CN114499528A - Digital driver, feedback circuit for analog-to-digital converter, and digital-to-analog converter - Google Patents

Digital driver, feedback circuit for analog-to-digital converter, and digital-to-analog converter Download PDF

Info

Publication number
CN114499528A
CN114499528A CN202210142142.6A CN202210142142A CN114499528A CN 114499528 A CN114499528 A CN 114499528A CN 202210142142 A CN202210142142 A CN 202210142142A CN 114499528 A CN114499528 A CN 114499528A
Authority
CN
China
Prior art keywords
digital
pmos transistor
nmos transistor
analog
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210142142.6A
Other languages
Chinese (zh)
Inventor
郭铭强
冼世荣
肖刚军
赵伟兵
许登科
马许愿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Um Zhuhai Research Institute
Zhuhai Amicro Semiconductor Co Ltd
University of Macau
Original Assignee
Um Zhuhai Research Institute
Zhuhai Amicro Semiconductor Co Ltd
University of Macau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Um Zhuhai Research Institute, Zhuhai Amicro Semiconductor Co Ltd, University of Macau filed Critical Um Zhuhai Research Institute
Priority to CN202210142142.6A priority Critical patent/CN114499528A/en
Publication of CN114499528A publication Critical patent/CN114499528A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/129Means for adapting the input signal to the range the converter can handle, e.g. limiting, pre-scaling ; Out-of-range indication
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/462Details of the control circuitry, e.g. of the successive approximation register

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

本申请实施例提供了一种数字驱动器,包括:输入端子、输出端子、第一、二、三、四PMOS管、第一、二、三和四NMOS管;输入端子、第一PMOS管和第一NMOS管连接;第一PMOS管、第一NMOS管、第二PMOS管和第二NMOS管连接于第一节点;第二PMOS管、第二NMOS管、第三PMOS管和第三NMOS管连接于第二节点;第三PMOS管、第三NMOS管、第四PMOS管和第四NMOS管连接于第三节点;第四PMOS管、第四NMOS管和输出端子连接;各PMOS管、各NMOS管的宽度根据迁移率和预设缩小系数确定。这样,采用预设缩小因子调整晶体管的尺寸,可以降低延迟时间和功耗。

Figure 202210142142

An embodiment of the present application provides a digital driver, including: an input terminal, an output terminal, first, second, third, and fourth PMOS transistors, and first, second, third, and fourth NMOS transistors; an input terminal, a first PMOS transistor, and a third An NMOS tube is connected; the first PMOS tube, the first NMOS tube, the second PMOS tube and the second NMOS tube are connected to the first node; the second PMOS tube, the second NMOS tube, the third PMOS tube and the third NMOS tube are connected at the second node; the third PMOS tube, the third NMOS tube, the fourth PMOS tube and the fourth NMOS tube are connected to the third node; the fourth PMOS tube, the fourth NMOS tube and the output terminal are connected; each PMOS tube, each NMOS tube The width of the tube is determined according to the mobility and a preset reduction factor. In this way, by adjusting the size of the transistors with a preset shrink factor, the delay time and power consumption can be reduced.

Figure 202210142142

Description

数字驱动器、用于模数转换器的反馈电路、数模转换器Digital drivers, feedback circuits for analog-to-digital converters, digital-to-analog converters

技术领域technical field

本申请涉及电子技术领域,尤其涉及一种数字驱动器、用于模数转换器的反馈电路、数模转换器。The present application relates to the field of electronic technology, and in particular, to a digital driver, a feedback circuit for an analog-to-digital converter, and a digital-to-analog converter.

背景技术Background technique

现有传统的逐次逼近模数转换器(Successive Approximation RegisterAnalog-to-Digital Converter,SAR ADC)包含一个跟踪采样保持电路(T/H)、一个比较器、SAR逻辑电路和一个电容式数模转换器(Digital-to-Analog Converter,DAC),这种传统结构具有低复杂性、低功耗和工艺技术缩小的高能效拓扑等优点,使得传统结构在高速应用具有广泛用途,例如该传统结构可以用于时间交错型的逐次逼近模数转换器(TI-SAR ADC)中。现有一些方案通过改进每周期一位的拓扑以加速SAR ADC的转换,如采用每周期多位的SAR和N位N个比较器的SAR的结构。然而,传统结构的每周期一位的拓扑在低复杂度、较少寄生和较少失调方面仍然具有明显的优势。因此,目前大多数高速TI-SAR ADC仍首选传统的每周期一位的结构。在高速SAR ADC中采用具有冗余位的架构使得DAC所需的建立时间可以非常短。然而,受每周期数字SAR逻辑延迟时间的限制,速度慢依旧是传统架构的SAR ADC存在的主要瓶颈。The existing traditional successive approximation analog-to-digital converter (Successive Approximation Register Analog-to-Digital Converter, SAR ADC) includes a tracking sample and hold circuit (T/H), a comparator, SAR logic circuit and a capacitive digital-to-analog converter (Digital-to-Analog Converter, DAC), this traditional structure has the advantages of low complexity, low power consumption and high-efficiency topology with reduced process technology, which makes the traditional structure widely used in high-speed applications. For example, the traditional structure can be used with in a time-interleaved successive approximation analog-to-digital converter (TI-SAR ADC). Some existing solutions speed up the conversion of the SAR ADC by improving the topology of one bit per cycle, such as the structure of a SAR with multiple bits per cycle and a SAR with N bits and N comparators. However, the bit-per-cycle topology of the traditional structure still has clear advantages in terms of low complexity, less parasitics, and less misalignment. Therefore, most high-speed TI-SAR ADCs still prefer the traditional one-bit-per-cycle structure. The use of an architecture with redundant bits in a high-speed SAR ADC allows the settling time required for the DAC to be very short. However, limited by the digital SAR logic delay time per cycle, slow speed is still the main bottleneck of SAR ADCs with traditional architectures.

发明内容SUMMARY OF THE INVENTION

为了解决上述技术问题,本申请实施例提供了一种数字驱动器、用于模数转换器的反馈电路、数模转换器和电子设备。In order to solve the above technical problems, embodiments of the present application provide a digital driver, a feedback circuit for an analog-to-digital converter, a digital-to-analog converter, and an electronic device.

第一方面,本申请实施例提供了一种模数转换器,包括:In a first aspect, an embodiment of the present application provides an analog-to-digital converter, including:

输入端子、输出端子、第一PMOS晶体管、第二PMOS晶体管、第三PMOS晶体管、第四PMOS晶体管、第一NMOS晶体管、第二NMOS晶体管、第三NMOS晶体管和第四NMOS晶体管;an input terminal, an output terminal, a first PMOS transistor, a second PMOS transistor, a third PMOS transistor, a fourth PMOS transistor, a first NMOS transistor, a second NMOS transistor, a third NMOS transistor, and a fourth NMOS transistor;

所述输入端子与所述第一PMOS晶体管的栅极和所述第一NMOS晶体管的栅极连接;the input terminal is connected to the gate of the first PMOS transistor and the gate of the first NMOS transistor;

所述第一PMOS晶体管的漏极、所述第一NMOS晶体管的漏极、第二PMOS晶体管的栅极和第二NMOS晶体管的栅极连接于第一节点;The drain of the first PMOS transistor, the drain of the first NMOS transistor, the gate of the second PMOS transistor and the gate of the second NMOS transistor are connected to the first node;

所述第二PMOS晶体管的漏极、所述第二NMOS晶体管的漏极、第三PMOS晶体管的栅极和第三NMOS晶体管的栅极连接于第二节点;The drain of the second PMOS transistor, the drain of the second NMOS transistor, the gate of the third PMOS transistor and the gate of the third NMOS transistor are connected to the second node;

所述第三PMOS晶体管的漏极、所述第三NMOS晶体管的漏极、第四PMOS晶体管的栅极和第四NMOS晶体管的栅极连接于第三节点;The drain of the third PMOS transistor, the drain of the third NMOS transistor, the gate of the fourth PMOS transistor and the gate of the fourth NMOS transistor are connected to the third node;

所述第四PMOS晶体管的漏极、所述第四NMOS晶体管的漏极和所述输出端子连接;其中,所述第一PMOS晶体管、所述第二PMOS晶体管、所述第三PMOS晶体管、所述第四PMOS晶体管、所述第一NMOS晶体管、所述第二NMOS晶体管、所述第三NMOS晶体管、所述第四NMOS晶体管的宽度根据PMOS晶体管迁移率、NMOS晶体管迁移率和预设缩小系数确定,所述预设缩小系数的取值范围为(0,1)。The drain of the fourth PMOS transistor and the drain of the fourth NMOS transistor are connected to the output terminal; wherein the first PMOS transistor, the second PMOS transistor, the third PMOS transistor, the The widths of the fourth PMOS transistor, the first NMOS transistor, the second NMOS transistor, the third NMOS transistor, and the fourth NMOS transistor are based on the PMOS transistor mobility, the NMOS transistor mobility, and a preset scaling factor It is determined that the value range of the preset reduction coefficient is (0, 1).

