时推导边界框(bounding box)。例如,W'和H'可以计算为:
之后,在根据等式(1-1)计算EIF中的MV的过程中,运动矢量的水平分量被限幅到范围[mv0x,mv0x+W′-1],运动矢量的垂直分量被限幅到范围[mv0y,mv0y+H′-1]。在一个示例中,如果块宽高比为k(W=kH),则H'的计算方式包括求解以下等式:
k(H′)2+(k+1)H′+1-TWH=0
执行以下步骤:H'=Floor(H'),W'=kH'。
在另一个示例中,步骤3.f.i和步骤3.f.iv.1实施如下。
使用EIF时的仿射块的内存存取消耗计算
执行以下步骤来计算内存存取消耗。
7.推导W×H子块的每个顶点样本的位置。
8.推导子块(将其表示为EIF中间子块)的每个顶点样本的位置(在EIF的步骤3中使用)。
9.推导EIF中间子块的每个顶点样本的运动矢量。
10.推导参考图像中的变换子块的位置。
11.推导变换子块的边界框大小。
12.根据变换子块大小的边界框大小以及滤波器长度(EIF使用双线性插值,因此滤波器长度等于2),获取内存存取消耗。
这些步骤的实施细节如下所述。
步骤1.推导仿射子块的每个顶点样本的位置
将(x0,y0)表示为仿射块的左上方样本的坐标。在本实施例中,为了计算内存存取消耗,假设仿射块的左上方样本的坐标等于(1,1)。位置(x0,y0)对于内存存取消耗计算没有意义,如果(x0,y0)=(1,1),等式就更简单。
然后,仿射块的位置可以通过顶点样本的坐标(左上、右上、左下、右下)来描述:
步骤2.推导EIF中间子块的每个顶点样本的位置
由于EIF在步骤3中使用3抽头滤波器,因此对(W+2)×(H+2)子块执行EIF的步骤2中的双线性插值(在每个边界添加一个像素边距(margin))。这个(W+2)×(H+2)子块表示为中间EIF子块。中间EIF块的顶点样本的坐标(左上、右上、左下、右下)为:
仿射子块和中间EIF子块的顶点的坐标如图8所示。
步骤3.推导EIF中间子块的每个顶点样本的运动矢量
初始运动矢量(mv0x,mv0y)对于内存存取消耗计算没有意义,如果(mv0x,mv0y)=(dHorX+dVerX,dHorY+dVerY),等式就更简单。
根据等式(1-1)推导运动矢量。
步骤4.推导参考图像中的变换块的位置
参考图像中的变换块的位置可以通过顶点样本的坐标(左上、右上、左下、右下)来描述:
步骤5.推导变换子块的边界框大小
参考图像中的变换子块的边界框大小可以根据以下等式计算,其中,max函数返回参数的最大值,min函数返回参数的最小值:
参考图像中的变换子块的位置和对应的边界框如图9所示。
在一个示例中,W'=Ceil(W')和H'=Ceil(H')在等式(3-5)之后执行。
在另一个示例中,W'=Floor(W')和H'=Floor(H')在等式(3-5)之后执行。
步骤6.获取内存存取消耗
一个参考图像中的仿射子块的内存存取消耗可以通过变换子块大小对应的边界框大小和仿射运动块T'的MC插值滤波器的长度(例如2、4、6、8等)来决定:
Mem=(W′+T′-1)*(H′+T′-1) (3-6)
对于EIF,使用的是双线性插值,因此滤波器长度为2,内存存取消耗等于
Mem=(W′+1)*(H′+1) (3-7)
EIF的仿射运动模型限制条件
将最坏情况下的目标内存带宽表示为其中,W和H分别表示当前子块的宽度和高度,Swc表示根据最坏情况下的目标内存带宽的当前子块的最大允许内存存取消耗。为了保证EIF内存带宽不大于最坏情况下的目标内存带宽,EIF子块的内存存取消耗应当限制为以下条件:
或者
(W′+1)*(H′+1)≤T*W*H (3-8)
或者
(W′+1)*(H′+1)≤Swc
值T可以在编码器和解码器侧预定义,也可以在编解码器视频序列的参数集中指定,例如在序列级、图像级、条带级等的参数集中指定。
在一个示例中,如果每个样本的最大允许内存存取消耗定义为4×4块的内存存取消耗,则T可以推导如下,其中,T表示插值滤波器的长度:
当T'等于6,限制条件如下所述:
(W′+1)*(H′+1)≤(4+6-1)*(4+6-1) (3-10)
在另一个示例中,如果每个样本的最大允许内存存取消耗定义为8×8块的内存存取消耗,则T可以推导如下,其中,T表示插值滤波器的长度:
在另一个示例中,每个样本的最大允许内存存取消耗可以根据当前块的预测方向不同,即,在当前块是单向预测时,使用阈值TUNI,在当前块是双向预测时,使用阈值TBI
例如,TUNI定义为4×4块的内存存取消耗,TBI定义为8×4块的内存存取消耗,则:
又如,TUNI定义为4×4块的内存存取消耗,TBI定义为8×8块的内存存取消耗,则:
上面示例中的T'表示用于平动运动块的运动补偿(motion compensation,MC)插值滤波器的长度,例如2、4、6、8等。
T、TUNI和TBI的值可能取决于当前块的宽度和高度。
对于双向预测仿射块,上述约束条件分别应用于列表0(list0)和列表1(list1)。
在另一个示例中,列表0和列表1的内存存取消耗计算为Mem0和Mem1,并且这些元素的总和有限制。例如,如果TBI定义为8×8块的内存存取消耗,则使用以下限制条件:
Mem0+Mem1≤2*(8+T′-1)*(8+T′-1) (3-16)
如果仿射块的运动矢量不能遵循约束条件(3-8),则块不能使用EIF运动补偿。
在一个示例中,如果仿射块不能使用EIF运动补偿,则使用最小子块大小8×8的子块运动补偿,而不是使用EIF。
在另一个示例中,如果仿射块不能使用EIF运动补偿,则使用为仿射块的中心计算的运动矢量的平动运动补偿,而不是使用EIF。
在另一个示例中,如果仿射块不能使用EIF运动补偿,则根据W'和H'在不等式(3-8)满足时推导边界框(bounding box)。例如,W'和H'可以计算为:
之后,在根据等式(1-1)计算EIF中的MV的过程中,运动矢量的水平分量被限幅到范围[mv0x,mv0x+W′-1],运动矢量的垂直分量被限幅到范围[mv0y,mv0y+H′-1]。在一个示例中,如果块宽高比为k(W=kH),则H'的计算方式包括求解以下等式:
k(H′)2+(k+1)H′+1-TWH=0
执行以下步骤:H'=Floor(H'),W'=kH'。
在一个示例性实现中,算法2的步骤3.f.i和步骤3.f.iii实施如下:
变量clipMVX推导如下,其中,X为0和1:
–clipMVX设置为假(FALSE)。
变量eifSubblockSize设置为4。
当predFlagLX等于1时,以下内容适用,其中,X为0和1:
–运动矢量的水平变化dX、运动矢量的垂直变化dY和基本运动矢量mvBaseScaled通过调用第8.5.3.9节详述的过程推导出,其中,亮度译码块宽度cbWidth、亮度译码块高度cbHeight、控制点运动矢量的数量numCpMv和控制点运动矢量cpMvLX[cpIdx](其中,cpIdx=0..numCpMv–1)作为该过程的输入。
–变量mvWx和mvWy推导如下:
–mvWx=max(abs(dX[0]),abs(dX[1])),
–mvWy=max(abs(dY[0]),abs(dY[1]))。
–变量sizeSbXTemp根据mvWx的值如表8-5所示。
–变量sizeSbYTemp根据mvWy的值如表8-5所示。
–变量sizeSbX修改如下:
–sizeSbX=min(sizeSbX,sizeSbXTemp)。
–变量sizeSbY修改如下:
–sizeSbY=min(sizeSbY,sizeSbYTemp)。
表8-5:mvWx的各种输入值的sizeSbXTemp的详述
mvWx 0 1 2 3 4 >4
sizeSbX cbWidth 32 16 8 8 4
表8-5:mvWy的各种输入值的sizeSbYTemp的详述
mvWx 0 1 2 3 4 >4
sizeSbY cbHeight 32 16 8 8 4
–变量clipMVX修改如下:
–阵列X[i]和Y[i]推导如下:
–X[0]=0,
–X[1]=(eifSubblockSize+1)*(dX[0]+(1<<9)),
–X[2]=(eifSubblockSize+1)*dY[0],
–X[3]=X[1]+X[2],
–Y[0]=0,
–Y[1]=(eifSubblockSize+1)*dX[1],
–Y[2]=(eifSubblockSize+1)*(dY[1]+(1<<9)),
–Y[3]=Y[1]+Y[2];
–变量Xmax设置为X[i]的最大值,其中,i等于0..3;
–变量Xmin设置为X[i]的最小值,其中,i等于0..3;
–变量Ymax设置为Y[i]的最大值,其中,i等于0..3;
–变量Ymin设置为Y[i]的最小值,其中,i等于0..3;
–变量W设置为(Xmax–Xmin+(1<<9)–1)>>9;
–变量H设置为(Ymax–Ymin+(1<<9)–1)>>9;
–如果(W+2)*(H+2)大于81,则变量clipMVX设置为真(TRUE);
变量eifCanBeApplied和clipMV推导如下:
–clipMV=clipMV0|clipMV1。
变量clipMV为真在这里表示内存带宽EIF适用性条件不满足,需要进一步的MV限幅(算法2的步骤3.f.iv)。
在一个示例中,步骤3.f.iv和步骤3.f.v实施如下。
8.5.4.5仿射运动矢量的限幅参数推导
该过程的输入包括:
–位置(xCb,yCb),以整样本为单位;
–两个变量cbWidth和cbHeight,表示当前译码块(coding block)的宽度和高度;
–运动矢量的水平变化dX;
–运动矢量的垂直变化dY;
–运动矢量mvBaseScaled;
–图像的宽度pic_width,以样本为单位;
–图像的高度pic_height,以样本为单位;
–标志clipMV,表示是否要应用MV限幅。
该过程的输出包括:
–表示运动矢量的最大和最小允许的水平分量和垂直分量的hor_max、ver_max、hor_min和ver_min。
中心运动矢量mv_center推导如下:
mv_center[0]=(mvBaseScaled[0]+dX[0]*(cbWidth>>1)+dY[0]*(cbHeight>>1)) (8-743)
mv_center[1]=(mvBaseScaled[1]+dX[1]*(cbWidth>>1)+dY[1]*(cbHeight>>1)) (8-743)
调用第8.5.3.10节详述的运动矢量的取整过程,其中,mv_center、设置为5的rightShift和设置为0的leftShift作为输入,取整后的运动矢量返回为mv_center。
运动矢量mv_center限幅如下:
mv_center[0]=Clip3(–217,217–1,mv_center[0]) (8-686)
mv_center[1]=Clip3(–217,217–1,mv_center[1]) (8-686)
变量hor_max_pic、ver_max_pic、hor_min_pic和ver_min_pic推导如下:
hor_max_pic=(pic_width+128–xCb–cbWidth)<<4 (8-743)
ver_max_pic=(pic_height+128–yCb–cbHeight)<<4 (8-743)
hor_min_pic=(–128–xCb)<<4 (8-743)
ver_min_pic=(–128–yCb)<<4 (8-743)
如果clipMV为假(FALSE),则表示运动矢量的最大和最小允许的水平分量和垂直分量的输出变量hor_max、ver_max、hor_min和ver_min推导如下:
hor_max=hor_max_pic<<5 (8-743)
ver_max=ver_max_pic<<5 (8-743)
hor_min=hor_min_pic<<5 (8-743)
ver_min=ver_min_pic,<<5 (8-743)
如果clipMV为真(TRUE),则应用以下步骤:
–变量mv_hor_min、mv_ver_min、mv_hor_max和mv_ver_max推导如下:
mv_hor_min=mv_center[0]–deviationMV[log2CbWidth–3] (8-743)
mv_ver_min=mv_center[1]–deviationMV[log2CbHeight–3] (8-743)
mv_hor_max=mv_center[0]+deviationMV[log2CbWidth–3] (8-743)
mv_ver_max=mv_center[1]+deviationMV[log2CbHeight–3] (8-743)
当k=0..4时,阵列deviationMV表示为deviationMV[k]={64,128,272,560,1136}。
–变量hor_max、ver_max、hor_min和ver_min推导如下:
hor_max=min(hor_max_pic,mv_hor_max)<<5 (8-743)
ver_max=min(ver_max_pic,mv_ver_max)<<5 (8-743)
hor_min=max(hor_min_pic,mv_hor_min)<<5 (8-743)
ver_min=max(ver_min_pic,mv_ver_min)<<5 (8-743)
在MPEG-5/EVC中使用实施例4的示例1
在本示例中,EIF子块大小等于4×4,在处理第一行R的过程中提取的行的最大数量等于3,dX[0]对应于dHorX,dX[1]对应于dHorY,dY[0]对应于dVerX,dY[1]对应于dVerY。
变量dX[0]、dX[1]、dY[0]和dY[1]具有1/512精度。
8.5.3.7从仿射控制点运动矢量中推导运动矢量阵列的过程
该过程的输入包括:
–当前亮度译码块(coding block)的左上方样本相对于当前图像的左上方亮度样本的亮度位置(xCb,yCb);
–两个变量cbWidth和cbHeight,表示亮度译码块的宽度和高度;
–控制点运动矢量的数量numCpMv;
–控制点运动矢量cpMvLX[cpIdx],其中,cpIdx=0..numCpMv–1,X为0或1;
–预测列表使用率标志predFlagLX,其中,X为0或1;
–参考索引refIdxLX,其中,X为0或1。
该过程的输出包括:
–水平方向上的亮度译码子块的数量numSbX和垂直方向上的亮度译码子块的数量numSbY;
–水平方向上的亮度译码子块的大小sizeSbX和垂直方向上的亮度译码子块的大小sizeSbY;
–亮度子块运动矢量阵列mvLX[xSbIdx][ySbIdx],其中,xSbIdx=0..numSbX–1,ySbIdx=0..numSbY–1,X为0或1;
–色度子块运动矢量阵列mvCLX[xSbIdx][ySbIdx],其中,xSbIdx=0..numSbX–1,ySbIdx=0..numSbY–1,X为0或1。
变量sizeSbX、sizeSbY、numSbX、numSbY和标志clipMV根据8.5.3.8推导出。
当predFlagLX等于1时,以下内容适用,其中,X为0和1:
–运动矢量的水平变化dX、运动矢量的垂直变化dY和基本运动矢量mvBaseScaled通过调用第8.5.3.9节详述的过程推导出,其中,亮度译码块宽度cbWidth、亮度译码块高度cbHeight、控制点运动矢量的数量numCpMv和控制点运动矢量cpMvLX[cpIdx](其中,cpIdx=0..numCpMv–1)作为该过程的输入。
–当ySbIdx=0..numSbY–1时,
–当xSbIdx=0..numSbX–1时,
–亮度运动矢量mvLX[xSbIdx][ySbIdx]推导如下:
xPosSb=sizeSbX*xSbIdx+(sizeSbX>>1) (8-682)
yPosSb=sizeSbY*ySbIdx+(sizeSbY>>1) (8-683)
mvLX[xSbIdx][ySbIdx][0]=(mvBaseScaled[0]+dX[0]*xPosSb+dY[0]*yPosSb)(8-684)
mvLX[xSbIdx][ySbIdx][1]=(mvBaseScaled[1]+dX[1]*xPosSb+dY[1]*yPosSb)(8-685)
–调用第8.5.3.10节详述的运动矢量的取整过程,其中,设置为mvLX[xSbIdx][ySbIdx]的mvX、设置为5的rightShift和设置为0的leftShift作为该过程的输入,取整后的mvLX[xSbIdx][ySbIdx]作为该过程的输出。
–运动矢量mvLX[xSbIdx][ySbIdx]限幅如下:
mvLX[xSbIdx][ySbIdx][0]=Clip3(–217,217–1,mvLX[xSbIdx][ySbIdx][0])(8-686)
mvLX[xSbIdx][ySbIdx][1]=Clip3(–217,217–1,mvLX[xSbIdx][ySbIdx][1])(8-687)
–调用第8.5.2.14节的色度运动矢量的推导过程,其中,mvLX[xSbIdx][ySbIdx]作为该过程的输入,色度运动矢量mvCLX[xSbIdx][ySbIdx]作为该过程的输出。
8.5.3.8仿射子块大小的推导过程
该过程的输入包括:
–两个变量cbWidth和cbHeight,表示亮度译码块(coding block)的宽度和高度;
–控制点运动矢量的数量numCpMv;
–控制点运动矢量cpMvLX[cpIdx],其中,cpIdx=0..numCpMv–1,X为0或1;
–预测列表使用率标志predFlagLX,其中,X为0或1。
该过程的输出包括:
–水平方向上的亮度译码子块的大小sizeSbX和垂直方向上的亮度译码子块的大小sizeSbY;
–水平方向上的亮度译码子块的数量numSbX和垂直方向上的亮度译码子块的数量numSbY;
–标志clipMV,表示通过EIF处理的块的运动矢量限幅类型。
sizeSbX设置为cbWidth,sizeSbY设置为cbHeight。
变量eifCanBeAppliedX和clipMVX推导如下,其中,X为0和1:
–eifCanBeAppliedX设置为真(TRUE)。
–clipMVX设置为假(FALSE)。
变量eifSubblockSize设置为4。
当predFlagLX等于1时,以下内容适用,其中,X为0和1:
–运动矢量的水平变化dX、运动矢量的垂直变化dY和基本运动矢量mvBaseScaled通过调用第8.5.3.9节详述的过程推导出,其中,亮度译码块宽度cbWidth、亮度译码块高度cbHeight、控制点运动矢量的数量numCpMv和控制点运动矢量cpMvLX[cpIdx](其中,cpIdx=0..numCpMv–1)作为该过程的输入。
–变量mvWx和mvWy推导如下:
–mvWx=max(abs(dX[0]),abs(dX[1])),
–mvWy=max(abs(dY[0]),abs(dY[1]))。
–变量sizeSbXTemp根据mvWx的值如表8-5所示。
–变量sizeSbYTemp根据mvWy的值如表8-5所示。
–变量sizeSbX修改如下:
–sizeSbX=min(sizeSbX,sizeSbXTemp)。
–变量sizeSbY修改如下:
–sizeSbY=min(sizeSbY,sizeSbYTemp)。
表8-5:mvWx的各种输入值的sizeSbXTemp的详述
mvWx 0 1 2 3 4 >4
sizeSbX cbWidth 32 16 8 8 4
表8-5:mvWy的各种输入值的sizeSbYTemp的详述
mvWx 0 1 2 3 4 >4
sizeSbY cbHeight 32 16 8 8 4
–变量eifCanBeAppliedX和clipMVX推导如下:
–阵列X[i]和Y[i]推导如下:
–X[0]=0,
–X[1]=(eifSubblockSize+1)*(dX[0]+(1<<9)),
–X[2]=(eifSubblockSize+1)*dY[0],
–X[3]=X[1]+X[2],
–Y[0]=0,
–Y[1]=(eifSubblockSize+1)*dX[1],
–Y[2]=(eifSubblockSize+1)*(dY[1]+(1<<9)),
–Y[3]=Y[1]+Y[2];
–变量Xmax设置为X[i]的最大值,其中,i等于0..3;
–变量Xmin设置为X[i]的最小值,其中,i等于0..3;
–变量Ymax设置为Y[i]的最大值,其中,i等于0..3;
–变量Ymin设置为Y[i]的最小值,其中,i等于0..3;
–变量W设置为(Xmax–Xmin+(1<<9)–1)>>9;
–变量H设置为(Ymax–Ymin+(1<<9)–1)>>9;
–如果(W+2)*(H+2)大于81,则变量clipMVX设置为真(TRUE);
–如果dY[1]小于((–1)<<9),则变量eifCanBeAppliedX为假;
–否则,
–如果(max(0,dY[1])+Abs(dX[1]))*(1+eifSubblockSize)大于(1<<9),则变量eifCanBeAppliedX为假。
变量eifCanBeApplied和clipMV推导如下:
–eifCanBeApplied=eifCanBeApplied0&eifCanBeApplied1,
–clipMV=clipMV0|clipMV1;
如果eifCanBeApplied为假,则变量sizeSbX和sizeSbY修改如下:
–sizeSbX=max(8,sizeSbX),
–sizeSbY=max(8,sizeSbY)。
水平方向上的亮度译码子块的数量numSbX和垂直方向上的亮度译码子块的数量numSbY推导如下:
–numSbX=cbWidth/sizeSbX,
–numSbY=cbHeight/sizeSbY。
8.5.3.9从控制点运动矢量中推导仿射运动模型参数的过程
该过程的输入包括:
–两个变量cbWidth和cbHeight,表示亮度译码块(coding block)的宽度和高度;
–控制点运动矢量的数量numCpMv;
–控制点运动矢量cpMvLX[cpIdx],其中,cpIdx=0..numCpMv–1,X为0或1。
该过程的输出包括:
–运动矢量的水平变化dX;
–运动矢量的垂直变化dY;
–与亮度译码块的左上顶点对应的运动矢量mvBaseScaled。
变量log2CbW(也表示为log2CbWidth)和log2CbH(也表示为log2CbHeight)推导如下:
log2CbW=Log2(cbWidth) (8-688)
log2CbH=Log2(cbHeight) (8-689)
运动矢量的水平变化dX推导如下:
dX[0]=(cpMvLX[1][0]–cpMvLX[0][0])<<(7–log2CbW) (8-690)
dX[1]=(cpMvLX[1][1]–cpMvLX[0][1])<<(7–log2CbW) (8-691)
运动矢量的垂直变化dY推导如下:
–如果numCpMv等于3,则dY推导如下:
dY[0]=(cpMvLX[2][0]–cpMvLX[0][0])<<(7–log2CbH) (8-692)
dY[1]=(cpMvLX[2][1]–cpMvLX[0][1])<<(7–log2CbH) (8-693)
–否则(numCpMv等于2),dY推导如下:
dY[0]=–dX[1] (8-694)
dY[1]=dX[0] (8-695)
与亮度译码块的左上顶点对应的运动矢量mvBaseScaled推导如下:
mvBaseScaled[0]=cpMvLX[0][0]<<7 (8-696)
mvBaseScaled[1]=cpMvLX[0][1]<<7 (8-697)
8.5.4帧间预测样本的解码过程
该过程的输入包括:
–亮度位置(xCb,yCb),表示相对于当前图像的左上方亮度样本的当前译码块(codingblock)的左上方亮度样本;
–两个变量nCbW和nCbH,表示当前译码块的宽度和高度;
–变量numSbX和numSbY,表示水平方向和垂直方向上的亮度译码子块的数量;
–1/16分数样本精度的亮度运动矢量mvL0[xSbIdx][ySbIdx](其中,xSbIdx=0..numSbX–1,ySbIdx=0..numSbY–1)和mvL1[xSbIdx][ySbIdx](其中,xSbIdx=0..numSbX–1,ySbIdx=0..numSbY–1);
–修正后的运动矢量refMvL0[xSbIdx][ySbIdx]和refMvL1[xSbIdx][ySbIdx],其中,xSbIdx=0..numSbX–1,andySbIdx=0..numSbY–1;