第二方面,本申请实施例提供了一种用于模数转换器的反馈电路,所述用于模数转换器的反馈电路包括:In a second aspect, an embodiment of the present application provides a feedback circuit for an analog-to-digital converter, where the feedback circuit for the analog-to-digital converter includes:

电容型DAC、比较电路、异步逻辑控制电路和DAC开关控制电路;Capacitive DAC, comparison circuit, asynchronous logic control circuit and DAC switch control circuit;

所述电容型DAC包括多个电容器和多个数字驱动器,各所述数字驱动器为第一方面所提供的数字驱动器;The capacitive DAC includes a plurality of capacitors and a plurality of digital drivers, and each of the digital drivers is the digital driver provided by the first aspect;

所述异步逻辑控制电路和所述DAC开关控制电路分别包括多个触发器;The asynchronous logic control circuit and the DAC switch control circuit respectively include a plurality of flip-flops;

各电容器与对应数字驱动器的输入端子连接,所述电容型DAC的输出端与所述比较电路的输入端连接;Each capacitor is connected to the input terminal of the corresponding digital driver, and the output terminal of the capacitive DAC is connected to the input terminal of the comparison circuit;

所述比较电路的输出端与所述异步逻辑控制电路的各触发器的输入端连接;The output end of the comparison circuit is connected with the input end of each flip-flop of the asynchronous logic control circuit;

所述异步逻辑控制电路的各触发器的输出端与所述DAC开关控制电路的对应触发器的输入端连接;The output end of each trigger of the asynchronous logic control circuit is connected with the input end of the corresponding trigger of the DAC switch control circuit;

所述DAC开关控制电路的各触发器的输出端与对应数字驱动器的输入端连接。The output end of each flip-flop of the DAC switch control circuit is connected with the input end of the corresponding digital driver.

第三方面,本申请实施例提供了一种模数转换器,包括第二方面所提供的用于模数转换器的反馈电路。In a third aspect, an embodiment of the present application provides an analog-to-digital converter, including the feedback circuit for the analog-to-digital converter provided in the second aspect.

第四方面,本申请实施例提供了一种电子设备,包括第三方面提供的模数转换器。In a fourth aspect, an embodiment of the present application provides an electronic device, including the analog-to-digital converter provided in the third aspect.

上述本申请提供的数字驱动器、用于模数转换器的反馈电路、数模转换器和电子设备,采用预设缩小因子调整NMOS晶体管、PMOS晶体管的尺寸,可以降低延迟时间和功耗。The above-mentioned digital driver, feedback circuit for analog-to-digital converter, digital-to-analog converter and electronic equipment provided by the present application can adjust the size of NMOS transistors and PMOS transistors by a preset reduction factor, which can reduce delay time and power consumption.

附图说明Description of drawings

为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对本申请保护范围的限定。在各个附图中,类似的构成部分采用类似的编号。In order to illustrate the technical solutions of the present application more clearly, the following briefly introduces the accompanying drawings used in the embodiments. It should be understood that the following drawings only show some embodiments of the present application, and therefore should not be It is regarded as a limitation on the protection scope of this application. In the various figures, similar components are numbered similarly.

图1示出了本申请实施例提供的一数字驱动器的结构示意图;FIG. 1 shows a schematic structural diagram of a digital driver provided by an embodiment of the present application;

图2示出了本申请实施例提供的一时延对比示意图;FIG. 2 shows a schematic diagram of a time delay comparison provided by an embodiment of the present application;

图3示出了本申请实施例提供的数字驱动器的一仿真结果示意图;3 shows a schematic diagram of a simulation result of a digital driver provided by an embodiment of the present application;

图4A示出了本申请实施例提供的用于模数转换器的反馈电路的另一结构示意图;4A shows another schematic structural diagram of a feedback circuit for an analog-to-digital converter provided by an embodiment of the present application;

图4B示出了本申请实施例提供的一信号变化示意图;FIG. 4B shows a schematic diagram of a signal change provided by an embodiment of the present application;

图5A示出了本申请实施例提供的用于模数转换器的反馈电路的另一结构示意图;FIG. 5A shows another schematic structural diagram of a feedback circuit for an analog-to-digital converter provided by an embodiment of the present application;

图5B示出了本申请实施例提供的另一信号变化示意图;FIG. 5B shows another schematic diagram of signal change provided by an embodiment of the present application;

图6示出了本申请实施例提供的触发器的一仿真示意图。FIG. 6 shows a schematic diagram of a simulation of a flip-flop provided by an embodiment of the present application.

具体实施方式Detailed ways

下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, rather than all the embodiments.

通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。The components of the embodiments of the present application generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations. Thus, the following detailed description of the embodiments of the application provided in the accompanying drawings is not intended to limit the scope of the application as claimed, but is merely representative of selected embodiments of the application. Based on the embodiments of the present application, all other embodiments obtained by those skilled in the art without creative work fall within the protection scope of the present application.

在下文中,可在本申请的各种实施例中使用的术语“包括”、“具有”及其同源词仅意在表示特定特征、数字、步骤、操作、元件、组件或前述项的组合,并且不应被理解为首先排除一个或更多个其它特征、数字、步骤、操作、元件、组件或前述项的组合的存在或增加一个或更多个特征、数字、步骤、操作、元件、组件或前述项的组合的可能性。Hereinafter, the terms "comprising", "having" and their cognates, which may be used in various embodiments of the present application, are only intended to denote particular features, numbers, steps, operations, elements, components, or combinations of the foregoing, and should not be construed as first excluding the presence or addition of one or more other features, numbers, steps, operations, elements, components or combinations of the foregoing or the possibility of a combination of the foregoing.

此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。Furthermore, the terms "first", "second", "third", etc. are only used to differentiate the description and should not be construed as indicating or implying relative importance.

除非另有限定,否则在这里使用的所有术语(包括技术术语和科学术语)具有与本申请的各种实施例所属领域普通技术人员通常理解的含义相同的含义。所述术语(诸如在一般使用的词典中限定的术语)将被解释为具有与在相关技术领域中的语境含义相同的含义并且将不被解释为具有理想化的含义或过于正式的含义,除非在本申请的各种实施例中被清楚地限定。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the various embodiments of this application belong. The terms (such as those defined in commonly used dictionaries) will be interpreted as having the same meaning as the contextual meaning in the relevant technical field and will not be interpreted as having an idealized or overly formal meaning, unless explicitly defined in the various embodiments of the present application.

实施例1Example 1

本公开实施例提供了一种数字驱动器。Embodiments of the present disclosure provide a digital driver.

具体的,参见图1,图1所示为数字驱动器10的一结构示意图,数字驱动器10包括:输入端子IN、输出端子OUT、第一P型金属氧化物半导体(P-Metal-Oxide-Semiconductor,PMOS)晶体管MP1、第二PMOS晶体管MP2、第三PMOS晶体管MP3、第四PMOS晶体管MP4、第一N型金属氧化物半导体(N-Metal-Oxide-Semiconductor,NMOS)晶体管MN1、第二NMOS晶体管MN2、第三NMOS晶体管MN3和第四NMOS晶体管MN4Specifically, referring to FIG. 1, FIG. 1 shows a schematic structural diagram of a digital driver 10. The digital driver 10 includes: an input terminal IN, an output terminal OUT, a first P-Metal-Oxide-Semiconductor (P-Metal-Oxide-Semiconductor, PMOS) transistor M P1 , second PMOS transistor M P2 , third PMOS transistor M P3 , fourth PMOS transistor M P4 , first N-Metal-Oxide-Semiconductor (NMOS) transistor M N1 , the second NMOS transistor MN2 , the third NMOS transistor MN3 and the fourth NMOS transistor MN4 ;

所述输入端子与所述第一PMOS晶体管的栅极和所述第一NMOS晶体管的栅极连接;the input terminal is connected to the gate of the first PMOS transistor and the gate of the first NMOS transistor;

所述第一PMOS晶体管MP1的漏极、所述第一NMOS晶体管MN1的漏极、第二PMOS晶体管MP2的栅极和第二NMOS晶体管MN2的栅极连接于第一节点A;The drain of the first PMOS transistor M P1 , the drain of the first NMOS transistor M N1 , the gate of the second PMOS transistor M P2 and the gate of the second NMOS transistor M N2 are connected to the first node A;