–1/32分数样本精度的色度运动矢量mvCL0[xSbIdx][ySbIdx](其中,xSbIdx=0..numSbX–1,ySbIdx=0..numSbY–1)和mvCL1[xSbIdx][ySbIdx](其中,xSbIdx=0..numSbX–1,ySbIdx=0..numSbY–1);
–1/32分数样本精度的修正后的色度运动矢量refMvCL0[xSbIdx][ySbIdx](其中,xSbIdx=0..numSbX–1,ySbIdx=0..numSbY–1)和refMvCL1[xSbIdx][ySbIdx](其中,xSbIdx=0..numSbX–1,ySbIdx=0..numSbY–1);
–参考索引refIdxL0和refIdxL1;
–预测列表使用标志predFlagL0和predFlagL1;
–变量dmvrAppliedFlag,表示DMVR的使用,
–控制点运动矢量的数量numCpMv;
–控制点运动矢量cpMvL0[cpIdx](其中,cpIdx=0..numCpMv–1)和cpMvL1[cpIdx](其中,cpIdx=0..numCpMv–1);
–标志clipMV,表示运动矢量限幅类型。
该过程的输出包括:
–亮度预测样本组成的(nCbWL)×(nCbHL)阵列predSamplesL,其中,nCbWL和nCbHL如下所述推导出;
–当ChromaArrayType不等于0时,分量Cb的色度预测样本组成的(nCbWC)×(nCbHC)阵列preSamplesCb,其中,nCbWC和nCbHC如下所述推导出;
–当ChromaArrayType不等于0时,分量Cr的色度残差样本组成的(nCbWC)×(nCbHC)阵列predSamplesCr,其中,nCbWC和nCbHC如下所述推导出。
变量nCbWL和nCbHL分别设置为nCbW和nCbH,变量nCbWC和nCbHC分别设置为nCbW/SubWidthC和nCbH/SubHeightC。
假设predSamplesL0L和predSamplesL1L为预测亮度样本值组成的(nCbW)×(nCbH)阵列,当ChromaArrayType不等于0时,假设predSampleL0Cb、predSampleL1Cb、predSampleL0Cr和predSampleL1Cr为预测色度样本值组成的(nCbW/SubWidthC)x(nCbH/SubHeightC)阵列。
在X为0或1的情况下,当predFlagLX等于1时,以下内容适用:
–参考图像由亮度样本的有序二维阵列refPicLXL组成,当ChromaArrayType不等于0时,色度样本组成的两个有序二维阵列refPicLXCb和refPicLXCr通过调用第8.5.4.1节详述的过程推导出,其中,refIdxLX作为该过程的输入。
–当前亮度译码子块的宽度和高度sbWidth、sbHeight推导如下:
sbWidth=nCbW/numSbX (8-701)
sbHeight=nCbH/numSbY (8-702)
–如果affine_flag等于1,且变量sbWidth、sbHeight之一小于8,则以下内容适用:
–运动矢量的水平变化dX、运动矢量的垂直变化dY和基本运动矢量mvBaseScaled通过调用第8.5.3.9节详述的过程推导出,其中,亮度译码块宽度nCbW、亮度译码块高度nCbH、控制点运动矢量的数量numCpMv和控制点运动矢量cpMvLX[cpIdx](其中,cpIdx=0..numCpMv–1)作为该过程的输入。
–阵列predSamplesLXL通过调用第8.5.4.3节详述的增强型插值滤波器的插值过程推导出,其中,亮度位置(xSb,ySb)、亮度译码块宽度nCbW、亮度译码块高度nCbH、运动矢量的水平变化dX、运动矢量的垂直变化dY、基本运动矢量mvBaseScaled、参考阵列refPicLXL、样本bitDepth bitDepthY、图像宽度pic_width_in_luma_samples、图像高度pic_height_in_luma_samples、标志clipMV和标志isLuma作为该过程的输入。
–如果ChromaArrayType不等于0,则以下内容适用:
–阵列predSamplesLXCb通过调用第8.5.4.3节详述的增强型插值滤波器的插值过程推导出,其中,亮度位置(xSb,ySb)、亮度译码块宽度nCbW、亮度译码块高度nCbH、运动矢量的水平变化dX、运动矢量的垂直变化dY、基本运动矢量mvBaseScaled、参考阵列refPicLXCb、样本bitDepth bitDepthC、图像宽度pic_width_in_luma_samples、图像高度pic_height_in_luma_samples、标志clipMV和设置为假(FALSE)的标志isLuma作为该过程的输入。
–阵列predSamplesLXCr通过调用第8.5.4.3节详述的增强型插值滤波器的插值过程推导出,其中,亮度位置(xSb,ySb)、亮度译码块宽度nCbW、亮度译码块高度nCbH、运动矢量的水平变化dX、运动矢量的垂直变化dY、基本运动矢量mvBaseScaled、参考阵列refPicLXCr、样本bitDepth bitDepthC、图像宽度pic_width_in_luma_samples、图像高度pic_height_in_luma_samples、标志clipMV和设置为假的标志isLuma作为该过程的输入。
[...]
8.5.4.3增强型插值滤波器的插值过程
该过程的输入包括:
–位置(xCb,yCb),以整样本为单位;
–两个变量cbWidth和cbHeight,表示当前译码块(coding block)的宽度和高度;
–运动矢量的水平变化dX;
–运动矢量的垂直变化dY;
–运动矢量mvBaseScaled;
–选定的参考图像样本阵列refPicLX;
–样本位深度bitDepth;
–图像的宽度pic_width,以样本为单位;
–图像的高度pic_height,以样本为单位;
–标志clipMV,表示是否要应用MV限幅;
–标志isLuma,表示处理的是亮度还是色度。
该过程的输出包括:
–预测样本值组成的(cbWidth)×(cbHeight)阵列predSamplesLX。
每个分数样本位置p(等于xFrac或yFrac)的插值滤波器系数T[p]如表8-15所示。
变量hor_max、ver_max、hor_min和ver_min通过调用8.5.4.5详述的过程推导出,其中,以整样本为单位的位置(xCb,yCb)、表示当前译码块(coding block)的宽度和高度的两个变量cbWidth和cbHeight、运动矢量的水平变化dX、运动矢量的垂直变化dY、运动矢量mvBaseScaled、图像的以样本为单位的宽度pic_width、图像的以样本为单位的高度pic_height以及标志clipMV作为该过程的输入,hor_max、ver_max、hor_min和ver_min作为该过程的输出。
如果isLuma为假,则应用以下步骤:
–xCb=xCb/SubWidthC (8-728)
–yCb=yCb/SubHeigthC (8-728)
–cbWidth=cbWidth/SubWidthC (8-728)
–cbHeight=cbHeight/SubHeightC (8-728)
–mvBaseScaled[0]=mvBaseScaled[0]/SubWidthC (8-728)
–mvBaseScaled[1]=mvBaseScaled[1]/SubHeightC (8-728)
–hor_min=hor_min/SubWidthC (8-728)
–hor_max=hor_max/SubWidthC (8-728)
–ver_min=ver_min/SubHeightC (8-728)
–ver_max=ver_max/SubHeightC (8-728)
变量shift0、shift1、offset0和offset1推导如下:
shift0设置为bitDepth–8,offset0等于0,
shift1设置为12–shift0,offset1等于2shift1–1
当x=–1..cbWidth且y=–1..cbHeight时,以下内容适用:
–运动矢量mvX推导如下:
mvX[0]=(mvBaseScaled[0]+dX[0]*x+dY[0]*y) (8-728)
mvX[1]=(mvBaseScaled[1]+dX[1]*x+dY[1]*y) (8-729)
mvX[0]=Clip3(hor_min,hor_max,mvX[0]) (8-730)
mvX[1]=Clip3(ver_min,ver_max,mvX[1]) (8-731)
–变量xInt、yInt、xFrac和yFrac推导如下:
xInt=xCb+(mvX[0]>>9)+x (8-730)
yInt=yCb+(mvX[1]>>9)+y (8-731)
xFrac=(mvX[0]>>4)&31 (8-732)
yFrac=(mvX[1]>>4)&31 (8-733)
–变量A和B推导如下:
A=(refPicLX[xInt][yInt]*T[xFrac][0]++refPicLX[xInt+1][yInt]*T[xFrac][1]+offset0)>>shift0 (8-736)
B=(refPicLX[xInt][yInt+1]*T[xFrac][0]++refPicLX[xInt+1][yInt+1]*T[xFrac][1]+offset0)>>shift0 (8-737)
–对应于位置(x,y)的样本值bx,y推导如下:
bx,y=(A*T[yFrac][0]+B*T[yFrac][1]+offset1)>>shift1 (8-740)
增强型插值滤波器系数eF[]表示为{–1,10,–1}。
变量shift2、shift3、offset2和offset3推导如下:
shift2设置为max(bit_depth–11,0),offset2等于2shift2–1
shift3设置为(6–max(bit_depth–11,0)),offset3等于2shift3–1
当x=0..cbWidth–1且y=–1..cbHeight时,以下内容适用:
–hx,y=(eF[0]*bx–1,y+eF[1]*bx,y+eF[2]*bx+1,y+offset2)>>shift2 (8-741)
当x=0..cbWidth–1且y=0..cbHeight–1时,以下内容适用:
–predSamplesLXL[x][y]=Clip3(0,(1<<bitDepth)–1,(eF[0]*hx,y–1+eF[1]*hx,y+eF[2]*bx,y+1+offset3)>>shift3) (8-742)
表8-15:每个分数样本位置p的插值滤波器系数T[p]的详述
/>
8.5.4.5仿射运动矢量的限幅参数推导
该过程的输入包括:
–位置(xCb,yCb),以整样本为单位;
–两个变量cbWidth和cbHeight,表示当前译码块(coding block)的宽度和高度;–运动矢量的水平变化dX;
–运动矢量的垂直变化dY;
–运动矢量mvBaseScaled;
–图像的宽度pic_width,以样本为单位;
–图像的高度pic_height,以样本为单位;
–标志clipMV,表示是否要应用MV限幅。
该过程的输出包括:
–表示运动矢量的最大和最小允许的水平分量和垂直分量的hor_max、ver_max、hor_min和ver_min。
中心运动矢量mv_center推导如下:
mv_center[0]=(mvBaseScaled[0]+dX[0]*(cbWidth>>1)+dY[0]*(cbHeight>>1)) (8-743)
mv_center[1]=(mvBaseScaled[1]+dX[1]*(cbWidth>>1)+dY[1]*(cbHeight>>1)) (8-743)
调用第8.5.3.10节详述的运动矢量的取整过程,其中,mv_center、设置为5的rightShift和设置为0的leftShift作为输入,取整后的运动矢量返回为mv_center。
运动矢量mv_center限幅如下:
mv_center[0]=Clip3(–217,217–1,mv_center[0]) (8-686)
mv_center[1]=Clip3(–217,217–1,mv_center[1]) (8-686)
变量hor_max_pic、ver_max_pic、hor_min_pic和ver_min_pic推导如下:
hor_max_pic=(pic_width+128–xCb–cbWidth)<<4 (8-743)
ver_max_pic=(pic_height+128-yCb–cbHeight)<<4 (8-743)
hor_min_pic=(–128–xCb)<<4 (8-743)
ver_min_pic=(–128–yCb)<<4 (8-743)
如果clipMV为假(FALSE),则表示运动矢量的最大和最小允许的水平分量和垂直分量的输出变量hor_max、ver_max、hor_min和ver_min推导如下:
hor_max=hor_max_pic<<5 (8-743)
ver_max=ver_max_pic<<5 (8-743)
hor_min=hor_min_pic<<5 (8-743)
ver_min=ver_min_pic,<<5 (8-743)
如果clipMV为真(TRUE),则应用以下步骤:
–变量mv_hor_min、mv_ver_min、mv_hor_max和mv_ver_max推导如下:
mv_hor_min=mv_center[0]–deviationMV[log2CbWidth–3] (8-743)
mv_ver_min=mv_center[1]–deviationMV[log2CbHeight–3] (8-743)
mv_hor_max=mv_center[0]+deviationMV[log2CbWidth–3] (8-743)
mv_ver_max=mv_center[1]+deviationMV[log2CbHeight–3] (8-743)
当k=0..4时,阵列deviationMV表示为deviationMV[k]={64,128,272,560,1136}。
–变量hor_max、ver_max、hor_min和ver_min推导如下:
hor_max=min(hor_max_pic,mv_hor_max)<<5 (8-743)
ver_max=min(ver_max_pic,mv_ver_max)<<5 (8-743)
hor_min=max(hor_min_pic,mv_hor_min)<<5 (8-743)
ver_min=max(ver_min_pic,mv_ver_min)<<5 (8-743)
与上述实施例和示例相关,在条件“如果(W+2)*(H+2)大于81,则变量clipMV设置为真(TRUE)”下,值81可以替换为72。
下面对上述实施例中所示的编码方法和解码方法的应用以及使用这些应用的系统进行解释说明。
图10为用于实现内容分发业务的内容供应系统3100的框图。内容供应系统3100包括捕获设备3102、终端设备3106,并且可选地包括显示器3126。捕获设备3102通过通信链路3104与终端设备3106通信。通信链路可以包括上文描述的通信信道13。通信链路3104包括但不限于Wi-Fi、以太网、电缆、无线(3G/4G/5G)、USB或者其任何种类的组合等。
捕获设备3102用于生成数据,并且可以通过上文实施例中所示的编码方法对数据进行编码。可选地,捕获设备3102可以将数据分发到流媒体服务器(图中未示出),该服务器对数据进行编码并将经编码数据发送到终端设备3106。捕获设备3102包括但不限于摄像机、智能手机或平板电脑、计算机或笔记本电脑、视频会议系统、PDA、车载设备或其任意组合等。例如,捕获设备3102可以包括上文描述的源设备12。当数据包括视频时,捕获设备3102中包括的视频编码器20实际上可以执行视频编码处理。当数据包括音频(即声音)时,捕获设备3102中包括的视频编码器实际上可以执行音频编码处理。对于一些实际场景,捕获设备3102通过将经编码视频数据和经编码音频数据一起复用来分发经编码视频数据和经编码音频数据。对于其它实际场景,例如在视频会议系统中,不复用经编码音频数据和经编码视频数据。捕获设备3102将经编码音频数据和经编码视频数据分别分发到终端设备3106。
在内容供应系统3100中,终端设备310接收并再生成经编码数据。终端设备3106可以为具有数据接收和恢复能力的设备,例如智能手机或平板电脑3108、计算机或笔记本电脑3110、网络视频录像机(network video recorder,NVR)/数字视频录像机(digitalvideo recorder,DVR)3112、电视3114、机顶盒(set top box,STB)3116、视频会议系统3118、视频监控系统3120、个人数字助理(personal digital assistant,PDA)3122、车载设备3124,或能够对上述经编码数据进行解码的以上设备中任何一个的组合等。例如,终端设备3106可以包括上文描述的目的地设备14。当经编码数据包括视频时,终端设备中包括的视频解码器30优先执行视频解码。当经编码数据包括音频时,终端设备中包括的音频解码器优先执行音频解码处理。
对于具有显示器的终端设备,例如智能手机或平板电脑3108、计算机或笔记本电脑3110、网络视频录像机(network video recorder,NVR)/数字视频录像机(digitalvideo recorder,DVR)3112、电视3114、个人数字助理(personal digital assistant,PDA)3122或车载设备3124,终端设备可以将解码数据馈送到其显示器。对于不配备显示器的终端设备,例如STB 3116、视频会议系统3118或视频监控系统3120,在其中连接外部显示器3126以接收和显示经解码数据。
当该系统中的每个设备执行编码或解码时,可以使用如上述实施例中所示的图像编码设备或图像解码设备。
图11为终端设备3106的一个示例的结构的示意图。在终端设备3106从捕获设备3102接收到流之后,协议处理单元3202分析该流的传输协议。该协议包括但不限于实时流协议(Real Time Streaming Protocol,RTSP)、超文本传输协议(Hyper Text TransferProtocol,HTTP)、HTTP直播流媒体协议(HTTP Live streaming protocol,HLS)、MPEG-DASH、实时传输协议(Real-time Transport protocol,RTP)、实时消息传输协议(RealTime Messaging Protocol,RTMP),或其任何种类的组合等。
在协议处理单元3202对流进行处理之后,生成流文件。文件被输出到解复用单元3204。解复用单元3204可以将复用数据分离成经编码音频数据和经编码视频数据。如上所述,对于其它实际场景,例如在视频会议系统中,不复用经编码音频数据和经编码视频数据。在这种情况下,不通过解复用单元3204,将经编码数据发送给视频解码器3206和音频解码器3208。
通过解复用处理,生成视频基本流(elementary stream,ES)、音频ES和可选的字幕。视频解码器3206,包括上述实施例中说明的视频解码器30,通过上述实施例中所示的解码方法对视频ES进行解码以生成视频帧,并将此数据馈送到同步单元3212。音频解码器3208对音频ES进行解码以生成音频帧,并将此数据馈送到同步单元3212。可选地,在将视频帧馈送到同步单元3212之前可以将视频帧存储在缓冲区(图Y中未示出)中。类似地,可以在将音频帧发送至同步单元3212之前存储在缓冲区(图11中未示出)中。
同步单元3212同步视频帧和音频帧,并将视频/音频提供给视频/音频显示器3214。例如,同步单元3212同步视频信息和音频信息的呈现。信息可以使用经译码音频和可视数据的呈现有关的时间戳以及与数据流本身的传送有关的时间戳而以语法进行译码。
如果流中包括字幕,则字幕解码器3210对字幕进行解码,使字幕与视频帧和音频帧同步,并将视频/音频/字幕提供给视频/音频/字幕显示器3216。
本发明并不限于上述系统,上述实施例中的图像编码设备或图像解码设备都可以包括在汽车系统等其它系统中。
图12为根据本发明所述第一方面所述的方法的框图。所述第一方面的方法包括以下步骤:
1201:确定在仿射模式下译码的块的控制点运动矢量(control point motionvector,CPMV);
1202:根据所述确定的CPMV,确定参考图像中与所述仿射译码块中的子块对应的参考区域;
1203:如果所述参考区域的大小大于预定义的阈值,则将变量clipMVX设置为真(TRUE),否则将变量clipMVX设置为假(FALSE);
1204:推导所述仿射译码块的基于像素的运动矢量场;
1205:如果所述变量clipMVX为真,则使用第一运动矢量范围执行运动矢量限幅,其中,所述第一运动矢量范围是根据所述确定的CPMV和所述仿射译码块的大小确定的。
例如,所述控制点运动矢量(control point motion vector,CPMV)可以(例如)在图9中标识为由子块的无撇号点(unprimed point)限定的顶点处的矢量到包括带撇号点(primed point)的参考区域的对应顶点的矢量。
参考上述实施例的描述,在条件“如果(W+2)*(H+2)大于81,则变量clipMV设置为真(TRUE)”下,值81或72对应于参考区域的大小的预定义阈值。
例如,这种方法的一个优点是,即使超过了内存带宽阈值,但由于包括MV限幅,也可以使用增强型插值滤波(Enhanced Interpolation Filtering,EIF),而不是根本不使用EIF,另见下文。
所述第一运动矢量范围可以通过以下方式确定:确定所述仿射译码块的中心点的运动矢量;根据所述仿射译码块的中心点的运动矢量和相应块大小的预定义偏移,确定第二运动矢量范围,其中,所述块大小包括所述仿射译码块的大小。所述确定所述仿射译码块的中心点的运动矢量可以是根据以下等式(见上文描述)执行的:
mv_center[0]=(mvBaseScaled[0]+dX[0]*(cbWidth>>1)+dY[0]*(cbHeight>>1)),
mv_center[1]=(mvBaseScaled[1]+dX[1]*(cbWidth>>1)+dY[1]*(cbHeight>>1)),
其中,mvBaseScaled表示所述块的左上角的运动矢量,cbWidth和cbHeight分别表示所述块的宽度和高度,dX[0]和dX[1]表示水平方向上每一个样本的运动矢量的水平分量和垂直分量的各自差值,dY[0]和dY[1]表示垂直方向上每一个样本的运动矢量的水平分量和垂直分量的各自差值,mv_center[0]和mv_center[1]分别表示所述中心点的运动矢量的水平分量和垂直分量。
所述根据所述仿射译码块的中心点的运动矢量和相应块大小的预定义偏移,确定第二运动矢量范围可以是根据以下等式执行的:
mv_hor_min=mv_center[0]–deviationMV[log2CbWidth–3],
mv_ver_min=mv_center[1]–deviationMV[log2CbHeight–3],
mv_hor_max=mv_center[0]+deviationMV[log2CbWidth–3],
mv_ver_max=mv_center[1]+deviationMV[log2CbHeight–3],
其中,deviationMV[]表示为相应块大小预定义的偏移的表,mv_hor_min、mv_ver_min、mv_hor_max和mv_ver_max表示所述第二运动矢量范围。所述为相应块大小预定义的偏移与{64,128,272,560,1136}成正比,其中,64对应于尺寸等于8的块大小,128对应于尺寸等于16的块大小,272对应于尺寸等于32的块大小,560对应于尺寸等于64的块大小,或者1136对应于尺寸等于128的块大小。
所述第一运动矢量范围可以根据子采样参数SubWidthC and SubHeightC缩放:
–hor_min=hor_min/SubWidthC,
–hor_max=hor_max/SubWidthC,
–ver_min=ver_min/SubHeightC,
–ver_max=ver_max/SubHeightC,
其中,hor_min、ver_min、hor_max和ver_max表示所述缩放后的第一运动矢量范围。
所述方法还可以包括以下步骤:根据所述推导出的运动矢量场,通过双线性插值获得所述参考图像中的插值样本;将高通滤波器应用于所述插值样本。因此,所述方法有利地适用于基于增强型插值滤波器(enhanced interpolation filter,EIF)的仿射运动补偿。另见上述关于这方面的论述。