所述第二PMOS晶体管MP2的漏极、所述第二NMOS晶体管MN2的漏极、第三PMOS晶体管的栅极和第三NMOS晶体管的栅极连接于第二节点B;The drain of the second PMOS transistor M P2 , the drain of the second NMOS transistor M N2 , the gate of the third PMOS transistor and the gate of the third NMOS transistor are connected to the second node B;

所述第三PMOS晶体管MP3的漏极、所述第三NMOS晶体管MN3的漏极、第四PMOS晶体管MP4的栅极和第四NMOS晶体管MN4的栅极连接于第三节点C;The drain of the third PMOS transistor M P3 , the drain of the third NMOS transistor M N3 , the gate of the fourth PMOS transistor M P4 and the gate of the fourth NMOS transistor M N4 are connected to the third node C;

所述第四PMOS晶体管MP4的漏极、所述第四NMOS晶体管MN4的漏极和所述输出端子连接;其中,所述第一PMOS晶体管MP1、所述第二PMOS晶体管MP2、所述第三PMOS晶体管MP3、所述第四PMOS晶体管MP4、所述第一NMOS晶体管MN1、所述第二NMOS晶体管MN2、所述第三NMOS晶体管MN3、所述第四NMOS晶体管MN4的宽度根据PMOS晶体管迁移率、NMOS晶体管迁移率和预设缩小系数确定,所述预设缩小系数的取值范围为(0,1)。The drain of the fourth PMOS transistor M P4 and the drain of the fourth NMOS transistor M N4 are connected to the output terminal; wherein the first PMOS transistor M P1 , the second PMOS transistor M P2 , the the third PMOS transistor M P3 , the fourth PMOS transistor M P4 , the first NMOS transistor M N1 , the second NMOS transistor M N2 , the third NMOS transistor M N3 , the fourth NMOS The width of the transistor MN4 is determined according to the mobility of the PMOS transistor, the mobility of the NMOS transistor, and a preset scaling factor, and the preset scaling factor has a value range of (0, 1).

本实施例中,NMOS晶体管和PMOS晶体管可以分别简称为NMOS管、PMOS管,由于引入所述预设缩小系数,数字驱动器10可以理解为不平衡驱动器。在传统数字驱动器中,NMOS晶体管和PMOS晶体管的宽长比近似等于NMOS晶体管迁移率和PMOS晶体管迁移率的比值。例如,图1所示的数字驱动器10不采用本实施方案提供的预设缩小因子时,第二PMOS晶体管MP2、所述第二NMOS晶体管MN2的宽度之间存在以下关系式1:

Figure BDA0003507507200000061
其中,WP2表示第二PMOS晶体管MP2的宽度,WN2表示第二NMOS晶体管MN2的宽度,μp表示PMOS晶体管的迁移率,μn表示NMOS晶体管的迁移率。所述第三PMOS晶体管MP3、所述第三NMOS晶体管MN3的宽度之间存在以下关系式2:
Figure BDA0003507507200000062
其中,WN3表示第三NMOS晶体管MN3的宽度,WP3表示第三PMOS晶体管WP3的宽度,μp表示PMOS晶体管的迁移率,μn表示NMOS晶体管的迁移率。In this embodiment, the NMOS transistor and the PMOS transistor may be referred to as NMOS transistors and PMOS transistors for short. Due to the introduction of the preset scaling factor, the digital driver 10 can be understood as an unbalanced driver. In a conventional digital driver, the aspect ratio of the NMOS transistor and the PMOS transistor is approximately equal to the ratio of the mobility of the NMOS transistor to the mobility of the PMOS transistor. For example, when the digital driver 10 shown in FIG. 1 does not use the preset scaling factor provided by this embodiment, the following relational expression 1 exists between the widths of the second PMOS transistor MP2 and the second NMOS transistor MN2 :
Figure BDA0003507507200000061
Wherein, W P2 represents the width of the second PMOS transistor MP2 , W N2 represents the width of the second NMOS transistor MN2 , μ p represents the mobility of the PMOS transistor, and μ n represents the mobility of the NMOS transistor. The following relational formula 2 exists between the widths of the third PMOS transistor M P3 and the third NMOS transistor M N3 :
Figure BDA0003507507200000062
Wherein, W N3 represents the width of the third NMOS transistor MN3 , W P3 represents the width of the third PMOS transistor WP3 , μ p represents the mobility of the PMOS transistor, and μ n represents the mobility of the NMOS transistor.

本实施例中,通过采用预设缩小系数,减少对应的NMOS晶体管和PMOS晶体管的宽度。例如,在图1中,第二PMOS晶体管MP2、所述第二NMOS晶体管MN2的宽度由以下公式1确定,所述第三PMOS晶体管MP3、所述第三NMOS晶体管MN3的宽度由以下公式2确定。In this embodiment, the widths of the corresponding NMOS transistors and PMOS transistors are reduced by using a preset reduction factor. For example, in FIG. 1 , the widths of the second PMOS transistor MP2 and the second NMOS transistor MN2 are determined by the following formula 1, and the widths of the third PMOS transistor MP3 and the third NMOS transistor MN3 are determined by The following formula 2 is determined.

公式1:

Figure BDA0003507507200000071
Formula 1:
Figure BDA0003507507200000071

其中,WP2表示第二PMOS晶体管MP2的宽度,WN2表示第二NMOS晶体管MN2的宽度,μp表示PMOS晶体管的迁移率,μn表示NMOS晶体管的迁移率;α表示预设缩小因子。Wherein, W P2 represents the width of the second PMOS transistor MP2 , W N2 represents the width of the second NMOS transistor MN2 , μ p represents the mobility of the PMOS transistor, μ n represents the mobility of the NMOS transistor; α represents a preset scaling factor .

公式2:

Figure BDA0003507507200000072
Formula 2:
Figure BDA0003507507200000072

其中,WN3表示第三NMOS晶体管MN3的宽度,WP3表示第三PMOS晶体管WP3的宽度,μp表示PMOS晶体管的迁移率,μn表示NMOS晶体管的迁移率;α表示预设缩小因子。Wherein, W N3 represents the width of the third NMOS transistor MN3 , W P3 represents the width of the third PMOS transistor WP3 , μ p represents the mobility of the PMOS transistor, μ n represents the mobility of the NMOS transistor; α represents the preset scaling factor .

需要说明的是,所述第一NMOS晶体管MN1和所述第一PMOS晶体管MP1之间的宽度比值约等于

Figure BDA0003507507200000073
而所述第四PMOS晶体管MP4和所述第四NMOS晶体管MN4之间的宽度比值约等于
Figure BDA0003507507200000074
It should be noted that the width ratio between the first NMOS transistor M N1 and the first PMOS transistor M P1 is approximately equal to
Figure BDA0003507507200000073
And the width ratio between the fourth PMOS transistor MP4 and the fourth NMOS transistor MN4 is approximately equal to
Figure BDA0003507507200000074

结合图1的数字驱动器10,若没有采用本实施例提供的预设缩小因子时,基于第一节点A中的边缘方向,输入端子IN向第一节点A,将第一节点A由低电平拉到高电平的延迟时间,由以下公式3确定。With reference to the digital driver 10 of FIG. 1 , if the preset reduction factor provided in this embodiment is not adopted, based on the edge direction in the first node A, the input terminal IN is directed to the first node A, and the first node A is changed from a low level to a low level. The pull-to-high delay time is determined by Equation 3 below.

从第一节点A向第二节点B,将第二B点由高电平拉到低电平的延迟时间由以下公式4确定。From the first node A to the second node B, the delay time for pulling the second point B from a high level to a low level is determined by the following formula 4.

公式3:tpLH,A≈0.69ReqP,ACL,AFormula 3: t pLH,A0.69R eqP,A C L,A ;

其中,ReqP,A是第一PMOS晶体管MP1的等效导通电阻,

Figure BDA0003507507200000075
L表示第一PMOS晶体管MP1的长度,表示PMOS晶体管迁移率,WP1表示第一PMOS晶体管MP1的宽度;CL,A是第一节点A的等效负载电容,CL,A∝(WN2+WP2)L,WN2表示第二NMOS晶体管MN2的宽度,WP2表示第二PMOS晶体管MP2的宽度,L表示第二NMOS晶体管MN2的长度或者第二PMOS晶体管MP2的长度;tpLH,A表示输入端子IN向第一节点A,将第一节点A由低电平拉到高电平的延迟时间。Wherein, R eqP,A is the equivalent on-resistance of the first PMOS transistor M P1 ,
Figure BDA0003507507200000075
L represents the length of the first PMOS transistor M P1 , represents the mobility of the PMOS transistor, W P1 represents the width of the first PMOS transistor M P1 ; C L,A is the equivalent load capacitance of the first node A, C L,A ∝( W N2 +W P2 )L, W N2 represents the width of the second NMOS transistor M N2 , W P2 represents the width of the second PMOS transistor M P2 , L represents the length of the second NMOS transistor M N2 or the length of the second PMOS transistor M P2 Length; t pLH,A represents the delay time for the input terminal IN to the first node A to pull the first node A from a low level to a high level.