所述仿射译码块中的所述子块的大小可以为4×4。所述预定义阈值可以为72。
如果仿射帧间预测包括双向预测,则所述设置变量clipMVX可以包括:推导列表0(list0)的变量clipMV0;推导列表1(list1)的变量clipMV1;将所述变量clipMV推导为clipMV0|clipMV1,其中,“|”表示或(OR)。
图13为根据本发明所述第五和第六方面所述的解码器1300D和编码器1300E的框图。
根据所述第五方面所述的解码器1300D包括:一个或多个处理器1301D;非瞬时性计算机可读存储介质1302D,与一个或多个处理器1301D耦合并存储由一个或多个处理器1301D执行的指令,其中,所述一个或多个处理器执行所述指令时,所述指令配置解码器1300D执行根据本发明所述第一方面或其任一实现方式所述的方法。
所述第六方面提供的编码器1300E包括:一个或多个处理器1301E;非瞬时性计算机可读存储介质1302E,与一个或多个处理器1301E耦合并存储由一个或多个处理器1301E执行的指令,其中,所述一个或多个处理器执行所述指令时,所述指令配置编码器1300E执行根据本发明所述第一方面或其任一实现方式所述的方法。
图14为本发明所述第八方面提供的解码器1400D和编码器1400E的框图。
对视频序列进行译码的解码器1400D或编码器1400E包括:确定单元1401D/E,用于确定在仿射模式下译码的仿射译码块的控制点运动矢量(control point motion vector,CPMV),并根据所述确定的CPMV,确定参考图像中与所述仿射译码块中的子块对应的参考区域;预测单元1402D/E,用于:如果所述参考区域的大小大于预定义阈值,则将变量clipMVX设置为真(TRUE),否则将变量clipMVX设置为假(FALSE);推导所述仿射译码块的基于像素的运动矢量场,其中,如果所述变量clipMVX为真,则所述推导基于像素的运动矢量场还包括基于第一运动矢量范围的运动矢量限幅,其中,所述第一运动矢量范围是根据所述确定的CPMV和所述仿射译码块的大小确定的。
本发明提供了以下更多示例。
1.一种由解码/编码设备实现的译码方法,用于对视频数据进行译码,其中,所述方法包括:
根据仿射运动模型参数,计算最佳子块大小M×N;
当最优子块宽度M和最优子块高度N都大于或等于预定义值时,执行M×N子块的子块运动补偿;
当最佳子块宽度M和最佳子块高度N都不大于或等于预定义值时,检查增强型双线性插值滤波器(Enhanced bi-linear Interpolation Filter,EIF)适用性条件。
2.根据示例1所述的方法,其中,所述预定义值为8。
3.根据示例1或2所述的方法,其中,当所有EIF适用性条件都满足时,所述方法还包括:
执行EIF运动补偿。
4.根据示例1或2所述的方法,其中,当其中一个EIF适用性条件不满足时,所述方法还包括:
计算满足条件(未满足)的第一运动矢量范围;
对根据仿射模型计算的运动矢量进行限幅,使得这些矢量在所述第一运动矢量范围内。
5.根据示例1至4中任一个所述的方法,其中,如果上述条件中的至少一个不满足,则所述方法还包括:
设置M=max(M,8),N=max(N,8),并执行M×N子块的子块运动补偿。
6.根据示例1至5中任一个所述的方法,其中,所述EIF适用性条件包括以下至少一个:
–内存带宽限制条件;
–内部缓冲区限制为R行,其中,R是预定义值;
–内存存取按顺序进行;
–对于当前块的所有行(第一行除外),最多只能额外提取一行;
–仿射运动模型参数的不等式。
7.根据示例6所述的方法,其中,仿射运动模型参数的不等式如下所述:
a.其中,a、b、c、d、e、f、g、h是预定义值或正/负无穷大;
b.其中,a和b是预定义值。
8.一种由解码/编码设备实现的译码方法,用于对视频数据进行译码,其中,所述方法包括:
根据仿射运动模型参数,计算最佳子块大小M×N;
如果最优子块宽度M和最优子块高度N都大于或等于8,则执行M×N子块的子块运动补偿;
否则,检查EIF适用性条件:
a.EIF适用性条件1:内部缓冲区限制为R行,其中,R是预定义值,例如可以是3、4、5或以上。这表示,在处理当前块(子块)的一行(line/row)的过程中,最多可以使用参考图像中的R行。
b.EIF适用性条件2:内存存取需要按顺序进行,这表示如果提取参考图像的第j行来获取当前块的第i行,则仅提取第(j+1)行、第(j+2)行等来获取当前块的第(i+1)行。
c.EIF适用性条件3:对于当前块的所有行(第一行除外),最多只能额外提取一行;
d……
e.EIF适用性条件P。
f.如果所有EIF适用性条件都满足,则执行EIF运动补偿。EIF运动补偿过程包括:
i.检查EIF适用性条件P+1:检查内存带宽限制条件;
ii……
iii.检查EIF适用性条件P+K;
iv.如果EIF适用性条件P+1至P+K中的一个条件不满足,则
1.计算满足条件(未满足)的第一运动矢量范围,
2.对根据仿射模型计算的运动矢量进行限幅,以保证这些矢量在第一运动矢量范围内。
g.否则,设置M'=max(M,8),N'=max(N,8),并执行M×N子块的子块运动补偿。
9.一种由解码/编码设备实现的译码方法,用于对视频数据进行译码,其中,所述方法包括:
根据仿射运动模型参数,计算最佳子块大小M×N;
如果最优子块宽度M和最优子块高度N都大于或等于8,则执行M×N子块的子块运动补偿;
否则,检查EIF适用性条件:
a.EIF适用性条件1:内部缓冲区限制为R行,其中,R是预定义值,例如可以是3、4、5或以上。这表示,在处理当前块(子块)的一行(line/row)的过程中,最多可以使用参考图像中的R行。
b.EIF适用性条件2:内存存取需要按顺序进行,这表示如果提取参考图像的第j行来获取当前块的第i行,则仅提取第(j+1)行、第(j+2)行等来获取当前块的第(i+1)行。
c.EIF适用性条件3:对于当前块的所有行(第一行除外),最多只能额外提取一行。
d……
e.EIF适用性条件P。
f.如果所有EIF适用性条件都满足,则执行EIF运动补偿。EIF运动补偿过程包括:
v.检查EIF适用性条件P+1:检查内存带宽限制条件;
vi……
vii.检查EIF适用性条件P+K;
viii.如果EIF适用性条件P+1至P+K中的一个条件不满足,则
1.计算满足(未满足)条件的第一运动矢量范围,
2.将第二运动矢量范围设置为第一运动矢量范围;
否则,
1.计算第三运动矢量范围,
2.将第二运动矢量范围设置第三运动矢量范围;
ix.对根据仿射模型计算的运动矢量进行限幅,以保证这些矢量在第二运动矢量范围内。
g.否则,设置M'=max(M,8),N'=max(N,8),并执行M×N子块的子块运动补偿。
10.根据示例9所述的方法,其中,所述检查内存带宽限制条件包括计算仿射块的顶点的MV。
11.根据示例9或10所述的方法,其中,所述检查内存带宽限制条件包括计算边界框的面积,所述边界框包括所述仿射块的顶点的MV指向的4个点。
12.根据示例11所述的方法,其中,所述包括所述仿射块的顶点的MV指向的4个点的边界框是大小为(W+D1)×(H+D2)的方形区域,W×H是最小方形区域(具有最小面积值的区域)的大小,包括所述仿射块的顶点的MV指向的4个点,D1和D2是非负整数。
13.根据示例9至12中任一个所述的方法,其中,所述计算满足条件(未满足)的第一运动矢量范围包括计算所述仿射块的中心点的MV。
14.根据示例9至13中任一个所述的方法,其中,所述计算满足条件(未满足)的第一运动矢量范围包括根据仿射块大小计算运动矢量扩展。
15.根据示例14所述的方法,其中,所述运动矢量扩展是根据为每个可能的块宽度和每个可能的块高度预定义的整数计算的。
16.根据示例9至15中任一个所述的方法,其中,计算第三运动矢量范围,以保证MV指向参考图像内部具有边距(margin)的区域。
17.根据示例16所述的方法,其中,所述边距取决于最大CTU大小。
18.根据示例8至17中任一个所述的方法,其中,N等于3,表示上述算法不包括步骤d和步骤e。
19.根据示例8至17中任一个所述的方法,其中,K等于1,表示上述算法不包括步骤f.ii和步骤f.iii。
20.一种由解码/编码设备实现的译码方法,用于对视频数据进行译码,其中,所述方法包括:
根据仿射运动模型参数,计算最佳子块大小M×N;
当最优子块宽度M和最优子块高度N都大于或等于8时,执行M×N子块的子块运动补偿;
否则,检查EIF适用性条件:
(a)EIF适用性条件1,
(b)EIF适用性条件2,
(c)……
(d)EIF适用性条件P,
(e)如果所有EIF适用性条件都满足,则执行EIF运动补偿。EIF运动补偿过程包括:
i.检查EIF适用性条件P+1,
ii.检查EIF适用性条件P+2,
iii……
iv.检查EIF适用性条件P+K,
v.如果EIF适用性条件P+1至P+K中的一个条件不满足,则
–计算满足条件(未满足)的第一运动矢量范围,
–对根据仿射模型计算的运动矢量进行限幅,以保证这些矢量在所述第一运动矢量范围内;
(f)否则,设置M'=max(M,8),N'=max(N,8),并执行M×N子块的子块运动补偿。
21.根据示例20所述的方法,其中,N等于零,表示上述算法不包括步骤(a)至步骤(d)。
22.根据示例20所述的方法,其中,K等于零,表示上述算法不包括步骤(e).i至步骤(e).v。
23.根据示例20至22中任一个所述的方法,其中,所述EIF适用性条件包括以下至少一个:
–内存带宽限制条件;
–内部缓冲区限制为R行,其中,R是预定义值;
–内存存取按顺序进行;
–对于当前块的所有行(第一行除外),最多只能额外提取一行;
–仿射运动模型参数的不等式。
24.根据示例23所述的方法,其中,仿射运动模型参数的不等式如下所述:
c.其中,a、b、c、d、e、f、g、h是预定义值或正/负无穷大;
其中,a和b是预定义值。
25.一种由解码/编码设备实现的译码方法,用于对视频数据进行译码,其中,所述方法包括:
根据仿射运动模型参数或根据仿射运动模型参数可以推导出所依据的信息,计算子块大小M×N;
如果子块宽度M或子块高度N小于或等于预定义值,则执行增强型双线性插值滤波器(enhanced bi-linear Interpolation Filter,EIF)运动补偿过程,其中,所述执行EIF运动补偿过程包括:
以P×Q(例如1×1)子块为基础,根据所述仿射运动模型参数推导图像块(例如仿射图像块)中的相应子块的运动矢量;
对所述子块的运动矢量进行限幅,使得所述限幅后的运动矢量在运动矢量范围(例如第二运动矢量范围)内。
26.根据示例25所述的方法,其中,如果子块宽度M或子块高度N小于或等于预定义值,则所述方法还包括:
确定第一组EIF适用性条件是否满足;
所述执行EIF运动补偿过程包括:
如果所述第一组EIF适用性条件满足,则执行所述EIF运动补偿过程。
27.根据示例25或26所述的方法,其中,所述运动矢量范围设置为第一运动矢量范围,或者所述运动矢量范围设置为第三运动矢量范围。
28.根据示例27所述的方法,其中,如果第二组EIF适用性条件满足,则所述运动矢量范围设置为所述第三运动矢量范围;
否则,所述运动矢量范围设置为所述第一运动矢量范围。
29.根据上述示例中任一个所述的方法,其中,所述方法还包括:
如果所述第一组EIF适用性条件中的任一个不满足,则以M'×N'子块为基础,根据仿射运动模型参数执行子块运动补偿,
其中,M'=max(M,8),N'=max(N,8)。
30.根据上述示例中任一个所述的方法,其中,所述方法还包括:
当所述子块宽度M和所述子块高度N都大于或等于预定义值(例如8)时,以M×N子块为基础,根据仿射运动模型参数执行子块运动补偿。
31.根据上述示例中任一个所述的方法,其中,所述执行EIF运动补偿过程还包括:
根据所述限幅后的运动矢量,对每个子块执行运动补偿。
32.根据上述示例中任一个所述的方法,其中,所述计算子块大小M×N的步骤包括:
根据所述仿射图像块的一个或多个仿射控制点的运动矢量差值和所述仿射图像块的宽度和高度,推导所述子块大小M×N;或者,
根据以下一个或多个内容,使用查找表获得所述子块大小M×N:
所述仿射图像块的一个或多个仿射控制点的运动矢量差值,
所述仿射图像块的块大小(例如所述仿射图像块的宽度和/或高度)和