公式4:tpHL,B≈0.69ReqN,BCL,BFormula 4: t pHL,B ≈ 0.69R eqN,B C L,B ;

其中,ReqN,B是第一PMOS晶体管MP1的等效导通电阻,

Figure BDA0003507507200000081
L表示第二NMOS晶体管MN2的长度,μN表示NMOS晶体管迁移率,WN2表示第二NMOS晶体管MN2的宽度;CL,B是第E二节点B的等效负载电容,CL,B∝(WN3+WP3)L,WN3表示第三NMOS晶体管MN3的宽度,WP3表示第三PMOS晶体管MP3的宽度,L表示第三NMOS晶体管MN3的长度或者第三PMOS晶体管MP3的长度;tpHL,B表示第一节点A向第二节点B,将第二节点B点由高电平拉到低电平的延迟时间。Wherein, R eqN,B is the equivalent on-resistance of the first PMOS transistor M P1 ,
Figure BDA0003507507200000081
L represents the length of the second NMOS transistor MN2, μ N represents the mobility of the NMOS transistor, W N2 represents the width of the second NMOS transistor MN2 ; CL , B is the equivalent load capacitance of the second node B of E, CL, B ∝(W N3 +W P3 )L, W N3 represents the width of the third NMOS transistor MN3 , W P3 represents the width of the third PMOS transistor M P3 , L represents the length of the third NMOS transistor MN3 or the third PMOS transistor The length of M P3 ; t pHL,B represents the delay time from the first node A to the second node B, and the second node B is pulled from the high level to the low level.

由此可知,对于图1的数字驱动器10,若没有采用本实施例提供的预设缩小因子时,对应的延迟时间可以由以下公式5确定。It can be seen that, for the digital driver 10 in FIG. 1 , if the preset reduction factor provided in this embodiment is not used, the corresponding delay time can be determined by the following formula 5.

公式5:

Figure BDA0003507507200000082
Formula 5:
Figure BDA0003507507200000082

其中,Tdelay-regular表示图1所示数字驱动器10在没有采用本实施例提供的预设缩小因子时的时间延迟;tpLH,A表示输入端子IN向第一节点A,将第一节点A由低电平拉到高电平的延迟时间;tpHL,B表示第一节点A向第二节点B,将第二节点B点由高电平拉到低电平的延迟时间;公式5中的WP1、WP2、WP3、WN2、WN3、μP、μN的含义与前文相同,在此不做赘述。Wherein, T delay-regular represents the time delay of the digital driver 10 shown in FIG. 1 when the preset reduction factor provided in this embodiment is not used; t pLH,A represents the input terminal IN to the first node A, the first node A The delay time from the low level to the high level; t pHL,B represents the delay time from the first node A to the second node B, and the second node B is pulled from the high level to the low level; in formula 5 The meanings of W P1 , W P2 , W P3 , W N2 , W N3 , μ P , and μ N are the same as those described above, and will not be repeated here.

对于图1的数字驱动器10,若没有采用本实施例提供的预设缩小因子时,对应的功耗可以由以下公式6确定。For the digital driver 10 in FIG. 1 , if the preset reduction factor provided in this embodiment is not used, the corresponding power consumption can be determined by the following formula 6.

公式6:Pregular∝[(WN2+WP2)+(WN3+WP3)];Formula 6: P regular ∝[(W N2 +W P2 )+(W N3 +W P3 )];

其中,Pregular表示图1的数字驱动器10,若没有采用本实施例提供的预设缩小因子时,对应的功耗。WP2、WP3、WN2、WN3的含义与前文相同,在此不做赘述。Wherein, P regular represents the corresponding power consumption of the digital driver 10 in FIG. 1 if the preset reduction factor provided in this embodiment is not used. The meanings of W P2 , W P3 , W N2 , and W N3 are the same as those described above, and are not repeated here.

本实施例采用了预设缩小因子,第二PMOS晶体管MP2采用预设缩小因子α减小了第二PMOS晶体管MP2的宽度WP2,从而减小CL,A,从而图1所示的数字驱动器10采用了预设缩小因子α后,数字驱动器10的延迟时间可以根据以下公式7确定。This embodiment adopts a preset reduction factor, and the second PMOS transistor MP2 adopts a preset reduction factor α to reduce the width W P2 of the second PMOS transistor MP2 , thereby reducing CL,A , so that as shown in FIG. 1 , After the digital driver 10 adopts the preset reduction factor α, the delay time of the digital driver 10 can be determined according to the following formula 7.

公式7:

Figure BDA0003507507200000091
Formula 7:
Figure BDA0003507507200000091

其中,Tdelay-proposed表示数字驱动器10采用了预设缩小因子α后的延迟时间,Tdelay-regular表示数字驱动器10没有采用预设缩小因子α时的延迟时间。α表示预设缩小因子。Wherein, T delay-proposed represents the delay time after the digital driver 10 adopts the preset reduction factor α, and T delay-regular represents the delay time when the digital driver 10 does not use the preset reduction factor α. α represents a preset reduction factor.

补充说明的是,数字驱动器10采用了预设缩小因子α后的延迟时间与所述预设缩小系数成正相关关系。具体的,结合公式7可知,预设缩小因子α越大,采用了预设缩小因子α后的延迟时间越大,预设缩小因子α越小,采用了预设缩小因子α后的延迟时间越小。请参阅图2,图2所示为数字驱动器的时延示意图,图2中,Tdelay-proposed表示数字驱动器10采用了预设缩小因子α后的延迟时间,Tdelay-regular表示数字驱动器10没有采用预设缩小因子α时的延迟时间,其中,Tdelay-proposed小于Tdelay-regularIt is added that the delay time after the digital driver 10 adopts the preset reduction factor α is positively correlated with the preset reduction factor. Specifically, according to formula 7, it can be seen that the larger the preset reduction factor α is, the longer the delay time after the preset reduction factor α is adopted, and the smaller the preset reduction factor α is, the longer the delay time after the preset reduction factor α is adopted. Small. Please refer to FIG. 2. FIG. 2 shows a schematic diagram of the delay time of the digital driver. In FIG. 2, T delay-proposed represents the delay time after the digital driver 10 adopts the preset reduction factor α, and T delay-regular represents that the digital driver 10 does not The delay time when the preset reduction factor α is adopted, wherein T delay-proposed is less than T delay-regular .

此外,图1所示的数字驱动器10采用了预设缩小因子α后,数字驱动器10的功率可以根据以下公式8确定。In addition, after the digital driver 10 shown in FIG. 1 adopts the preset reduction factor α, the power of the digital driver 10 can be determined according to the following formula 8.

公式8:

Figure BDA0003507507200000092
Formula 8:
Figure BDA0003507507200000092

其中,Pproposed表示数字驱动器10采用了预设缩小因子α后的功率;Pregular表示数字驱动器10没有采用预设缩小因子α时的功率;α表示预设缩小因子。Wherein, P proposed represents the power after the digital driver 10 adopts the preset reduction factor α; P regular represents the power when the digital driver 10 does not use the preset reduction factor α; α represents the preset reduction factor.

请参阅图3,图3所示为仿真结果示意图,若预设缩小因子α=0.25,如图3中的柱状图方图所示,实际电路的延迟时间在版图的后仿真中减少了31.3%。此外,逻辑传输路径的每个节点的负载电容和功耗也都会下降(1+α)/2。Please refer to Figure 3. Figure 3 shows a schematic diagram of the simulation results. If the preset reduction factor α=0.25, as shown in the histogram in Figure 3, the delay time of the actual circuit is reduced by 31.3% in the post-simulation of the layout. . In addition, the load capacitance and power consumption of each node of the logic transmission path are also reduced by (1+α)/2.

需要说明的是,这种采用不平衡的NMOS晶体管、PMOS晶体管的尺寸来减少延迟和功耗的方案还可以扩展到其他数字逻辑电路,例如NAND门、NOR门、以及触发器(DFF)中的逻辑门等。It should be noted that this scheme of using unbalanced NMOS transistor and PMOS transistor sizes to reduce delay and power consumption can also be extended to other digital logic circuits, such as NAND gates, NOR gates, and flip-flops (DFFs). logic gates, etc.

本实施例提供的数字驱动器采用预设缩小因子,调整NMOS晶体管、PMOS晶体管的尺寸,可以降低延迟时间和功耗。The digital driver provided in this embodiment adopts a preset reduction factor to adjust the size of the NMOS transistor and the PMOS transistor, which can reduce delay time and power consumption.

实施例2Example 2

本公开实施例还提供了一种用于模数转换器的反馈电路。Embodiments of the present disclosure also provide a feedback circuit for an analog-to-digital converter.

具体的,参见图4A,图4A所示为用于模数转换器的反馈电路的一结构示意图,用于模数转换器的反馈电路40包括:Specifically, referring to FIG. 4A, FIG. 4A shows a schematic structural diagram of a feedback circuit for an analog-to-digital converter. The feedback circuit 40 for the analog-to-digital converter includes:

电容型DAC401、比较电路402、异步逻辑控制电路403和DAC开关控制电路404;Capacitive DAC 401, comparison circuit 402, asynchronous logic control circuit 403 and DAC switch control circuit 404;

所述电容型DAC包括多个电容器C1、C2、...、Ci、...,和多个数字驱动器4011,各所述数字驱动器4011为实施例1所提供的数字驱动器;The capacitive DAC includes a plurality of capacitors C 1 , C 2 , . . . , C i , .

所述异步逻辑控制电路403包括多个触发器DFFA;所述DAC开关控制电路404包括多个触发器DFFDThe asynchronous logic control circuit 403 includes a plurality of flip-flops DFF A ; the DAC switch control circuit 404 includes a plurality of flip-flops DFF D ;

各电容器Ci与对应数字驱动器4011的输入端子连接,所述电容型DAC401的输出端与所述比较电路402的输入端连接;Each capacitor C i is connected to the input terminal of the corresponding digital driver 4011 , and the output terminal of the capacitive DAC 401 is connected to the input terminal of the comparison circuit 402 ;

所述比较电路402的输出端与所述异步逻辑控制电路403的各触发器DFFA的输入端连接;The output end of the comparison circuit 402 is connected to the input end of each flip-flop DFF A of the asynchronous logic control circuit 403;

所述异步逻辑控制电路403的各触发器DFFA的输出端与所述DAC开关控制电路404的对应触发器DFFD的输入端连接;The output terminal of each flip-flop DFF A of the asynchronous logic control circuit 403 is connected to the input terminal of the corresponding flip-flop DFF D of the DAC switch control circuit 404;

所述DAC开关控制电路404的各触发器DFFD的输出端与对应数字驱动器4011的输入端连接。The output end of each flip-flop DFF D of the DAC switch control circuit 404 is connected to the input end of the corresponding digital driver 4011 .

在本实施例中,各所述数字驱动器4011为实施例1所提供的数字驱动器,具有实施例1中数字驱动器的结构和优点。数字驱动器4011由不平衡的NMOS晶体管、PMOS晶体管组成,NMOS晶体管、PMOS晶体管的宽度根据预设缩小因子进行调整,减少SAR逻辑延迟,以克服单通SAR ADC的速度瓶颈。In this embodiment, each of the digital drivers 4011 is the digital driver provided in the first embodiment, and has the structure and advantages of the digital driver in the first embodiment. The digital driver 4011 is composed of unbalanced NMOS transistors and PMOS transistors. The widths of the NMOS transistors and PMOS transistors are adjusted according to a preset scaling factor to reduce the SAR logic delay to overcome the speed bottleneck of the single-pass SAR ADC.

在本实施例中,模数转换器可以为单调电容开关SAR ADC,单调电容开关SAR ADC具有仅在单向开关DAC的开关的特性,通过单边调整逻辑门的NMOS晶体管、PMOS晶体管的尺寸,可以减少比较器到DAC的延迟。本实施例的数字驱动器采用预设缩小因子,提出了非平衡的NMOS晶体管、PMOS晶体管的尺寸,提高了关键边沿转换上的逻辑速度,并减小了在非关键边沿方向的晶体管尺寸。In this embodiment, the analog-to-digital converter may be a monotonic capacitive switch SAR ADC, and the monotonic capacitive switch SAR ADC has the characteristics of switching only in a one-way switch DAC. Comparator-to-DAC delay can be reduced. The digital driver of this embodiment adopts a preset scaling factor, proposes the sizes of unbalanced NMOS transistors and PMOS transistors, improves the logic speed on critical edge transitions, and reduces the transistor size in non-critical edge directions.

这样既可以提高速度,又可以同时降低SAR ADC的功耗和面积,从而打破了SARADC需要在功耗和延迟之间进行折中选择的限制因素。更重要的是,该方案并没有改变经典的每周期一位(1b/cycle)的结构,这使得它具有传统架构的所有优点。在CMOS制程中实现本实施例的10位550MS/s的SAR ADC,在550MS/s的速度下,SAR ADC在Nyquist的输入信号频率的信噪失真比(SNDR)分别达到了56.0dB,对应的消耗为1.37mW,由此得到瓦尔登优值(Walden FoM)分别为4.78fJ/conv-step(飞焦耳每次转换)。This increases speed while simultaneously reducing power and area of the SAR ADC, thereby breaking the limiting factor that SAR ADCs need to trade off between power and latency. More importantly, this scheme does not change the classic one-bit-per-cycle (1b/cycle) structure, which makes it have all the advantages of the traditional architecture. The 10-bit 550MS/s SAR ADC of this embodiment is implemented in a CMOS process. At a speed of 550MS/s, the signal-to-noise and distortion ratio (SNDR) of the SAR ADC at the input signal frequency of Nyquist reaches 56.0dB, respectively. The consumption was 1.37 mW, resulting in Walden figures of merit (Walden FoM) of 4.78 fJ/conv-step (femtojoules per conversion), respectively.

下面结合图4A对用于模数转换器的反馈电路的使用过程进行说明。The following describes the use process of the feedback circuit for the analog-to-digital converter with reference to FIG. 4A .

在采样阶段,各数字驱动器4011将电容型DAC401的各电容器Ci的底极板复位到VDD。随后根据比较电路402的数字输出(OUTP/OUTN)以及相对应的SAR的逻辑时钟(CLKi)将每一位的电容器Ci底极板切换到GND(关键的边沿方向)或将保持在VDD不变(非关键边沿方向)。如图1所示,对于第i位电容器Ci的底极板,其关键的速度边沿始终为下降沿,相应的DAC开关控制信号(DACi)的关键速度边沿始终为上升沿。同样的,异步控制的SAR逻辑时钟(CLKi)对应的关键速度边沿也始终为上升沿,而应用于异步控制逻辑中的所有DFFA在采样阶段复位。结合以上分析,可以得出从电容器Ci底极板到数字驱动器4011、DAC开关控制电路404输出的DAC开关控制信号(DACi)、异步逻辑控制电路403输出的SAR逻辑时钟(CLKi)的关键速度边沿始终是确定的,为单一方向。During the sampling phase, each digital driver 4011 resets the bottom plate of each capacitor C i of the capacitive DAC 401 to VDD. The bottom plate of capacitor C i for each bit is then switched to GND ( critical edge direction) or will remain unchanged at VDD (non-critical edge direction). As shown in Figure 1, for the bottom plate of the ith capacitor C i , the critical speed edge is always the falling edge, and the critical speed edge of the corresponding DAC switch control signal (DAC i ) is always the rising edge. Likewise, the critical speed edge corresponding to the asynchronously controlled SAR logic clock (CLK i ) is always a rising edge, and all DFF A applied to the asynchronous control logic are reset during the sampling phase. Combined with the above analysis, it can be concluded that from the bottom plate of the capacitor C i to the digital driver 4011 , the DAC switch control signal (DAC i ) output by the DAC switch control circuit 404 , and the SAR logic clock (CLK i ) output by the asynchronous logic control circuit 403 The critical velocity edge is always deterministic and is in a single direction.

在大多数情况下,采用使用跨导(gm)平衡的N/P-MOS数字缓冲器来驱动电容DAC的开关,以确保数字缓冲器具有基本对称的上升沿和下降沿,和相似的N/P延迟时间。然而,对于单调的电容型DAC开关的逻辑驱动器,它在每个SAR转换中每一个周期都是单向的。这意味着只需要在单一方向优化关键数据传输。图4A中的数字驱动器4011为实施例1中提供的数字驱动器,结合图1所示的数字驱动器10可知,数字驱动器采用不平衡N/P-MOS晶体管组成,在转换阶段,作为电容器Ci底极板的节点“OUT”切换到GND或保持不变。因此,在输出端子OUT、第三节点C、第二节点B、第一节点A中的关键边沿分别总是为下降/上升/下降/上升沿。图4A中的数字驱动器4011的结构和实现原理可以参阅实施例1数字驱动器10的相关描述,在此不做赘述。In most cases, N/P-MOS digital buffers that are balanced using transconductance (g m ) are used to drive the switches of the capacitive DAC to ensure that the digital buffers have substantially symmetrical rising and falling edges, and similar N /P delay time. However, for the logic driver of a monotonic capacitive DAC switch, it is unidirectional every cycle in every SAR conversion. This means that only critical data transfers need to be optimized in one direction. The digital driver 4011 in FIG. 4A is the digital driver provided in Embodiment 1. Combining with the digital driver 10 shown in FIG. 1 , it can be known that the digital driver is composed of unbalanced N/P-MOS transistors. The node "OUT" of the plate is switched to GND or left unchanged. Therefore, the critical edges in the output terminal OUT, the third node C, the second node B, and the first node A are always falling/rising/falling/rising edges, respectively. For the structure and implementation principle of the digital driver 4011 in FIG. 4A , reference may be made to the related description of the digital driver 10 in Embodiment 1, which will not be repeated here.

请再次参阅图4A,所述比较电路402包括:比较器4021、NOR门4022和第一反相器4023,所述比较器4021的输入端与所述电容型DAC401的输出端连接,所述比较器4021的输出端与所述NOR门4022的输入端连接,所述NOR门4022的输出端与所述第一反相器4023的输入端连接,所述第一反相器4023的输出端与所述异步逻辑控制电路403的各触发器的输入端连接。Please refer to FIG. 4A again, the comparison circuit 402 includes: a comparator 4021, a NOR gate 4022 and a first inverter 4023, the input end of the comparator 4021 is connected to the output end of the capacitive DAC 401, and the comparison The output terminal of the inverter 4021 is connected to the input terminal of the NOR gate 4022, the output terminal of the NOR gate 4022 is connected to the input terminal of the first inverter 4023, and the output terminal of the first inverter 4023 is connected to the input terminal of the first inverter 4023. The input ends of each flip-flop of the asynchronous logic control circuit 403 are connected.

请参阅图4B,OUTP/OUTN分别表示全差分比较器的两个相应的输出信号,Ready信号表示异步SAR逻辑转换中的有效信号。Φcomp表示比较器的时钟讯号,CLKi表示SAR逻辑的异步控制时钟,CLKi的作用是指示正在转换第i个SAR的周期。DACi表示第i个DAC数模转换信息,图4B中,第一曲线41、第二曲线42代表后一上升/下降沿由前一上升/下降所触发。第一箭头线段43表示上升沿、第二箭头线段44表示下降沿。Referring to FIG. 4B, OUT P /OUT N respectively represent the two corresponding output signals of the fully differential comparator, and the Ready signal represents the valid signal in the asynchronous SAR logic conversion. Φ comp represents the clock signal of the comparator, CLK i represents the asynchronous control clock of the SAR logic, and the function of CLK i is to indicate that the cycle of the i-th SAR is being converted. DAC i represents the digital-to-analog conversion information of the i-th DAC. In FIG. 4B , the first curve 41 and the second curve 42 represent that the next rising/falling edge is triggered by the previous rising/falling edge. The first arrow line segment 43 represents the rising edge, and the second arrow line segment 44 represents the falling edge.

请参阅图5A,图5A所示的用于模数转换器的反馈电路与图4A所示的用于模数转换器的反馈电路的区别之处在于,所述比较电路402还包括:第二反相器4024和NAND门4025,所述NAND门的第一输入端和第二输入端分别与所述NOR门4022的输出端和所述第二反相器4024的输出端连接,所述NAND门4025的输出端与所述比较器4021的控制端连接,所述第二反相器4024的输入端用于接收采样信号。Please refer to FIG. 5A. The difference between the feedback circuit for the analog-to-digital converter shown in FIG. 5A and the feedback circuit for the analog-to-digital converter shown in FIG. 4A is that the comparison circuit 402 further includes: a second Inverter 4024 and NAND gate 4025, the first input terminal and the second input terminal of the NAND gate are respectively connected with the output terminal of the NOR gate 4022 and the output terminal of the second inverter 4024, the NAND gate The output terminal of the gate 4025 is connected to the control terminal of the comparator 4021, and the input terminal of the second inverter 4024 is used for receiving the sampling signal.

在一实施方式中,所述异步逻辑控制电路403的各触发器DFFA包括数字驱动器,各触发器DFFA的数字驱动器为实施例1所提供的数字驱动器。In one embodiment, each flip-flop DFF A of the asynchronous logic control circuit 403 includes a digital driver, and the digital driver of each flip-flop DFF A is the digital driver provided in Embodiment 1.

这样,各触发器DFFA的数字驱动器为实施例1所提供的数字驱动器,各触发器DFFA相应的具有实施例1中数字驱动器的结构和优点各触发器DFFA的数字驱动器由不平衡的NMOS晶体管、PMOS晶体管组成,NMOS晶体管、PMOS晶体管的宽度根据预设缩小因子进行调整,减少SAR逻辑延迟,可以克服单通SAR ADC的速度瓶颈。In this way, the digital driver of each flip-flop DFF A is the digital driver provided in Embodiment 1, and each flip-flop DFF A correspondingly has the structure and advantages of the digital driver in Embodiment 1. The digital driver of each flip-flop DFF A is composed of an unbalanced It consists of NMOS transistors and PMOS transistors. The widths of the NMOS transistors and PMOS transistors are adjusted according to the preset scaling factor to reduce the SAR logic delay and overcome the speed bottleneck of the single-pass SAR ADC.

在一实施方式中,所述DAC开关控制电路404的各触发器DFFD包括数字驱动器,各触发器DFFD的数字驱动器为实施例1所提供的数字驱动器。In one embodiment, each flip-flop DFF D of the DAC switch control circuit 404 includes a digital driver, and the digital driver of each flip-flop DFF D is the digital driver provided in Embodiment 1.

这样,各触发器DFFD的数字驱动器为实施例1所提供的数字驱动器,各触发器DFFD相应的具有实施例1中数字驱动器的结构和优点,各触发器DFFD的数字驱动器由不平衡的NMOS晶体管、PMOS晶体管组成,NMOS晶体管、PMOS晶体管的宽度根据预设缩小因子进行调整,减少SAR逻辑延迟,可以克服单通SAR ADC的速度瓶颈。In this way, the digital driver of each flip-flop DFF D is the digital driver provided in Embodiment 1, and each flip-flop DFF D has the structure and advantages of the digital driver in Embodiment 1 correspondingly, and the digital driver of each flip-flop DFF D is composed of unbalanced digital drivers. It is composed of NMOS transistor and PMOS transistor. The width of NMOS transistor and PMOS transistor is adjusted according to the preset reduction factor, which reduces the SAR logic delay and can overcome the speed bottleneck of single-pass SAR ADC.

在一实施方式中,所述电容型DAC401的各数字驱动器的预设缩小因子的取值范围为[0.25,0.5]。In one embodiment, the value range of the preset scaling factor of each digital driver of the capacitive DAC 401 is [0.25, 0.5].

在一实施方式中,各触发器的数字驱动器的预设缩小因子的取值范围为[0.1,0.25]。In one embodiment, the value range of the preset reduction factor of the digital driver of each flip-flop is [0.1, 0.25].

下面结合图5A对预设缩小因子的取值范围进行说明。The value range of the preset reduction factor will be described below with reference to FIG. 5A .

对于SAR ADC而言,依据逻辑门在反馈路径的不同位置来设置相对应的预设缩小因子α的取值。如图5A所示,SAR ADC的反馈回路分为3个关键的延迟路径,分别为路径1、路径2、路径3。路径1所示为转换阶段比较模块402的选通和复位的路径。在路径1中,由于上升沿和下降沿分别控制比较器的复位和选通,而二者对于整体的转换速率都很关键。因此在此路径1中使用传统的常规大小逻辑,例如选择NAND门、NOR门以确保相似的上升和下降沿。路径2所示为比较器4021、异步逻辑控制电路403和DAC开关控制电路404之间的路径,从比较器4021输出生成的“Ready”信号到异步控制的SAR逻辑时钟CLKi。路径3所示为DAC开关控制电路404到数字驱动器4011之间的路径,从DAC开关控制逻辑DACi到电容器Ci的底极板之间。For the SAR ADC, the value of the corresponding preset reduction factor α is set according to different positions of the logic gate in the feedback path. As shown in Figure 5A, the feedback loop of the SAR ADC is divided into three key delay paths, namely Path 1, Path 2, and Path 3. Path 1 shows the strobe and reset path of the compare module 402 during the conversion phase. In Path 1, since the rising and falling edges control the reset and strobe of the comparator, respectively, both are critical to the overall slew rate. So use traditional regular size logic in this path 1, eg select NAND gates, NOR gates to ensure similar rising and falling edges. Path 2 shows the path between the comparator 4021, the asynchronous logic control circuit 403 and the DAC switch control circuit 404, from which the generated "Ready" signal is output to the asynchronously controlled SAR logic clock CLKi . Path 3 shows the path between the DAC switch control circuit 404 to the digital driver 4011, from the DAC switch control logic DAC i to the bottom plate of capacitor C i .

请参阅图5B,ΦS表示信号采样的时钟;SAR转换则表示采样完成后,对得到的信号进行逐次逼近转换的时钟;Φcomp表示比较器时钟讯号,Ready信号表示在异步逻辑控制电路的有效信号。CLK1表示逐次逼近的转换过程中异步控制逻辑所产生的第一个SAR时钟;DAC1表示逐次逼近的转换过程中异步控制逻辑所产生的第一个时钟周期所对应的数模转换(DAC)信号。类似的,CLKi表示逐次逼近的转换过程中异步控制逻辑所产生的第i次SAR时钟;DACi表示逐次逼近的转换过程中异步控制逻辑所产生的第i次时钟周期所对应的数模转换(DAC)信号。对于该实例,如图所示的关键边沿的方向性具有普遍性,如CLKi和DACi的关键边沿始终为上升沿。Please refer to Fig. 5B, Φ S represents the signal sampling clock; SAR conversion represents the clock for successive approximation conversion of the obtained signal after the sampling is completed; Φ comp represents the comparator clock signal, and the Ready signal represents the effective signal in the asynchronous logic control circuit Signal. CLK 1 represents the first SAR clock generated by the asynchronous control logic in the successive approximation conversion process; DAC 1 represents the digital-to-analog conversion (DAC) corresponding to the first clock cycle generated by the asynchronous control logic in the successive approximation conversion process Signal. Similarly, CLK i represents the i-th SAR clock generated by the asynchronous control logic in the successive approximation conversion process; DAC i represents the digital-to-analog conversion corresponding to the i-th clock cycle generated by the asynchronous control logic in the successive approximation conversion process (DAC) signal. For this example, the directionality of the critical edges shown in the figure is universal, such as the critical edges of CLK i and DAC i are always rising edges.

在本实施例中,将非关键的边沿放在采样阶段,而将关键边沿放在SAR的转换阶段。以异步控制的SAR逻辑时钟CLKi为例,在不影响ADC的性能的情况下,CLKi有多达超过整个采样阶段的时间来完成非关键边沿转换(复位)。因而在路径2上的预设缩小因子α可以尽可能小,例如,预设缩小因子α可以选取0.1和0.25之间。In this embodiment, the non-critical edges are placed in the sampling stage, and the critical edges are placed in the conversion stage of the SAR. Taking the asynchronously controlled SAR logic clock CLK i as an example, CLK i has as much as more than the entire sampling phase to complete non-critical edge transitions (resets) without affecting the performance of the ADC. Therefore, the preset reduction factor α on path 2 can be as small as possible, for example, the preset reduction factor α can be selected between 0.1 and 0.25.

在SAR逻辑反馈回路中,DFF等寄存器一般占据延迟时间和功耗的主要部分。可以使用不平衡N/P-MOS晶体管的尺寸的方案,重新设计优化DFF。一方面,减少DFF中关键传播路径所需的逻辑门的数量。另一方面,使用不平衡的N/P-MOS尺寸的逻辑门进一步减少关键路径延迟。请参阅图6,与传统的触发器相比,本实施例提供的触发器(DFF)在版图的后仿真的延迟时间下降了77%以上。对于路径3,在进行单边优化时,需要特别注意电容器Ci的复位情况。实际上,电容器Ci过慢的复位会影响到ADC的采样精度。在本方案中,如图5A所示,使用采样时钟φS直接复位DAC开关控制信号DACi。在路径3中,预设缩小因子α可以选择0.25到0.5之间,以改善转换阶段的单向高速传播,同时兼顾在采样阶段保持DAC的适度复位能力。此外,不平衡N/P-MOS尺寸调整方法不仅减少了关键路径上的各个节点的负载电容,而且会显着减少驱动它们所需缓冲器的数量,从而会进一步降低逻辑延迟和功耗。In the SAR logic feedback loop, registers such as DFF generally occupy a major part of the delay time and power consumption. The DFF can be redesigned to optimize the size of the N/P-MOS transistors using an unbalanced approach. On the one hand, reducing the number of logic gates required for the critical propagation path in the DFF. On the other hand, using unbalanced N/P-MOS size logic gates further reduces critical path delays. Referring to FIG. 6 , compared with the conventional flip-flop, the delay time of the flip-flop (DFF) provided in this embodiment is reduced by more than 77% in the post-simulation of the layout. For path 3, special attention needs to be paid to the reset of capacitor C i when performing unilateral optimization. In fact, too slow reset of the capacitor C i will affect the sampling accuracy of the ADC. In this solution, as shown in FIG. 5A , the DAC switch control signal DAC i is directly reset by using the sampling clock φ S . In path 3, the preset reduction factor α can be selected between 0.25 and 0.5 to improve the one-way high-speed propagation in the conversion stage, while maintaining the moderate reset capability of the DAC in the sampling stage. In addition, the unbalanced N/P-MOS sizing method not only reduces the load capacitance of individual nodes on the critical path, but also significantly reduces the number of buffers required to drive them, which further reduces logic latency and power consumption.

采用本实施例提供的用于模数转换器的反馈电路,利用28nmCMOS工艺中制造了一款10位SAR ADC,其有效面积为0.0023mm2。该10位SAR ADC有11个周期,11个周期包含1位的冗余,前两个最高有效位(Most Significant Bit,MSB)采用拆分单调开关电容结构,其余位采用纯单调开关电容结构。使用定制设计的金属-氧化物-金属(MOM)电容器阵列作为SARADC的输入电容,其单边输入电容为180fF,使得积分非线性(Integral Nonlinearity,INL)在10位的情况下达到-0.51/+0.60最低有效位(Least Significant Bit,LSB)。该SAR ADC在0.9V电源电压下测试结果,工作在550MS/s时,其Nyquist信噪失真比(SNDR)/无杂散动态范围(SFDR)分别为56.0dB和71.5dB。Using the feedback circuit for the analog-to-digital converter provided in this embodiment, a 10-bit SAR ADC is fabricated in a 28 nm CMOS process, and its effective area is 0.0023 mm 2 . The 10-bit SAR ADC has 11 cycles, and the 11 cycles include 1-bit redundancy. The first two Most Significant Bits (MSBs) use a split monotonic switched capacitor structure, and the remaining bits use a pure monotonic switched capacitor structure. A custom-designed metal-oxide-metal (MOM) capacitor array is used as the input capacitance of the SARADC with a single-sided input capacitance of 180fF, which enables Integral Nonlinearity (INL) to reach -0.51/+ at 10 bits 0.60 Least Significant Bit (LSB). The SAR ADC is tested at 0.9V supply voltage. When operating at 550MS/s, its Nyquist signal-to-noise and distortion ratio (SNDR)/spurious free dynamic range (SFDR) are 56.0dB and 71.5dB, respectively.

本实施例提供的SAR ADC突破了单通道10b SAR的物理速度限制,在不进行任何校准的情况下,实现了比具有类似的沃尔登优值(FOMW)的工作高的fsnyq,同时比所有的fsnyq>501MHz工作的FOMW低至少2倍/1.8倍。另外,需要注意的是,本实施例提供的用于模数转换器的反馈电路完全适用于许多SAR变体,如时间交织型SAR(TI-SAR)、流水线型SAR(Pipelined-SAR)和噪声整形SAR(Noise-Shaping-SAR)。The SAR ADC provided by this embodiment breaks through the physical speed limit of a single-channel 10b SAR, and without any calibration, achieves a higher fsnyq than work with similar Walden figure of merit ( FOMW ), while All fsnyq >501MHz operation have at least 2x/1.8x lower FOM W. In addition, it should be noted that the feedback circuit for the analog-to-digital converter provided in this embodiment is fully applicable to many SAR variants, such as time-interleaved SAR (TI-SAR), pipelined SAR (Pipelined-SAR), and noise Shaping SAR (Noise-Shaping-SAR).

实施例3Example 3

此外,本公开实施例提供了一种模数转换器,该模数转换器包括实施例2所提供的用于模数转换器的反馈电路。In addition, an embodiment of the present disclosure provides an analog-to-digital converter, where the analog-to-digital converter includes the feedback circuit for the analog-to-digital converter provided in Embodiment 2.

在本实施例中提供的模数转换器包括实施例2所提供的用于模数转换器的反馈电路,因此具有实施例2所提供的用于模数转换器的反馈电路相应的结构、功能及有益效果,为避免重复,在此不做赘述。The analog-to-digital converter provided in this embodiment includes the feedback circuit for the analog-to-digital converter provided in the second embodiment, and therefore has the corresponding structure and function of the feedback circuit for the analog-to-digital converter provided in the second embodiment and beneficial effects, in order to avoid repetition, no further description is given here.

实施例4Example 4

此外,本公开实施例提供了一种电子设备,该电子设备包括实施例3所提供的模数转换器。In addition, an embodiment of the present disclosure provides an electronic device, and the electronic device includes the analog-to-digital converter provided in Embodiment 3.

在本实施例中提供的电子设备包括实施例3所提供的模数转换器,因此具有实施例3所提供的模数转换器相应的结构、功能及有益效果,为避免重复,在此不做赘述。The electronic device provided in this embodiment includes the analog-to-digital converter provided in the third embodiment, and therefore has the corresponding structure, function and beneficial effects of the analog-to-digital converter provided in the third embodiment. Repeat.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art who is familiar with the technical scope disclosed by the present invention can easily think of changes or substitutions. All should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.

Claims (10)

1. A digital driver, comprising: an input terminal, an output terminal, a first PMOS transistor, a second PMOS transistor, a third PMOS transistor, a fourth PMOS transistor, a first NMOS transistor, a second NMOS transistor, a third NMOS transistor, and a fourth NMOS transistor;
the input terminal is connected with the gate of the first PMOS transistor and the gate of the first NMOS transistor;
the drain electrode of the first PMOS transistor, the drain electrode of the first NMOS transistor, the grid electrode of the second PMOS transistor and the grid electrode of the second NMOS transistor are connected to a first node;
the drain electrode of the second PMOS transistor, the drain electrode of the second NMOS transistor, the grid electrode of the third PMOS transistor and the grid electrode of the third NMOS transistor are connected to a second node;
the drain electrode of the third PMOS transistor, the drain electrode of the third NMOS transistor, the grid electrode of the fourth PMOS transistor and the grid electrode of the fourth NMOS transistor are connected to a third node;
a drain of the fourth PMOS transistor, a drain of the fourth NMOS transistor, and the output terminal are connected; the widths of the first PMOS transistor, the second PMOS transistor, the third PMOS transistor, the fourth PMOS transistor, the first NMOS transistor, the second NMOS transistor, the third NMOS transistor and the fourth NMOS transistor are determined according to the mobility of the PMOS transistors, the mobility of the NMOS transistors and a preset reduction coefficient, and the value range of the preset reduction coefficient is (0, 1).
2. The digital driver of claim 1, wherein the delay time of the digital driver is positively correlated with the preset reduction factor.
3. A feedback circuit for an analog-to-digital converter, comprising: the capacitive DAC circuit comprises a capacitive DAC, a comparison circuit, an asynchronous logic control circuit and a DAC switch control circuit;
the capacitive DAC comprising a plurality of capacitors and a plurality of digital drivers, each of the digital drivers being as claimed in claim 1 or 2;
the asynchronous logic control circuit and the DAC switch control circuit respectively comprise a plurality of triggers;
each capacitor is connected with an input terminal of a corresponding digital driver, and an output end of the capacitive DAC is connected with an input end of the comparison circuit;
the output end of the comparison circuit is connected with the input end of each trigger of the asynchronous logic control circuit;
the output end of each trigger of the asynchronous logic control circuit is connected with the input end of the corresponding trigger of the DAC switch control circuit;
and the output end of each trigger of the DAC switch control circuit is connected with the input end of the corresponding digital driver.
4. The feedback circuit for an analog-to-digital converter according to claim 3, wherein the comparison circuit comprises: the input end of the comparator is connected with the output end of the capacitance type DAC, the output end of the comparator is connected with the input end of the NOR gate, the output end of the NOR gate is connected with the input end of the first phase inverter, and the output end of the first phase inverter is connected with the input end of each trigger of the asynchronous logic control circuit.
5. The feedback circuit for an analog-to-digital converter according to claim 4, wherein the comparison circuit further comprises: the first input end and the second input end of the NAND gate are respectively connected with the output end of the NOR gate and the output end of the second inverter, the output end of the NAND gate is connected with the control end of the comparator, and the input end of the second inverter is used for receiving a sampling signal.
6. A feedback circuit for an analog to digital converter according to claim 3, wherein each flip-flop comprises a digital driver, the digital driver of each flip-flop being the digital driver of claim 1 or 2.
7. The feedback circuit for an analog-to-digital converter according to claim 3, wherein the preset reduction factor of each digital driver of the capacitive DAC is [0.25, 0.5 ].
8. The feedback circuit for an analog-to-digital converter according to claim 6, wherein the preset reduction factor of the digital driver of each flip-flop is in a range of [0.1, 0.25 ].
9. An analog-to-digital converter, characterized in that it comprises a feedback circuit for an analog-to-digital converter according to any one of claims 3-8.
10. An electronic device, characterized in that it comprises an analog-to-digital converter as claimed in claim 9.
CN202210142142.6A 2022-02-16 2022-02-16 Digital driver, feedback circuit for analog-to-digital converter, and digital-to-analog converter Pending CN114499528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210142142.6A CN114499528A (en) 2022-02-16 2022-02-16 Digital driver, feedback circuit for analog-to-digital converter, and digital-to-analog converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210142142.6A CN114499528A (en) 2022-02-16 2022-02-16 Digital driver, feedback circuit for analog-to-digital converter, and digital-to-analog converter

Publications (1)

Publication Number Publication Date
CN114499528A true CN114499528A (en) 2022-05-13

Family

ID=81481024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210142142.6A Pending CN114499528A (en) 2022-02-16 2022-02-16 Digital driver, feedback circuit for analog-to-digital converter, and digital-to-analog converter

Country Status (1)

Country Link
CN (1) CN114499528A (en)

Similar Documents

Publication Publication Date Title
CN104967451B (en) Gradual approaching A/D converter
CN107835021B (en) A variable delay asynchronous timing control circuit and control method
US11728820B2 (en) High-speed digital logic circuit for SAR_ADC and sampling adjustment method
US20110109348A1 (en) Dynamic comparator with background offset calibration
CN108449087A (en) An ultra-low power asynchronous successive approximation register analog-to-digital converter
Luo et al. A 0.9-V 12-bit 100-MS/s 14.6-fJ/conversion-step SAR ADC in 40-nm CMOS
CN102332922B (en) Current source and drive circuit for improving high frequency characteristic of digital analog converter
CN116566394A (en) High-speed low-precision high-energy-efficiency successive approximation type analog-to-digital converter
CN102332921A (en) A Successive Approximation Analog-to-Digital Converter Suitable for Automatic Gain Control Loop
CN209787154U (en) An Analog-to-Digital Converter with Adjustable Sampling Frequency
CN110034762A (en) A kind of adjustable analog-digital converter of sample frequency
Cao et al. An 11b 80MS/s SAR ADC with speed-enhanced SAR logic and high-linearity CDAC
CN114095027A (en) A low-voltage and low-power asynchronous successive approximation analog-to-digital converter device
Guo et al. A 10b 700 MS/s single-channel 1b/cycle SAR ADC using a monotonic-specific feedback SAR logic with power-delay-optimized unbalanced N/P-MOS sizing
WO2022213725A1 (en) Three-state quantitative successive approximation method and successive approximation analog-to-digital converter circuit
Bekal et al. Six‐bit, reusable comparator stage‐based asynchronous binary‐search SAR ADC using smart switching network
Bekal et al. An improved dynamic latch based comparator for 8-bit asynchronous SAR ADC
Chou et al. A low-glitch binary-weighted DAC with delay compensation scheme
Clara et al. A 1.8 V fully embedded 10 b 160 MS/s two-step ADC in 0.18/spl mu/m CMOS
Ramkaj et al. A 36.4 dB SNDR@ 5GHz 1.25 GS/s 7b 3.56 mW single-channel SAR ADC in 28nm bulk CMOS
Zahrai et al. A low-power hybrid ADC architecture for high-speed medium-resolution applications
CN114499528A (en) Digital driver, feedback circuit for analog-to-digital converter, and digital-to-analog converter
Xing et al. Design of a high-speed time-interleaved sub-ranging SAR ADC with optimal code transfer technique
Fazel et al. Pipelining method for low-power and high-speed SAR ADC design
CN206211981U (en) A kind of analog-digital converter based on monotonicity capacitance switch

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20220513

Assignee: Zhuhai Yiwei Semiconductor Co.,Ltd.

Assignor: University OF MACAU|UM ZHUHAI Research Institute|Zhuhai Yiwei Semiconductor Co.,Ltd.

Contract record no.: X2023990000826

Denomination of invention: Digital drivers, feedback circuits for analog-to-digital converters, analog-to-digital converters

License type: Exclusive License

Record date: 20230922

EE01 Entry into force of recordation of patent licensing contract