预定义运动矢量精度。
33.根据上述示例中任一个所述的方法,其中,所述第一组EIF适用性条件包括以下至少一个:
–内存带宽限制条件;
–内部缓冲区限制为R行,其中,R是预定义值;
–内存存取按顺序进行;
–对于当前块的所有行(第一行除外),最多只能额外提取一行;
–仿射运动模型参数的不等式。
34.根据上述示例中任一个所述的方法,其中,子块大小P×Q等于1×1。
35.根据示例26至34中任一个所述的方法,其中,所述第一组EIF适用性条件包括:
–内部缓冲区限制为R行,其中,R是预定义值;
–内存存取按顺序进行;
–对于当前块的所有行(第一行除外),最多只能额外提取一行。
36.根据示例28至35中任一个所述的方法,其中,所述第二组EIF适用性条件包括内存带宽限制条件。
37.根据示例36所述的方法,其中,检查内存带宽限制条件包括计算所述仿射块的顶点(例如控制点)的MV。
38.根据示例37所述的方法,其中,所述检查内存带宽限制条件还包括计算边界框的区域,所述边界框包括所述仿射块的顶点的MV指向的4个点。
39.根据示例38所述的方法,其中,所述包括所述仿射块的顶点的MV指向的4个点的边界框是大小为(W+D1)×(H+D2)的方形区域,W×H是最小方形区域(例如具有最小面积值的区域)的大小,包括所述仿射块的顶点的MV指向的4个点,D1和D2是非负整数。
40.根据示例38或39所述的方法,其中,所述检查内存带宽限制条件还包括:
–根据仿射块大小W×H和预定义阈值T,计算阈值T1;
–将所述边界框计算到的面积的值与阈值T1进行比较。
41.根据示例40所述的方法,其中,所述根据仿射块大小W×H和预定义阈值T,计算阈值T1执行为T1=W*H*T。
42.根据示例40或41所述的方法,其中,如果所述边界框计算到的面积的值小于或等于阈值T1,则认为内存带宽限制条件满足。
43.根据示例27至42中任一个所述的方法,其中,所述计算第一运动矢量范围包括计算所述仿射块的中心点的MV。
44.根据示例43所述的方法,其中,所述计算第一运动矢量范围还包括根据所述仿射块大小(例如仿射块大小W×H),计算运动矢量扩展。
45.根据示例44所述的方法,其中,所述运动矢量扩展是根据为每个可能的块宽度和每个可能的块高度预定义的整数计算的。
46.根据示例27至45中任一个所述的方法,其中,计算所述第三运动矢量范围,以保证MV指向参考图像内部具有边距的区域,其中,所述边距是围绕所述参考图像的扩展区域。
47.根据示例46所述的方法,其中,所述边距取决于最大CTU大小。
48.根据上述示例中任一项所述的方法,其中,推导图像块中的相应子块的运动矢量取决于通过EIF处理的颜色平面(例如亮度或色度)。
49.根据任一上述示例所述的方法,其中,所述确定所述第一组EIF适用性条件是否满足包括:
确定从与第一参考图像列表(例如列表0(list0))相关的控制点运动矢量中获得的仿射运动参数是否满足所述第一组EIF适用性条件的部分或全部,和/或
确定从与第二参考图像列表(例如列表1(list1))相关的控制点运动矢量中获得的仿射运动参数是否满足所述第一组EIF适用性条件的部分或全部。
50.根据任一上述示例所述的方法,其中,所述确定所述第一组EIF适用性条件是否满足包括:
如果从与第一参考图像列表(例如列表0=)相关的控制点运动矢量中获得的仿射运动参数满足所述第一组EIF适用性条件的部分或全部,并且如果从与第二参考图像列表(例如列表1)相关的控制点运动矢量中获得的仿射运动参数满足所述第一组EIF适用性条件的部分或全部,则认为所述第一组EIF适用性条件满足。
51.根据任一上述示例所述的方法,其中,所述确定所述第二组EIF适用性条件是否满足包括:
确定从与第一参考图像列表(例如列表0)相关的控制点运动矢量中获得的仿射运动参数是否满足所述第二组EIF适用性条件的部分或全部,和/或
确定从与第二参考图像列表(例如列表1)相关的控制点运动矢量中获得的仿射运动参数是否满足所述第二组EIF适用性条件的部分或全部。
52.根据任一上述示例所述的方法,其中,所述确定所述第二组EIF适用性条件是否满足包括:
如果从与第一参考图像列表(例如列表0)相关的控制点运动矢量中获得的仿射运动参数满足所述第二组EIF适用性条件的部分或全部,并且如果从与第二参考图像列表(例如列表1)相关的控制点运动矢量中获得的仿射运动参数满足所述第二组EIF适用性条件的部分或全部,认为所述第二组EIF适用性条件满足。
53.一种编码器(20),其中,所述编码器(20)包括处理电路,用于执行根据示例1至52中任一个所述的方法。
54.一种解码器(30),其中,所述解码器(30)包括处理电路,用于执行根据示例1至52中任一项所述的方法。
55.一种计算机程序产品,其中,所述计算机程序产品包括程序代码,当所述程序代码在计算机或处理器上执行时,用于执行根据任一上述示例所述的方法。
56.一种解码器,其中,所述解码器包括:
一个或多个处理器;
非瞬时性计算机可读存储介质,与所述一个或多个处理器耦合并存储由所述一个或多个处理器执行的程序,其中,当所述一个或多个处理器执行所述程序时,所述程序配置所述解码器执行根据任一上述示例所述的方法。
57.一种编码器,其中,所述编码器包括:
一个或多个处理器;
非瞬时性计算机可读存储介质,与所述一个或多个处理器耦合并存储由所述一个或多个处理器执行的程序,其中,当所述一个或多个处理器执行所述程序时,所述程序配置所述编码器执行根据任一上述示例所述的方法。
58.一种非瞬时性计算机可读存储介质,其中,所述非瞬时性计算机可读存储介质包括程序代码,当计算机设备执行所述程序代码时,所述程序代码使得所述计算机设备执行根据任一上述示例所述的方法。
数学运算符
本申请中使用的数学运算符与C编程语言中使用的数学运算符类似,但是,本申请准确定义了整除运算和算术移位运算的结果,并且还定义了其它运算,例如幂运算和实值除法。编号和计数规范通常从0开始,例如,“第一个”相当于第0个,“第二个”相当于第1个,等等。
算术运算符
算术运算符定义如下:
逻辑运算符
逻辑运算符定义如下:
x&&y x和y的布尔逻辑“与”运算
x||y x和y的布尔逻辑“或”运算
! 布尔逻辑“非”运算
x?y:z 如果x为真(TRUE)或不等于0,则求y的值,否则,求z的值。
关系运算符
关系运算符定义如下:
> 大于
>= 大于或等于
< 小于
<= 小于或等于
== 等于
!= 不等于
当一个关系运算符应用于一个已被赋值“na”(不适用)的语法元素或变量时,值“na”被视为该语法元素或变量的不同值。值“na”被视为不等于任何其它值。
按位运算符
按位运算符定义如下:
& 按位“与”运算。当对整数参数运算时,运算的是整数值的补码表示。当对二进制参数运算时,如果它包含的位比另一个参数少,则通过添加更多等于0的有效位来扩展较短的参数。
| 按位“或”运算。当对整数参数运算时,运算的是整数值的补码表示。当对二进制参数运算时,如果它包含的位比另一个参数少,则通过添加更多等于0的有效位来扩展较短的参数。
^ 按位“异或”运算。当对整数参数运算时,运算的是整数值的补码表示。当对二进制参数运算时,如果它包含的位比另一个参数少,则通过添加更多等于0的有效位来扩展较短的参数。
x>>y 将x以2的补码整数表示的形式向右算术移动y个二进制位。只有y为非负整数值时才有这个函数定义。右移的结果是移进最高有效位(most significant bit,MSB)的比特位等于移位操作之前的x的MSB。
x<<y 将x以2的补码整数表示的形式向左算术移动y个二进制位。只有y为非负整数值时才有这个函数定义。左移的结果是移进最低有效位(least significant bit,LSB)的比特位等于0。
赋值运算符
算术运算符定义如下:
= 赋值运算符
++ 递增,即,x++相当于x=x+1;当在用于数组下标时时,在自加运算前先求变量值。
–– 递减,即,x––等于x=x–1;当用于数组下标时,在自减运算前先求变量值。
+= 递增指定值,即,x+=3相当于x=x+3,x+=(–3)相当于x=x+(–3)。
–= 自减指定值,即x–=3相当于x=x–3,x–=(–3)相当于x=x–(–3)。
范围表示法
下面的表示法用来说明值的范围:
x=y..z x取从y到z(包括y和z)的整数值,其中,x、y和z是整数,z大于y。
数学函数
数学函数定义如下:
Asin(x)三角反正弦函数,对参数x运算,x在–1.0至1.0(包括端值)范围之间,输出值在–π÷2至π÷2(包括端值)范围之间,单位为弧度。
Atan(x)三角反正切函数,对参数x运算,输出值在–π÷2至π÷2(包括端值)范围之间,单位为弧度。
Ceil(x)大于或等于x的最小整数。
Clip1Y(x)=Clip3(0,(1<<BitDepthY)–1,x)
Clip1C(x)=Clip3(0,(1<<BitDepthC)–1,x)
Cos(x)三角余弦函数,对参数x运算,单位为弧度。
Floor(x)小于或等于x的最大整数。
Ln(x)返回x的自然对数(以e为底的对数,其中,e是自然对数底数常数2.718281828……)。
Log2(x)x以2为底的对数。
Log10(x)x以10为底的对数。
Round(x)=Sign(x)*Floor(Abs(x)+0.5)
Sin(x)表示三角正弦函数,对参数x运算,单位为弧度。
Swap(x,y)=(y,x)
Tan(x)表示三角正切函数,对参数x运算,单位为弧度。
运算优先级顺序
当没有使用括号来显式表示表达式中的优先顺序时,以下规则适用:
–高优先级的运算在低优先级的任何运算之前计算。
–相同优先级的运算从左到右依次计算。
下表从最高到最低的顺序说明运算的优先级,表中位置越高,优先级越高。
对于C编程语言中也使用的运算符,本规范中运算符优先级顺序与C编程语言中优先级顺序相同。
表:运算优先级按照最高(表格顶部)到最低(表格底部)排序
逻辑运算的文本描述
在文本中,用数学形式描述如下的逻辑运算语句:
可以用以下方式描述:
……如下/……以下为准:
–如果条件0,则语句0
–否则,如果条件1,则语句1
–……
–否则(关于剩余条件的提示性说明),则语句n
文本中的每个“如果……否则,如果……否则,……”语句都以“……如下”或“……以下为准”引入,后面紧跟着“如果……”。”。“如果……否则,如果……否则,……”的最后一个条件总有一个“否则,……”。中间有“如果……否则,如果……否则”语句可以通过使“……如下”或“……以下为准”与结尾“否则……”匹配来识别。
在文本中,用数学形式描述如下的逻辑运算语句:
可以用以下方式描述:
……如下/……以下为准:
–如果以下所有条件为真,则语句0:
–条件0a
–条件0b
–否则,如果以下一个或多个条件满足,则语句1:
–条件1a
–条件1b
–……
–否则,语句n
在文本中,用数学形式描述如下的逻辑运算语句:
if(condition 0)
statement 0
if(condition 1)
statement 1
可以用以下方式描述:
当条件0时,语句0
当条件1,则语句1
虽然本发明实施例主要根据视频译码进行了描述,但需要说明的是,译码系统10、编码器20和解码器30(相应地,系统10)的实施例以及本文描述的其它实施例也可以用于静止图像处理或译码,即,对视频译码中独立于任何先前或连续图像的单个图像进行处理或译码。一般而言,如果图像处理译码限于单个图像17,则仅帧间预测单元244(编码器)和344(解码器)不可用。视频编码器20和视频解码器30的所有其它功能(也称为工具或技术)同样可以用于静止图像处理,例如残差计算204/304、变换206、量化208、反量化210/310、(逆)变换212/312、分割262/362、帧内预测254/354和/或环路滤波220/320、熵编码270和熵解码304。
编码器20和解码器30等的实施例以及本文参照编码器20和解码器30等描述的功能可以在硬件、软件、固件或其任意组合中实现。如果在软件中实现,则这些功能可以作为一个或多个指令或代码存储在计算机可读介质中或通过通信介质发送,且由基于硬件的处理单元执行。计算机可读介质可以包括与有形介质(例如,数据存储介质)对应的计算机可读存储介质,或包括任何便于将计算机程序从一处传送到另一处的介质(例如,根据通信协议)的通信介质。通过这种方式,计算机可读介质通常可以对应(1)非瞬时性的有形计算机可读存储介质,或(2)信号或载波等通信介质。数据存储介质可以是通过一个或多个计算机或一个或多个处理器访问的任何可用介质,以检索用于实施本发明所述技术的指令、代码和/或数据结构。计算机程序产品可以包括计算机可读介质。
作为示例而非限制,这些计算机可读存储介质可以包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储器、磁盘存储器或其它磁性存储设备、闪存或可以用于存储指令或数据结构形式的所需程序代码并且可以由计算机访问的任何其它介质。此外,任何连接都可以适当地称为计算机可读介质。例如,如果使用同轴缆线、光纤缆线、双绞线、数字用户线(digital subscriber line,DSL)或红外线、无线电和微波等无线技术从网站、服务器或其它远程源传输指令,则同轴缆线、光纤缆线、双绞线、DSL或红外线、无线电和微波等无线技术包括在介质的定义中。但是,应当理解的是,计算机可读存储介质和数据存储介质并不包括连接、载波、信号或其它瞬时性介质,而是涉及非瞬时性有形存储介质。本文所使用的磁盘和光盘包括压缩光盘(compact disc,CD)、激光光盘、光学光盘、数字多功能光盘(digital versatile disc,DVD)和蓝光光盘,其中,磁盘通常以磁性方式再现数据,而光盘利用激光以光学方式再现数据。以上各项的组合也应包括在计算机可读介质的范围内。
指令可以通过一个或多个数字信号处理器(digital signal processor,DSP)、一个或多个通用微处理器、一个或多个专用集成电路(application specific integratedcircuit,ASIC)、一个或多个现场可编程逻辑阵列(field programmable logic array,FPGA)或其它同等集成或离散逻辑电路等一或多个处理器来执行。因此,本文所使用的术语“处理器”可以指上述结构中的任一种或适于实施本文所述技术的任何其它结构。另外,在一些方面中,本文描述的各种功能可以提供在用于编码和解码的专用硬件和/或软件模块内,或者并入在组合编解码器中。而且,这些技术可以在一个或多个电路或逻辑元件中完全实现。
本发明技术可以在多种设备或装置中实现,这些设备或装置包括无线手机、集成电路(integrated circuit,IC)或一组IC(例如芯片组)。本发明描述了各种组件、模块或单元,以强调用于执行所公开技术的设备的功能方面,但未必需要由不同的硬件单元实现。实际上,如上所述,各种单元可以结合合适的软件和/或固件组合在编解码器硬件单元中,或者通过包括如上所述的一个或多个处理器的互操作硬件单元的集合来提供。

Claims (25)

1.一种由解码/编码设备实现的译码方法,用于对视频数据进行译码,其特征在于,所述方法包括:
确定在仿射模式下译码的仿射译码块的控制点运动矢量CPMV;
根据确定的CPMV,确定参考图像中与所述仿射译码块中的子块对应的参考区域;
如果所述参考区域的大小大于预定义阈值,则将变量clipMVX设置为真TRUE,否则将变量clipMVX设置为假FALSE;
推导所述仿射译码块的基于像素的运动矢量场,
其中,如果所述变量clipMVX为真,则推导基于像素的运动矢量场还包括根据缩放后的第一运动矢量范围对根据仿射模型计算的运动矢量进行限幅,其中,所述第一运动矢量范围是根据所述确定的CPMV和所述仿射译码块的大小确定的,所述缩放后的第一运动矢量范围是根据子采样参数SubWidthC和SubHeightC对所述第一运动矢量范围进行缩放得到的。
2.根据权利要求1所述的方法,其特征在于,所述第一运动矢量范围的确定方式包括:
确定所述仿射译码块的中心点的运动矢量;
根据所述仿射译码块的中心点的运动矢量和相应块大小的预定义偏移,确定第二运动矢量范围,将所述第二运动矢量范围设置为所述第一运动矢量范围,其中,所述块大小包括所述仿射译码块的大小。
3.根据权利要求2所述的方法,其特征在于,所述确定所述仿射译码块的中心点的运动矢量是根据以下等式执行的:
mv_center[0]=(mvBaseScaled[0]+dX[0]*(cbWidth>>1)+dY[0]*(cbHeight>>1)),
mv_center[1]=(mvBaseScaled[1]+dX[1]*(cbWidth>>1)+dY[1]*(cbHeight>>1)),
其中,mvBaseScaled表示所述仿射译码块的左上顶点的运动矢量,cbWidth和cbHeight分别表示所述仿射译码块的宽度和高度,dX[0]和dX[1]表示水平方向上每一个样本的运动矢量的水平部分和垂直部分的各自差值,dY[0]和dY[1]表示垂直方向上每一个样本的运动矢量的水平部分和垂直部分的各自差值,mv_center[0]和mv_center[1]分别表示所述中心点的运动矢量的水平部分和垂直部分。
4.根据权利要求2或3所述的方法,其特征在于,所述根据所述仿射译码块的中心点的运动矢量和相应块大小的预定义偏移,确定第二运动矢量范围是根据以下等式执行的:
mv_hor_min=mv_center[0]–deviationMV[log2CbWidth–3],
mv_ver_min=mv_center[1]–deviationMV[log2CbHeight–3],
mv_hor_max=mv_center[0]+deviationMV[log2CbWidth–3],
mv_ver_max=mv_center[1]+deviationMV[log2CbHeight–3],
其中,deviationMV[]表示为相应块大小预定义的偏移的表,mv_hor_min、mv_ver_min、mv_hor_max和mv_ver_max表示所述第二运动矢量范围。
5.根据权利要求2或3所述的方法,其特征在于,所述相应块大小的预定义偏移与{64,128,272,560,1136}成正比,其中,
64对应于尺寸等于8的块大小,
128对应于尺寸等于16的块大小,
272对应于尺寸等于32的块大小,
560对应于尺寸等于64的块大小,或者
1136对应于尺寸等于128的块大小。
6.根据权利要求1-3中任一项所述的方法,其特征在于,所述第一运动矢量范围的缩放方式包括:
hor_min=hor_min/SubWidthC,
hor_max=hor_max/SubWidthC,
ver_min=ver_min/SubHeightC,
ver_max=ver_max/SubHeightC,
其中,hor_min、ver_min、hor_max和ver_max表示所述缩放后的第一运动矢量范围。
7.根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括以下步骤:
根据所述推导出的运动矢量场,通过双线性插值获得所述参考图像中的插值后样本;
将高通滤波器应用于所述插值后样本。
8.根据权利要求1-3中任一项所述的方法,其特征在于,所述仿射译码块中的所述子块的大小为4×4。
9.根据权利要求1-3中任一项所述的方法,其特征在于,所述预定义阈值为72。
10.根据权利要求1-3中任一项所述的方法,其特征在于,如果仿射帧间预测包括双向预测,则设置变量clipMVX包括:
推导列表0的变量clipMV0;
推导列表1的变量clipMV1;
将所述变量clipMVX推导为clipMV0|clipMV1,其中,“|”表示或(OR)。
11.一种编码器(20),其特征在于,所述编码器(20)包括处理电路,用于执行根据权利要求1至10中任一项所述的方法。
12.一种解码器(30),其特征在于,所述解码器(30)包括处理电路,用于执行根据权利要求1至10中任一项所述的方法。
13.一种解码器(30),其特征在于,所述解码器(30)包括:
一个或多个处理器;
非瞬时性计算机可读存储介质,与所述一个或多个处理器耦合并存储由所述一个或多个处理器执行的指令,其中,所述一个或多个处理器执行所述指令时,所述指令配置所述解码器执行根据权利要求1至10中任一项所述的方法。
14.一种编码器(20),其特征在于,所述编码器(20)包括:
一个或多个处理器;
非瞬时性计算机可读存储介质,与所述一个或多个处理器耦合并存储由所述一个或多个处理器执行的指令,其中,当所述一个或多个处理器执行所述指令时,所述指令配置所述编码器执行根据权利要求1至10中任一项所述的方法。
15.一种非瞬时性计算机可读存储介质,其特征在于,所述非瞬时性计算机可读存储介质包括程序代码,当计算机设备执行所述程序代码时,所述程序代码使得所述计算机设备执行根据权利要求1至10中任一项所述的方法。
16.一种对视频序列进行译码的解码器(30)或编码器(20),其特征在于,所述解码器(30)或编码器(20)包括:
确定单元,用于确定在仿射模式下译码的仿射译码块的控制点运动矢量CPMV,并根据确定的CPMV,确定参考图像中与所述仿射译码块中的子块对应的参考区域;
预测单元,用于:
如果所述参考区域的大小大于预定义阈值,则将变量clipMVX设置为真TRUE,否则将变量clipMVX设置为假FALSE;
推导所述仿射译码块的基于像素的运动矢量场,
其中,如果所述变量clipMVX为真,则推导基于像素的运动矢量场还包括根据缩放后的第一运动矢量范围对根据仿射模型计算的运动矢量进行限幅,其中,所述第一运动矢量范围是根据所述确定的CPMV和所述仿射译码块的大小确定的,所述缩放后的第一运动矢量范围是根据子采样参数SubWidthC和SubHeightC对所述第一运动矢量范围进行缩放得到的。
17.根据权利要求16所述的解码器或编码器,其特征在于,所述第一运动矢量范围的确定方式包括:
确定所述仿射译码块的中心点的运动矢量;
根据所述仿射译码块的中心点的运动矢量和相应块大小的预定义偏移,确定第二运动矢量范围,将所述第二运动矢量范围设置为所述第一运动矢量范围,其中,所述块大小包括所述仿射译码块的大小。
18.根据权利要求17所述的解码器或编码器,其特征在于,所述确定所述仿射译码块的中心点的运动矢量是根据以下等式执行的:
mv_center[0]=(mvBaseScaled[0]+dX[0]*(cbWidth>>1)+dY[0]*(cbHeight>>1)),
mv_center[1]=(mvBaseScaled[1]+dX[1]*(cbWidth>>1)+dY[1]*(cbHeight>>1)),
其中,mvBaseScaled表示所述仿射译码块的左上顶点的运动矢量,cbWidth和cbHeight分别表示所述仿射译码块的宽度和高度,dX[0]和dX[1]表示水平方向上每一个样本的运动矢量的水平部分和垂直部分的各自差值,dY[0]和dY[1]表示垂直方向上每一个样本的运动矢量的水平部分和垂直部分的各自差值,mv_center[0]和mv_center[1]分别表示所述中心点的运动矢量的水平部分和垂直部分。
19.根据权利要求17或18所述的解码器或编码器,其特征在于,所述根据所述仿射译码块的中心点的运动矢量和相应块大小的预定义偏移,确定第二运动矢量范围是根据以下等式执行的:
mv_hor_min=mv_center[0]–deviationMV[log2CbWidth–3],
mv_ver_min=mv_center[1]–deviationMV[log2CbHeight–3],
mv_hor_max=mv_center[0]+deviationMV[log2CbWidth–3],
mv_ver_max=mv_center[1]+deviationMV[log2CbHeight–3],
其中,deviationMV[]表示为相应块大小预定义的偏移的表,mv_hor_min、mv_ver_min、mv_hor_max和mv_ver_max表示所述第二运动矢量范围。
20.根据权利要求17或18所述的解码器或编码器,其特征在于,所述相应块大小的预定义偏移与{64,128,272,560,1136}成正比,其中,
64对应于尺寸等于8的块大小,
128对应于尺寸等于16的块大小,
272对应于尺寸等于32的块大小,
560对应于尺寸等于64的块大小,或者
1136对应于尺寸等于128的块大小。
21.根据权利要求16至18中任一项所述的解码器或编码器,其特征在于,所述第一运动矢量范围的缩放方式包括:
hor_min=hor_min/SubWidthC,
hor_max=hor_max/SubWidthC,
ver_min=ver_min/SubHeightC,
ver_max=ver_max/SubHeightC,
其中,hor_min、ver_min、hor_max和ver_max表示所述缩放后的第一运动矢量范围。
22.根据权利要求16至18中任一项所述的解码器或编码器,其特征在于,所述解码器或编码器还用于执行以下步骤:
根据所述推导出的运动矢量场,通过双线性插值获得所述参考图像中的插值后样本;
将高通滤波器应用于所述插值后样本。
23.根据权利要求16至18中任一项所述的解码器或编码器,其特征在于,所述仿射译码块中的所述子块的大小为4×4。
24.根据权利要求16至18中任一项所述的解码器或编码器,其特征在于,所述预定义阈值为72。
25.根据权利要求16至18中任一项所述的解码器或编码器,其特征在于,如果仿射帧间预测包括双向预测,则设置变量clipMVX包括:
推导列表0的变量clipMV0;
推导列表1的变量clipMV1;
将所述变量clipMVX推导为clipMV0|clipMV1,其中,“|”表示或(OR)。
CN202080068491.7A 2019-09-30 2020-09-30 插值滤波器在仿射运动补偿中的适应性使用 Active CN114503558B (zh)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201962908594P 2019-09-30 2019-09-30
US62/908,594 2019-09-30
US201962912049P 2019-10-07 2019-10-07
US62/912,049 2019-10-07
US201962927671P 2019-10-29 2019-10-29
CN2019114161 2019-10-29
US62/927,671 2019-10-29
CNPCT/CN2019/114161 2019-10-29
US202062958291P 2020-01-07 2020-01-07
US62/958,291 2020-01-07
PCT/RU2020/050260 WO2020251417A2 (en) 2019-09-30 2020-09-30 Usage of dct based interpolation filter and enhanced bilinear interpolation filter in affine motion compensation

Publications (2)

Publication Number Publication Date
CN114503558A CN114503558A (zh) 2022-05-13
CN114503558B true CN114503558B (zh) 2023-10-20

Family

ID=73786079

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080068491.7A Active CN114503558B (zh) 2019-09-30 2020-09-30 插值滤波器在仿射运动补偿中的适应性使用

Country Status (5)

Country Link
US (1) US20220239922A1 (zh)
EP (1) EP4029248A4 (zh)
KR (1) KR20220065879A (zh)
CN (1) CN114503558B (zh)
WO (1) WO2020251417A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11936877B2 (en) * 2021-04-12 2024-03-19 Qualcomm Incorporated Template matching based affine prediction for video coding
US20240137539A1 (en) * 2022-10-18 2024-04-25 Tencent America LLC Method and apparatus for affine motion refinement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017206804A1 (en) * 2016-05-28 2017-12-07 Mediatek Inc. Method and apparatus of current picture referencing for video coding using affine motion compensation
CN109155855A (zh) * 2016-05-16 2019-01-04 高通股份有限公司 用于视频译码的仿射运动预测
WO2019117659A1 (ko) * 2017-12-14 2019-06-20 엘지전자 주식회사 움직임 벡터 도출을 기반으로 하는 영상 코딩 방법 및 그 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106303543B (zh) * 2015-05-15 2018-10-30 华为技术有限公司 视频图像编码和解码的方法、编码设备和解码设备
CN105163116B (zh) * 2015-08-29 2018-07-31 华为技术有限公司 图像预测的方法及设备
US10602180B2 (en) * 2017-06-13 2020-03-24 Qualcomm Incorporated Motion vector prediction
US10609384B2 (en) * 2017-09-21 2020-03-31 Futurewei Technologies, Inc. Restriction on sub-block size derivation for affine inter prediction
US10757417B2 (en) * 2018-01-20 2020-08-25 Qualcomm Incorporated Affine motion compensation in video coding
WO2019160860A1 (en) * 2018-02-14 2019-08-22 Futurewei Technologies, Inc. Adaptive interpolation filter
US11632563B2 (en) * 2019-02-22 2023-04-18 Qualcomm Incorporated Motion vector derivation in video coding
US11317111B2 (en) * 2019-09-29 2022-04-26 Qualcomm Incorporated Affine coding with vector clipping
BR112022005406A2 (pt) * 2019-09-30 2022-11-29 Huawei Tech Co Ltd Restrições de modelo de movimento afim para redução de largura de banda de memória de filtro de interpolação aprimorado

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155855A (zh) * 2016-05-16 2019-01-04 高通股份有限公司 用于视频译码的仿射运动预测
WO2017206804A1 (en) * 2016-05-28 2017-12-07 Mediatek Inc. Method and apparatus of current picture referencing for video coding using affine motion compensation
WO2019117659A1 (ko) * 2017-12-14 2019-06-20 엘지전자 주식회사 움직임 벡터 도출을 기반으로 하는 영상 코딩 방법 및 그 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JVET-N0398,CE2-4.4: Affine block memory bandwidth reduction by MV clip;Xiang Li;《JVET-N0398》;20190313;全文 *
视频编码的技术基础及发展方向;周建同等;《电信科学》;20170820(第08期);全文 *

Also Published As

Publication number Publication date
WO2020251417A3 (en) 2021-03-11
KR20220065879A (ko) 2022-05-20
EP4029248A2 (en) 2022-07-20
WO2020251417A2 (en) 2020-12-17
CN114503558A (zh) 2022-05-13
EP4029248A4 (en) 2022-11-02
US20220239922A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
CN113748677A (zh) 编码器、解码器及对应的帧内预测方法
WO2020181997A1 (en) An encoder, a decoder and corresponding methods for inter prediction
CN113841405B (zh) 用于帧间预测的局部光照补偿的方法和设备
AU2019386917B2 (en) Encoder, decoder and corresponding methods of most probable mode list construction for blocks with multi-hypothesis prediction
CN113545063A (zh) 使用线性模型进行帧内预测的方法及装置
CN114450958B (zh) 用于减小增强插值滤波器的内存带宽的仿射运动模型限制
CN113597761A (zh) 帧内预测方法和装置
CN115023953A (zh) 指示高级语法的编码器、解码器以及对应方法
CN114503558B (zh) 插值滤波器在仿射运动补偿中的适应性使用
KR20210129736A (ko) 옵티컬 플로 기반 비디오 인터 예측
CN115349257B (zh) 基于dct的内插滤波器的使用
AU2024201152A1 (en) An encoder, a decoder and corresponding methods using intra mode coding for intra prediction
CN114830665B (zh) 仿射运动模型限制
JP7384998B2 (ja) クロマイントラモード導出のエンコーダ、デコーダ、および対応する方法
CN113170118B (zh) 视频译码中进行色度帧内预测的方法及装置
CN114679583B (zh) 视频编码器、视频解码器及对应方法
CN114145019A (zh) 用于非线性自适应环路滤波器的限幅电平
CN116980621A (zh) 编码器、解码器及相应的帧间预测方法
CN114556923B (zh) 编码器、解码器和使用插值滤波的对应方法
CN113228632B (zh) 用于局部亮度补偿的编码器、解码器、以及对应方法
CN114930840A (zh) 增强型插值滤波器的运动矢量范围的推导
CN113875251A (zh) 用于几何分割模式的自适应滤波器强度指示
CN116489389B (zh) 编码器、解码器及对应方法
RU2809192C2 (ru) Кодер, декодер и соответствующие способы межкадрового предсказания
US20220132150A1 (en) Motion field storage optimization for a line buffer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant