CN114498639A - 一种考虑需求响应的多微电网联合互济的日前调度方法 - Google Patents

一种考虑需求响应的多微电网联合互济的日前调度方法 Download PDF

Info

Publication number
CN114498639A
CN114498639A CN202210394121.3A CN202210394121A CN114498639A CN 114498639 A CN114498639 A CN 114498639A CN 202210394121 A CN202210394121 A CN 202210394121A CN 114498639 A CN114498639 A CN 114498639A
Authority
CN
China
Prior art keywords
load
power
micro
grid
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210394121.3A
Other languages
English (en)
Other versions
CN114498639B (zh
Inventor
侯婷婷
方仍存
王晴
侯慧
贺兰菲
汪致洵
詹智红
杨东俊
桑子夏
雷何
张维
唐金锐
颜玉林
杨洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd
Original Assignee
Wuhan University of Technology WUT
Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT, Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd filed Critical Wuhan University of Technology WUT
Priority to CN202210394121.3A priority Critical patent/CN114498639B/zh
Publication of CN114498639A publication Critical patent/CN114498639A/zh
Application granted granted Critical
Publication of CN114498639B publication Critical patent/CN114498639B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0075Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source according to economic or energy efficiency considerations, e.g. economic dispatch
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Power Engineering (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种考虑需求响应的多微电网联合互济的日前调度方法,包括以下步骤:建立各个微电网的价格型及激励型需求响应模型、光伏功率及负荷功率预测模型;提出以运行成本最小为优化目标的微电网孤岛调度模型,求解得到各个微电网孤岛调度方案;在孤岛调度的基础上,提出以运行成本最小和联络线功率波动最小为优化目标的多微电网电能互济的调度模型,求解得到各个微电网之间的交互功率及各个微电网与主网之间的联络线功率;建立各个微电网可再生能源弃用及失负荷预测模型,提出以运行成本最小和联络线功率波动最小的备用容量调度模型,求解得到各个微电网备用容量调度方案。本设计不仅提高了系统高效性和可靠性,而且降低了系统运行成本。

Description

一种考虑需求响应的多微电网联合互济的日前调度方法
技术领域
本发明涉及电力系统调度技术领域,尤其涉及一种考虑需求响应的多微电网联合互济的日前调度方法。
背景技术
单微电网在解决电力供需平衡及可再生能源带来的不确定性问题上处理能力有限。多微电网技术的发展为解决以上问题提供了更广阔的思路,多微电网通过自治管理,各微电网之间可能量互济,在提高电网运行的经济性、可靠性及高效性上优势明显。多微电网指两个或两个以上单微电网之间通过公共耦合点互连形成的电网,这种互连可以使多个微电网之间或者与上级电网之间进行功率交互,通过将区域内多个微电网以一定组网形式连接起来后,如果某个微电网出现故障或能量短缺时,可通过与区域内其他微电网进行能量交互来完成能量互济。多微电网已得到了实际应用,如海岛、偏远地区等孤岛型多微电网系统;以及智能园区、商业建筑群、家庭能源局域网等并网型多微电网系统。虽然多微电网优势明显,但由于其结构相对复杂,在模型构建及调度策略等方面仍有不小挑战,从而使得多微电网系统高效性和可靠性较低、运行成本较高。
发明内容
本发明的目的是克服现有技术中存在的高效性和可靠性低、运行成本高的缺陷与问题,提供一种高效性和可靠性高、运行成本低的考虑需求响应的多微电网联合互济的日前调度方法。
为实现以上目的,本发明的技术解决方案是:一种考虑需求响应的多微电网联合互济的日前调度方法,该方法包括以下步骤:
S1、建立各个微电网的价格型需求响应模型、激励型需求响应模型、光伏功率及负荷功率预测模型;
S2、提出以运行成本最小为优化目标的微电网孤岛调度模型,利用CPLEX求解得到各个微电网孤岛调度方案;在孤岛调度的基础上,提出以运行成本最小和联络线功率波动最小为优化目标的多微电网电能互济的调度模型,利用CPLEX求解得到各个微电网之间的交互功率及各个微电网与主网之间的联络线功率;
S3、建立各个微电网可再生能源弃用及失负荷预测模型,提出以运行成本最小和联络线功率波动最小的备用容量调度模型;备用容量调度模型包括高载能负荷调度模型和备用电源调度模型,其中,采用高载能负荷调度可再生能源弃用,采用备用电源调度失负荷,对高载能负荷调度模型和备用电源调度模型进行求解得到各个微电网备用容量调度方案。
步骤S1中,采用电量电价弹性矩阵对价格型需求响应建模,用户电量
Figure 17208DEST_PATH_IMAGE002
对电价
Figure 465507DEST_PATH_IMAGE004
的响应分为对当前时段的响应和对非当前时段的响应,即多时段响应;
在多时段响应模型中,弹性系数分为自弹性系数
Figure 979665DEST_PATH_IMAGE006
和互弹性系数
Figure 171612DEST_PATH_IMAGE008
Figure 517143DEST_PATH_IMAGE010
Figure 74026DEST_PATH_IMAGE012
式中,
Figure 137797DEST_PATH_IMAGE014
Figure 867856DEST_PATH_IMAGE016
时刻电量的变化量,
Figure 271155DEST_PATH_IMAGE018
Figure 795677DEST_PATH_IMAGE016
时刻电量值,
Figure 346744DEST_PATH_IMAGE020
Figure 614915DEST_PATH_IMAGE016
时刻电价,
Figure 872721DEST_PATH_IMAGE022
Figure 99303DEST_PATH_IMAGE016
时刻电价的变化量,
Figure 872087DEST_PATH_IMAGE024
Figure 881631DEST_PATH_IMAGE026
时刻电价,
Figure 321840DEST_PATH_IMAGE028
Figure 391427DEST_PATH_IMAGE026
时刻电价的变化量;
对于
Figure 651507DEST_PATH_IMAGE030
时段的用户对电价的响应行为建模为:
Figure 527059DEST_PATH_IMAGE032
,其中,
Figure 290615DEST_PATH_IMAGE034
为电量电价矩阵。
步骤S1中,激励型需求响应包括可转移负荷和可削减负荷;
微电网系统对可转移负荷的补贴成本
Figure 655738DEST_PATH_IMAGE036
为:
Figure 934272DEST_PATH_IMAGE038
式中,
Figure 144674DEST_PATH_IMAGE040
为微电网系统对可转移负荷的补贴单价,
Figure 825054DEST_PATH_IMAGE042
Figure 298761DEST_PATH_IMAGE044
时刻第
Figure 471116DEST_PATH_IMAGE046
类可转移负荷的转出功率;
微电网系统对可削减负荷的补贴成本
Figure 688471DEST_PATH_IMAGE048
为:
Figure 692199DEST_PATH_IMAGE050
式中,
Figure 540069DEST_PATH_IMAGE052
为调度可削减负荷后
Figure 262037DEST_PATH_IMAGE044
时刻的负荷需求,
Figure 17504DEST_PATH_IMAGE054
为补贴单价;
Figure 813421DEST_PATH_IMAGE056
式中,
Figure 894510DEST_PATH_IMAGE058
是0-1变量,表示第
Figure 838195DEST_PATH_IMAGE060
个用户在
Figure 600615DEST_PATH_IMAGE044
时刻是否被选中的状态;
Figure 578935DEST_PATH_IMAGE062
为第
Figure 299766DEST_PATH_IMAGE060
个用户
Figure 934010DEST_PATH_IMAGE044
时刻的削减容量。
步骤S1中,先根据相空间重构法将光伏功率及负荷功率的一周历史数据转换为高维相空间,再将高维相空间作为极限学习机的训练输入数据,将该训练输入数据后移一个预测时间长度得到训练输出数据,然后将训练输入数据与训练输出数据输入极限学习机进行训练,之后,将训练输出数据后移一个预测时间长度得到测试输入数据,输入测试输入数据得到光伏功率及负荷功率的点预测值;
根据训练输入数据与训练输出数据得到预测误差的累计概率分布函数,再求累计概率分布函数的逆函数,然后根据逆函数以及光伏功率及负荷功率的点预测值计算得到给定置信水平下的区间上下限。
步骤S2中,微电网孤岛调度模型的目标函数为:
Figure 851454DEST_PATH_IMAGE064
式中,
Figure 684281DEST_PATH_IMAGE066
为第
Figure 576014DEST_PATH_IMAGE046
个微电网内微型燃气轮机运行产生的综合运行成本,
Figure 494291DEST_PATH_IMAGE068
为第
Figure 660830DEST_PATH_IMAGE046
个微电网内蓄电池出力产生的综合运行成本,
Figure 879322DEST_PATH_IMAGE070
为第
Figure 410797DEST_PATH_IMAGE046
个微电网系统对该微电网可转移负荷的补贴成本,
Figure 550792DEST_PATH_IMAGE072
为第
Figure 521022DEST_PATH_IMAGE046
个微电网向用户供电所得售电收益,
Figure 266124DEST_PATH_IMAGE074
为第
Figure 765238DEST_PATH_IMAGE046
个微电网内多余电量所产生的可再生能源弃用惩罚成本,
Figure 658108DEST_PATH_IMAGE076
为第
Figure 104133DEST_PATH_IMAGE046
个微电网内缺额电量所产生的失负荷惩罚成本;
Figure 500479DEST_PATH_IMAGE077
包括燃料成本
Figure 436074DEST_PATH_IMAGE079
、微型燃气轮机运行维护成本
Figure 753923DEST_PATH_IMAGE081
和环境污染治理成本
Figure 800376DEST_PATH_IMAGE083
Figure 316808DEST_PATH_IMAGE085
Figure 360988DEST_PATH_IMAGE087
Figure 228450DEST_PATH_IMAGE089
式中,
Figure 813015DEST_PATH_IMAGE091
为天然气的单价,
Figure 387216DEST_PATH_IMAGE093
为发电效率,
Figure 664613DEST_PATH_IMAGE095
为第
Figure 488213DEST_PATH_IMAGE097
类污染物的处理费用,
Figure 79731DEST_PATH_IMAGE099
为第
Figure 570755DEST_PATH_IMAGE046
台微型燃气轮机在
Figure 753475DEST_PATH_IMAGE101
时刻的运行功率,
Figure 533212DEST_PATH_IMAGE103
为运行维护系数,
Figure 459580DEST_PATH_IMAGE105
为第
Figure 805110DEST_PATH_IMAGE097
类污染物的单位排放量;
Figure 627573DEST_PATH_IMAGE068
包括蓄电池运行维护成本
Figure 691344DEST_PATH_IMAGE107
和充放电造成的损耗成本
Figure 421402DEST_PATH_IMAGE109
Figure 559123DEST_PATH_IMAGE111
Figure 614803DEST_PATH_IMAGE113
式中,
Figure 900291DEST_PATH_IMAGE115
为蓄电池在
Figure 371724DEST_PATH_IMAGE101
时刻的输出功率,
Figure 691847DEST_PATH_IMAGE117
为运行成本的单位系数,
Figure 652850DEST_PATH_IMAGE119
为单位更换成本,
Figure 363317DEST_PATH_IMAGE121
Figure 700757DEST_PATH_IMAGE123
分别为蓄电池在一个调度周期内充放电变换的次数和寿命周期内额定充放电次数;
Figure 78649DEST_PATH_IMAGE125
为:
Figure 944974DEST_PATH_IMAGE127
式中,
Figure 470633DEST_PATH_IMAGE129
为微电网系统对可转移负荷的补贴单价,
Figure 283868DEST_PATH_IMAGE131
Figure 313004DEST_PATH_IMAGE101
时刻第
Figure 615809DEST_PATH_IMAGE133
类可转移负荷的转出功率;
Figure 566448DEST_PATH_IMAGE135
为:
Figure 980112DEST_PATH_IMAGE137
式中,
Figure 129333DEST_PATH_IMAGE139
Figure 603040DEST_PATH_IMAGE101
时刻微电网内部经过价格型需求响应的分时电价,
Figure 775395DEST_PATH_IMAGE141
为经过价格型需求响应后的微电网用户负荷;
Figure 992750DEST_PATH_IMAGE143
为:
Figure 996478DEST_PATH_IMAGE145
式中,
Figure 578769DEST_PATH_IMAGE147
为余电惩罚系数,
Figure 35158DEST_PATH_IMAGE149
为第
Figure 56204DEST_PATH_IMAGE133
个微电网
Figure 117701DEST_PATH_IMAGE101
时刻的多余电量;
Figure 933210DEST_PATH_IMAGE151
为:
Figure 876895DEST_PATH_IMAGE153
式中,
Figure 170473DEST_PATH_IMAGE155
为缺电惩罚系数,
Figure 883214DEST_PATH_IMAGE157
为第
Figure 400783DEST_PATH_IMAGE133
个微电网
Figure 831765DEST_PATH_IMAGE101
时刻的缺额电量。
步骤S2中,微电网孤岛调度模型的约束条件为:
(1)微型燃气轮机爬坡约束和出力上下限约束
Figure 929034DEST_PATH_IMAGE159
Figure 496281DEST_PATH_IMAGE161
式中,
Figure 919172DEST_PATH_IMAGE163
为微型燃气轮机的爬坡上限,
Figure 40712DEST_PATH_IMAGE165
Figure 676093DEST_PATH_IMAGE167
分别为微型燃气轮机的出力最大值和出力最小值;
(2)蓄电池荷电状态约束和出力上下限约束
充电及放电时蓄电池的SOC值为:
Figure 629005DEST_PATH_IMAGE169
Figure 957219DEST_PATH_IMAGE171
式中,
Figure 300475DEST_PATH_IMAGE173
Figure 5126DEST_PATH_IMAGE175
分别为蓄电池在
Figure 812545DEST_PATH_IMAGE101
时刻和
Figure 311659DEST_PATH_IMAGE177
时刻的荷电状态,
Figure 938950DEST_PATH_IMAGE179
为蓄电池在
Figure 916133DEST_PATH_IMAGE101
时刻的输出功率,
Figure 781321DEST_PATH_IMAGE181
为所求荷电状态时刻与上一时刻的时间差,
Figure 451337DEST_PATH_IMAGE183
为蓄电池充电效率,
Figure 831502DEST_PATH_IMAGE185
为蓄电池放电效率,
Figure 612377DEST_PATH_IMAGE187
为蓄电池的额定容量;
蓄电池荷电状态约束为:
Figure 332071DEST_PATH_IMAGE189
式中,
Figure 172988DEST_PATH_IMAGE191
Figure 40450DEST_PATH_IMAGE193
分别为蓄电池荷电状态的最小值和最大值;
蓄电池出力约束为:
Figure 359436DEST_PATH_IMAGE195
式中,
Figure 730374DEST_PATH_IMAGE197
Figure 538930DEST_PATH_IMAGE199
分别为蓄电池出力的最小值和最大值;
(3)可转移负荷约束
Figure 362530DEST_PATH_IMAGE201
Figure 750786DEST_PATH_IMAGE203
Figure 179493DEST_PATH_IMAGE205
Figure 627792DEST_PATH_IMAGE207
Figure 204267DEST_PATH_IMAGE209
式中,
Figure 333897DEST_PATH_IMAGE211
Figure 413848DEST_PATH_IMAGE213
分别为
Figure 298628DEST_PATH_IMAGE101
时刻的转出负荷总量和转入负荷总量,
Figure 300082DEST_PATH_IMAGE215
为每时刻最大转入转出负荷量,
Figure 764561DEST_PATH_IMAGE217
Figure 964598DEST_PATH_IMAGE101
时刻第
Figure 20279DEST_PATH_IMAGE219
种可转移负荷的转入负荷量;
(4)价格型需求响应约束
Figure 40188DEST_PATH_IMAGE221
Figure 573937DEST_PATH_IMAGE223
Figure 628481DEST_PATH_IMAGE225
式中,
Figure 527167DEST_PATH_IMAGE227
Figure 299951DEST_PATH_IMAGE229
时刻的负荷波动率,
Figure 637391DEST_PATH_IMAGE231
Figure 546441DEST_PATH_IMAGE229
时刻负荷波动率的最大值,
Figure 678345DEST_PATH_IMAGE233
为联络线功率的最大值,
Figure 876108DEST_PATH_IMAGE235
Figure 751661DEST_PATH_IMAGE229
时刻联络线功率值,
Figure 780796DEST_PATH_IMAGE237
Figure 83602DEST_PATH_IMAGE101
时刻原始负荷预测值;
价格型需求响应后的负荷值应介于响应前原始负荷的最大值和最小值之间,即:
Figure 34240DEST_PATH_IMAGE239
式中,
Figure 447904DEST_PATH_IMAGE241
Figure 597126DEST_PATH_IMAGE243
分别原始负荷的最小值和最大值;
价格型需求响应前后的负荷总量在一个调度日内保持不变,即:
Figure 805253DEST_PATH_IMAGE245
价格型需求响应需满足用户用电方式满意度和用户电费支出满意度,即:
Figure 977609DEST_PATH_IMAGE247
Figure 460542DEST_PATH_IMAGE249
式中,
Figure 401954DEST_PATH_IMAGE251
Figure 46562DEST_PATH_IMAGE253
分别为用户用电方式满意度和用户电费支出满意度的基准值,
Figure 768530DEST_PATH_IMAGE255
为原始
Figure 727259DEST_PATH_IMAGE101
时刻的分时电价;
(5)风光出力约束
Figure 585493DEST_PATH_IMAGE257
Figure 666582DEST_PATH_IMAGE259
式中,
Figure 344688DEST_PATH_IMAGE261
Figure 107107DEST_PATH_IMAGE263
分别为
Figure 85428DEST_PATH_IMAGE101
时刻风电的实际出力和风电预测值,
Figure 71838DEST_PATH_IMAGE265
Figure 706082DEST_PATH_IMAGE267
分别为
Figure 68930DEST_PATH_IMAGE101
时刻光伏发电的实际出力和光伏发电预测值;
(6)功率平衡等式约束
Figure 636178DEST_PATH_IMAGE269
步骤S2中,多微电网电能互济调度模型为:
调度目标为微电网之间进行电能交互以实现多微电网效益
Figure 996752DEST_PATH_IMAGE271
最大,即:
Figure 649450DEST_PATH_IMAGE273
同时抑制多微电网与主网之间联络线功率波动
Figure 815989DEST_PATH_IMAGE275
,即:
Figure 706585DEST_PATH_IMAGE277
式中,
Figure 34798DEST_PATH_IMAGE279
为多微电网之间无交互时,各个微电网仅与主网交易电量所产生的运行成本;
Figure 440372DEST_PATH_IMAGE281
为多微电网之间交互时,各个微电网与主网交易电量所产生的运行成本;
Figure 82705DEST_PATH_IMAGE283
Figure 624545DEST_PATH_IMAGE285
式中,
Figure 389239DEST_PATH_IMAGE287
为第
Figure 219792DEST_PATH_IMAGE046
个微电网与主网之间的联络线功率,
Figure 462554DEST_PATH_IMAGE289
时表示第
Figure 390059DEST_PATH_IMAGE046
个微电网向主网购电,
Figure 263337DEST_PATH_IMAGE291
时表示第
Figure 112344DEST_PATH_IMAGE046
个微电网向主网售电;
Figure 424377DEST_PATH_IMAGE293
Figure 144071DEST_PATH_IMAGE295
分别为
Figure 984988DEST_PATH_IMAGE101
时刻微电网和主网之间的售电电价和购电电价。
步骤S2中,多微电网电能互济调度模型的约束条件包括联络线功率容量约束及各个微电网功率平衡等式约束:
Figure 586871DEST_PATH_IMAGE297
Figure 374698DEST_PATH_IMAGE299
式中,当
Figure 11216DEST_PATH_IMAGE301
时,表示第
Figure 23034DEST_PATH_IMAGE046
个微电网向第
Figure 315476DEST_PATH_IMAGE303
个微电网进行购电的电量;当
Figure 703732DEST_PATH_IMAGE305
时,表示第
Figure 398018DEST_PATH_IMAGE046
个微电网向第
Figure 580738DEST_PATH_IMAGE303
个微电网进行售电的电量;
Figure 157213DEST_PATH_IMAGE306
时,有:
Figure 286843DEST_PATH_IMAGE308
Figure 632373DEST_PATH_IMAGE309
时,有:
Figure 251573DEST_PATH_IMAGE311
步骤S3中,微电网可再生能源弃用及失负荷预测包括以下步骤:
(1)计算净负荷预测值
Figure 253027DEST_PATH_IMAGE313
和净负荷实际值
Figure 248665DEST_PATH_IMAGE315
Figure 448703DEST_PATH_IMAGE317
Figure 176487DEST_PATH_IMAGE319
式中,
Figure 727554DEST_PATH_IMAGE321
Figure 261304DEST_PATH_IMAGE101
时刻经过价格型需求响应后的微电网用户负荷,
Figure 519110DEST_PATH_IMAGE323
Figure 480112DEST_PATH_IMAGE101
时刻风电预测值,
Figure 456159DEST_PATH_IMAGE325
Figure 528020DEST_PATH_IMAGE101
时刻光伏发电预测值,
Figure 702649DEST_PATH_IMAGE327
Figure 37816DEST_PATH_IMAGE101
时刻可转移负荷的转入负荷量,
Figure 55754DEST_PATH_IMAGE329
Figure 196885DEST_PATH_IMAGE101
时刻可转移负荷的转出功率,
Figure 163704DEST_PATH_IMAGE331
Figure 732089DEST_PATH_IMAGE101
时刻原始负荷实际值,
Figure 213886DEST_PATH_IMAGE333
Figure 830812DEST_PATH_IMAGE101
时刻原始负荷预测值,
Figure 980034DEST_PATH_IMAGE335
Figure 657003DEST_PATH_IMAGE101
时刻光伏发电实际值,
Figure 626096DEST_PATH_IMAGE337
Figure 843450DEST_PATH_IMAGE101
时刻风电实际值;
(2)通过净负荷预测值
Figure 847178DEST_PATH_IMAGE338
与净负荷实际值
Figure 695049DEST_PATH_IMAGE315
计算调度后的可再生能源弃用量及失负荷量:当净负荷实际值
Figure 151438DEST_PATH_IMAGE315
小于0时,可再生能源弃用量为净负荷实际值
Figure 172483DEST_PATH_IMAGE339
的相反数;当净负荷实际值
Figure 30718DEST_PATH_IMAGE315
大于0且小于净负荷预测值
Figure 846227DEST_PATH_IMAGE340
时,可再生能源弃用量为净负荷实际值
Figure 55492DEST_PATH_IMAGE315
和净负荷预测值
Figure 614649DEST_PATH_IMAGE341
的差值;当净负荷实际值
Figure 530652DEST_PATH_IMAGE315
小于0且净负荷预测值
Figure 782642DEST_PATH_IMAGE341
大于0时,失负荷量为净负荷实际值
Figure 151307DEST_PATH_IMAGE315
;当净负荷预测值
Figure 248576DEST_PATH_IMAGE338
大于0且净负荷实际值
Figure 346982DEST_PATH_IMAGE339
大于净负荷预测值
Figure 707556DEST_PATH_IMAGE338
时,失负荷量为净负荷实际值和净负荷预测值
Figure 360254DEST_PATH_IMAGE340
的差值。
步骤S3中,备用容量调度模型包括高载能负荷调度模型和备用电源调度模型;
高载能负荷调度模型的目标函数为高载能负荷总效益
Figure 526793DEST_PATH_IMAGE343
最小,即:
Figure 417389DEST_PATH_IMAGE345
Figure 11181DEST_PATH_IMAGE347
Figure 151176DEST_PATH_IMAGE349
式中,
Figure 793509DEST_PATH_IMAGE351
为高载能负荷的可再生能源消纳效益,
Figure 600928DEST_PATH_IMAGE353
为高载能负荷的调节成本,
Figure 100043DEST_PATH_IMAGE355
为可再生能源的上网价格,
Figure 930596DEST_PATH_IMAGE357
为第
Figure 438937DEST_PATH_IMAGE359
类高载能负荷的单位调节成本,
Figure 38546DEST_PATH_IMAGE361
为第
Figure 708562DEST_PATH_IMAGE362
类高载能负荷在
Figure 88728DEST_PATH_IMAGE364
时段的投切组数,
Figure 338443DEST_PATH_IMAGE366
为第
Figure 589296DEST_PATH_IMAGE359
类高载能负荷的单位投切容量;
备用电源调度模型为:
Figure 695792DEST_PATH_IMAGE368
Figure 500937DEST_PATH_IMAGE370
式中,
Figure 351082DEST_PATH_IMAGE372
为备用电源运行成本,
Figure 925282DEST_PATH_IMAGE374
为联络线功率波动,
Figure 937101DEST_PATH_IMAGE376
为柴油机组的综合运行成本,
Figure 291859DEST_PATH_IMAGE378
为可削减负荷的综合运行成本,
Figure 617798DEST_PATH_IMAGE380
为第二阶段联络线的综合运行成本,
Figure 843243DEST_PATH_IMAGE382
为第二阶段联络线功率。
与现有技术相比,本发明的有益效果为:
本发明一种考虑需求响应的多微电网联合互济的日前调度方法中,考虑价格型需求响应和激励型需求响应,起到了平滑负荷曲线及削峰填谷的作用;同时,通过促进微电网之间能量互济,降低了系统运行成本;对于日前调度方案中可再生能源弃用与失负荷具有较高预测精度,因此,采用备用容量调度可有效减少可再生能源弃用与失负荷,提高系统高效性和可靠性;另外,采用相空间重构技术处理历史光伏功率及负荷功率数据,可减少收集和处理多因素数据的繁琐步骤。
附图说明
图1是本发明一种考虑需求响应的多微电网联合互济的日前调度方法的流程图。
图2是本发明中多微电网系统的结构示意图。
具体实施方式
以下结合附图说明和具体实施方式对本发明作进一步详细的说明。
参见图1、图2,一种考虑需求响应的多微电网联合互济的日前调度方法,该方法包括以下步骤:
S1、建立各个微电网的价格型需求响应模型、激励型需求响应模型、光伏功率及负荷功率预测模型;
采用电量电价弹性矩阵对价格型需求响应建模,用户电量
Figure 557121DEST_PATH_IMAGE002
对电价
Figure 71279DEST_PATH_IMAGE004
的响应分为对当前时段的响应和对非当前时段的响应,即多时段响应;
在多时段响应模型中,弹性系数分为自弹性系数
Figure 263226DEST_PATH_IMAGE006
和互弹性系数
Figure 608756DEST_PATH_IMAGE008
Figure 165640DEST_PATH_IMAGE010
Figure 229411DEST_PATH_IMAGE012
式中,
Figure 162732DEST_PATH_IMAGE014
Figure 362769DEST_PATH_IMAGE016
时刻电量的变化量,
Figure 152870DEST_PATH_IMAGE018
Figure 641620DEST_PATH_IMAGE016
时刻电量值,
Figure 909791DEST_PATH_IMAGE383
Figure 229914DEST_PATH_IMAGE016
时刻电价,
Figure 394179DEST_PATH_IMAGE022
Figure 432542DEST_PATH_IMAGE016
时刻电价的变化量,
Figure 238824DEST_PATH_IMAGE024
Figure 616716DEST_PATH_IMAGE026
时刻电价,
Figure 748620DEST_PATH_IMAGE384
Figure 8700DEST_PATH_IMAGE026
时刻电价的变化量;
对于
Figure 821935DEST_PATH_IMAGE030
时段的用户对电价的响应行为建模为:
Figure 851071DEST_PATH_IMAGE385
,其中,
Figure 419455DEST_PATH_IMAGE386
为电量电价矩阵。
激励型需求响应包括可转移负荷和可削减负荷;
微电网系统对可转移负荷的补贴成本
Figure 104515DEST_PATH_IMAGE036
为:
Figure 518178DEST_PATH_IMAGE038
式中,
Figure 667400DEST_PATH_IMAGE040
为微电网系统对可转移负荷的补贴单价,
Figure 344369DEST_PATH_IMAGE042
Figure 313462DEST_PATH_IMAGE044
时刻第
Figure 530817DEST_PATH_IMAGE046
类可转移负荷的转出功率;
微电网系统对可削减负荷的补贴成本
Figure 737807DEST_PATH_IMAGE048
为:
Figure 647994DEST_PATH_IMAGE387
式中,
Figure 104384DEST_PATH_IMAGE052
为调度可削减负荷后
Figure 63112DEST_PATH_IMAGE044
时刻的负荷需求,
Figure 921347DEST_PATH_IMAGE054
为补贴单价;
Figure 736856DEST_PATH_IMAGE388
式中,
Figure 883804DEST_PATH_IMAGE058
是0-1变量,表示第
Figure 708540DEST_PATH_IMAGE060
个用户在
Figure 624544DEST_PATH_IMAGE044
时刻是否被选中的状态;
Figure 610954DEST_PATH_IMAGE062
为第
Figure 41936DEST_PATH_IMAGE060
个用户
Figure 342467DEST_PATH_IMAGE044
时刻的削减容量。
先根据相空间重构法将光伏功率及负荷功率的一周历史数据转换为高维相空间,再将高维相空间作为极限学习机的训练输入数据,将该训练输入数据后移一个预测时间长度得到训练输出数据,然后将训练输入数据与训练输出数据输入极限学习机进行训练,之后,将训练输出数据后移一个预测时间长度得到测试输入数据,输入测试输入数据得到光伏功率及负荷功率的点预测值;根据训练输入数据与训练输出数据得到预测误差的累计概率分布函数,再求累计概率分布函数的逆函数,然后根据逆函数以及光伏功率及负荷功率的点预测值计算得到给定置信水平下的区间上下限;
根据相空间重构法将光伏功率及负荷功率的一周历史数据
Figure 440873DEST_PATH_IMAGE390
转换为延迟时间为
Figure 332605DEST_PATH_IMAGE392
,嵌入维数
Figure 454145DEST_PATH_IMAGE394
为的高维相空间,即:
Figure 620684DEST_PATH_IMAGE396
选取互信息法求取延迟时间,选取伪近邻法求取嵌入维数;假设风电功率预测误差服从均值为
Figure 245701DEST_PATH_IMAGE398
、标准差为
Figure 573914DEST_PATH_IMAGE400
的概率分布;假设光伏功率及负荷功率的点预测值为
Figure 979487DEST_PATH_IMAGE402
,预测误差的累计分布函数为
Figure 887401DEST_PATH_IMAGE404
Figure 694820DEST_PATH_IMAGE406
为预测误差,则在置信水平为
Figure 193934DEST_PATH_IMAGE408
下的预测区间为:
Figure 24487DEST_PATH_IMAGE410
式中,
Figure 267249DEST_PATH_IMAGE412
Figure 929175DEST_PATH_IMAGE413
的反函数,
Figure 802453DEST_PATH_IMAGE415
Figure 182619DEST_PATH_IMAGE417
采用基于指数平滑法的改进正态分布预测求解风电区间上下限,即:
Figure 166755DEST_PATH_IMAGE419
式中,
Figure 683187DEST_PATH_IMAGE421
Figure 789683DEST_PATH_IMAGE229
时刻的预报误差;
Figure 594828DEST_PATH_IMAGE423
Figure 179394DEST_PATH_IMAGE229
时刻预报误差概率分布的标准差;
Figure 815911DEST_PATH_IMAGE425
为平滑参数,取0到1之间;由此可得
Figure 30992DEST_PATH_IMAGE427
时刻预报误差在置信概率为
Figure 120171DEST_PATH_IMAGE429
时对应的上分位数
Figure 508427DEST_PATH_IMAGE431
和下分位数
Figure 937134DEST_PATH_IMAGE433
分别表示为:
Figure 385433DEST_PATH_IMAGE435
Figure 961908DEST_PATH_IMAGE437
式中,
Figure 91538DEST_PATH_IMAGE439
为系数,通过标准正态分布表得到;
因此,满足置信概率
Figure 437068DEST_PATH_IMAGE429
的风电置信区间为:
Figure 259531DEST_PATH_IMAGE441
式中,
Figure 57723DEST_PATH_IMAGE443
Figure 53360DEST_PATH_IMAGE445
分别为置信区间的上限和下限。
表1、表2和表3分别为光伏功率、风电功率及用户负荷的点预测结果。
Figure 191081DEST_PATH_IMAGE447
Figure 246761DEST_PATH_IMAGE449
Figure 532249DEST_PATH_IMAGE451
S2、提出以运行成本最小为优化目标的微电网孤岛调度模型,利用CPLEX求解得到各个微电网孤岛调度方案;在孤岛调度的基础上,提出以运行成本最小和联络线功率波动最小为优化目标的多微电网电能互济的调度模型,利用CPLEX求解得到各个微电网之间的交互功率及各个微电网与主网之间的联络线功率;
微电网孤岛调度模型的目标函数为:
Figure 3682DEST_PATH_IMAGE064
式中,
Figure 323805DEST_PATH_IMAGE066
为第
Figure 284808DEST_PATH_IMAGE046
个微电网内微型燃气轮机运行产生的综合运行成本,
Figure 995275DEST_PATH_IMAGE068
为第
Figure 332715DEST_PATH_IMAGE046
个微电网内蓄电池出力产生的综合运行成本,
Figure 710607DEST_PATH_IMAGE070
为第
Figure 576932DEST_PATH_IMAGE046
个微电网系统对该微电网可转移负荷的补贴成本,
Figure 102591DEST_PATH_IMAGE072
为第
Figure 915826DEST_PATH_IMAGE046
个微电网向用户供电所得售电收益,
Figure 944962DEST_PATH_IMAGE074
为第
Figure 247767DEST_PATH_IMAGE046
个微电网内多余电量所产生的可再生能源弃用惩罚成本,
Figure 198406DEST_PATH_IMAGE452
为第
Figure 612070DEST_PATH_IMAGE046
个微电网内缺额电量所产生的失负荷惩罚成本;
Figure 948242DEST_PATH_IMAGE077
包括燃料成本
Figure 156369DEST_PATH_IMAGE079
、微型燃气轮机运行维护成本
Figure 125462DEST_PATH_IMAGE081
和环境污染治理成本
Figure 77238DEST_PATH_IMAGE453
Figure 80966DEST_PATH_IMAGE454
Figure 725574DEST_PATH_IMAGE455
Figure 181963DEST_PATH_IMAGE456
式中,
Figure 937429DEST_PATH_IMAGE091
为天然气的单价,
Figure 998926DEST_PATH_IMAGE093
为发电效率,
Figure 80015DEST_PATH_IMAGE095
为第
Figure 23700DEST_PATH_IMAGE097
类污染物的处理费用,
Figure 520540DEST_PATH_IMAGE099
为第
Figure 498861DEST_PATH_IMAGE046
台微型燃气轮机在
Figure 688534DEST_PATH_IMAGE101
时刻的运行功率,
Figure 119515DEST_PATH_IMAGE103
为运行维护系数,
Figure 482363DEST_PATH_IMAGE105
为第
Figure 252873DEST_PATH_IMAGE097
类污染物的单位排放量;
Figure 410185DEST_PATH_IMAGE068
包括蓄电池运行维护成本
Figure 594042DEST_PATH_IMAGE107
和充放电造成的损耗成本
Figure 450263DEST_PATH_IMAGE457
Figure 465492DEST_PATH_IMAGE111
Figure 528126DEST_PATH_IMAGE113
式中,
Figure 668120DEST_PATH_IMAGE458
为蓄电池在
Figure 372771DEST_PATH_IMAGE101
时刻的输出功率,
Figure 914611DEST_PATH_IMAGE117
为运行成本的单位系数,
Figure 413725DEST_PATH_IMAGE459
为单位更换成本,
Figure 306595DEST_PATH_IMAGE460
Figure 487041DEST_PATH_IMAGE461
分别为蓄电池在一个调度周期内充放电变换的次数和寿命周期内额定充放电次数;
Figure 148966DEST_PATH_IMAGE125
为:
Figure 84561DEST_PATH_IMAGE127
式中,
Figure 402410DEST_PATH_IMAGE129
为微电网系统对可转移负荷的补贴单价,
Figure 448864DEST_PATH_IMAGE462
Figure 965295DEST_PATH_IMAGE101
时刻第
Figure 9475DEST_PATH_IMAGE133
类可转移负荷的转出功率;
Figure 876937DEST_PATH_IMAGE135
为:
Figure 461502DEST_PATH_IMAGE463
式中,
Figure 35703DEST_PATH_IMAGE464
Figure 313100DEST_PATH_IMAGE101
时刻微电网内部经过价格型需求响应的分时电价,
Figure 136700DEST_PATH_IMAGE465
为经过价格型需求响应后的微电网用户负荷;假设每小时均有10%用户参与价格型需求响应。
Figure 728218DEST_PATH_IMAGE143
为:
Figure 219242DEST_PATH_IMAGE466
式中,
Figure 605224DEST_PATH_IMAGE147
为余电惩罚系数,
Figure 181699DEST_PATH_IMAGE149
为第
Figure 373646DEST_PATH_IMAGE133
个微电网
Figure 656860DEST_PATH_IMAGE101
时刻的多余电量;
Figure 276060DEST_PATH_IMAGE151
为:
Figure 339831DEST_PATH_IMAGE467
式中,
Figure 7573DEST_PATH_IMAGE155
为缺电惩罚系数,
Figure 473189DEST_PATH_IMAGE157
为第
Figure 263291DEST_PATH_IMAGE133
个微电网
Figure 486461DEST_PATH_IMAGE101
时刻的缺额电量。
对于同个微电网的同一时刻,不会同时产生多余电量和缺额电量,即:
Figure 285790DEST_PATH_IMAGE469
微电网孤岛调度模型的约束条件为:
(1)微型燃气轮机爬坡约束和出力上下限约束
Figure 340334DEST_PATH_IMAGE159
Figure 239020DEST_PATH_IMAGE161
式中,
Figure 277383DEST_PATH_IMAGE470
为微型燃气轮机的爬坡上限,
Figure 552506DEST_PATH_IMAGE165
Figure 461557DEST_PATH_IMAGE167
分别为微型燃气轮机的出力最大值和出力最小值;
(2)蓄电池荷电状态约束和出力上下限约束
充电及放电时蓄电池的SOC值为:
Figure 859040DEST_PATH_IMAGE169
Figure 56803DEST_PATH_IMAGE171
式中,
Figure 932355DEST_PATH_IMAGE173
Figure 227070DEST_PATH_IMAGE175
分别为蓄电池在
Figure 467559DEST_PATH_IMAGE101
时刻和
Figure 480514DEST_PATH_IMAGE177
时刻的荷电状态,
Figure 894178DEST_PATH_IMAGE179
为蓄电池在
Figure 981083DEST_PATH_IMAGE101
时刻的输出功率,
Figure 454789DEST_PATH_IMAGE471
为所求荷电状态时刻与上一时刻的时间差,
Figure 627145DEST_PATH_IMAGE183
为蓄电池充电效率,
Figure 844499DEST_PATH_IMAGE185
为蓄电池放电效率,
Figure 848227DEST_PATH_IMAGE187
为蓄电池的额定容量;
蓄电池荷电状态约束为:
Figure 696098DEST_PATH_IMAGE189
式中,
Figure 152487DEST_PATH_IMAGE191
Figure 173532DEST_PATH_IMAGE193
分别为蓄电池荷电状态的最小值和最大值;
蓄电池出力约束为:
Figure 235029DEST_PATH_IMAGE472
式中,
Figure 316118DEST_PATH_IMAGE473
Figure 994224DEST_PATH_IMAGE199
分别为蓄电池出力的最小值和最大值;
(3)可转移负荷约束
Figure 756644DEST_PATH_IMAGE201
Figure 469385DEST_PATH_IMAGE203
Figure 721374DEST_PATH_IMAGE474
Figure 355618DEST_PATH_IMAGE475
Figure 718466DEST_PATH_IMAGE476
式中,
Figure 285714DEST_PATH_IMAGE211
Figure 646288DEST_PATH_IMAGE213
分别为
Figure 564565DEST_PATH_IMAGE101
时刻的转出负荷总量和转入负荷总量,
Figure 465525DEST_PATH_IMAGE215
为每时刻最大转入转出负荷量,
Figure 356121DEST_PATH_IMAGE477
Figure 949913DEST_PATH_IMAGE101
时刻第
Figure 293170DEST_PATH_IMAGE219
种可转移负荷的转入负荷量;
(4)价格型需求响应约束
价格型需求响应需满足负荷波动率约束,即负荷波动不能超过系统爬坡容量;
Figure 732242DEST_PATH_IMAGE221
Figure 539661DEST_PATH_IMAGE478
Figure 242037DEST_PATH_IMAGE225
式中,
Figure 134907DEST_PATH_IMAGE227
Figure 377670DEST_PATH_IMAGE229
时刻的负荷波动率,
Figure 242857DEST_PATH_IMAGE231
Figure 178452DEST_PATH_IMAGE229
时刻负荷波动率的最大值,
Figure 27460DEST_PATH_IMAGE233
为联络线功率的最大值,
Figure 277175DEST_PATH_IMAGE235
Figure 59187DEST_PATH_IMAGE229
时刻联络线功率值,
Figure 900104DEST_PATH_IMAGE237
Figure 439669DEST_PATH_IMAGE101
时刻原始负荷预测值;
价格型需求响应后的负荷值应介于响应前原始负荷的最大值和最小值之间,即:
Figure 289814DEST_PATH_IMAGE239
式中,
Figure 660752DEST_PATH_IMAGE241
Figure 875833DEST_PATH_IMAGE243
分别原始负荷的最小值和最大值;
价格型需求响应前后的负荷总量在一个调度日内保持不变,即:
Figure 230591DEST_PATH_IMAGE245
价格型需求响应需满足用户用电方式满意度和用户电费支出满意度,即:
Figure 556530DEST_PATH_IMAGE247
Figure 47554DEST_PATH_IMAGE479
式中,
Figure 495853DEST_PATH_IMAGE251
Figure 10011DEST_PATH_IMAGE253
分别为用户用电方式满意度和用户电费支出满意度的基准值,
Figure 201958DEST_PATH_IMAGE255
为原始
Figure 547489DEST_PATH_IMAGE101
时刻的分时电价;
(5)风光出力约束
Figure 104372DEST_PATH_IMAGE257
Figure 168143DEST_PATH_IMAGE259
式中,
Figure 898201DEST_PATH_IMAGE261
Figure 301501DEST_PATH_IMAGE263
分别为
Figure 91602DEST_PATH_IMAGE101
时刻风电的实际出力和风电预测值,
Figure 580353DEST_PATH_IMAGE265
Figure 114102DEST_PATH_IMAGE267
分别为
Figure 434225DEST_PATH_IMAGE101
时刻光伏发电的实际出力和光伏发电预测值;
(6)功率平衡等式约束
Figure 332911DEST_PATH_IMAGE269
将上述模型分别应用于微电网1、微电网2和微电网3,得到各个微电网孤岛调度方案,即表4、表5和表6。
Figure 105695DEST_PATH_IMAGE481
Figure 443135DEST_PATH_IMAGE483
Figure 555448DEST_PATH_IMAGE485
根据区间预测结果对各个微电网的极端场景进行调度,即风光出力均为区间下限而用户负荷为区间上限的一个极端场景、风光出力均为区间上限而用户负荷为区间下限的另一个极端场景。根据两个极端场景下的可再生能源弃用与失负荷量进行备用容量定容。微电网1的高载能负荷备用为1200kW,备用电源为400kW;微电网2的高载能负荷备用为400kW,备用电源为600kW;微电网3的高载能负荷备用为1000kW,备用电源为300kW。
多微电网电能互济调度模型为:
调度目标为微电网之间进行电能交互以实现多微电网效益
Figure 952931DEST_PATH_IMAGE271
最大,即:
Figure 947432DEST_PATH_IMAGE273
同时抑制多微电网与主网之间联络线功率波动
Figure 26246DEST_PATH_IMAGE275
,即:
Figure 55382DEST_PATH_IMAGE277
式中,
Figure 358188DEST_PATH_IMAGE279
为多微电网之间无交互时,各个微电网仅与主网交易电量所产生的运行成本;
Figure 43247DEST_PATH_IMAGE281
为多微电网之间交互时,各个微电网与主网交易电量所产生的运行成本;
Figure 722490DEST_PATH_IMAGE283
Figure 606132DEST_PATH_IMAGE285
式中,
Figure 283101DEST_PATH_IMAGE287
为第
Figure 517773DEST_PATH_IMAGE046
个微电网与主网之间的联络线功率,
Figure 938390DEST_PATH_IMAGE289
时表示第
Figure 676539DEST_PATH_IMAGE046
个微电网向主网购电,
Figure 586727DEST_PATH_IMAGE291
时表示第
Figure 246378DEST_PATH_IMAGE046
个微电网向主网售电;
Figure 1844DEST_PATH_IMAGE293
Figure 860079DEST_PATH_IMAGE295
分别为
Figure 675588DEST_PATH_IMAGE101
时刻微电网和主网之间的售电电价和购电电价。
多微电网电能互济调度模型的约束条件包括联络线功率容量约束及各个微电网功率平衡等式约束:
Figure 822536DEST_PATH_IMAGE297
Figure 381693DEST_PATH_IMAGE299
式中,当
Figure 695951DEST_PATH_IMAGE306
时,表示第
Figure 885624DEST_PATH_IMAGE046
个微电网向第
Figure 51026DEST_PATH_IMAGE303
个微电网进行购电的电量;当
Figure 413874DEST_PATH_IMAGE309
时,表示第
Figure 449963DEST_PATH_IMAGE046
个微电网向第
Figure 872854DEST_PATH_IMAGE303
个微电网进行售电的电量;
Figure 525553DEST_PATH_IMAGE306
时,有:
Figure 629775DEST_PATH_IMAGE308
Figure 582687DEST_PATH_IMAGE309
时,有:
Figure 114163DEST_PATH_IMAGE311
表7展示了各个微电网与主网之间的联络线功率,表8为微电网之间的交互功率。
Figure 254157DEST_PATH_IMAGE487
Figure 958808DEST_PATH_IMAGE489
S3、建立各个微电网可再生能源弃用及失负荷预测模型,提出以运行成本最小和联络线功率波动最小的备用容量调度模型;备用容量调度模型包括高载能负荷调度模型和备用电源调度模型,其中,采用高载能负荷调度可再生能源弃用,采用柴油机组、可削减负荷和联络线功率作为备用电源调度失负荷,利用混合整数线性规划对高载能负荷调度模型和利用多目标粒子群算法备用电源调度模型进行求解得到各个微电网备用容量调度方案;微电网可再生能源弃用及失负荷预测包括以下步骤:
(1)计算净负荷预测值
Figure 703910DEST_PATH_IMAGE313
和净负荷实际值
Figure 203025DEST_PATH_IMAGE315
Figure 95894DEST_PATH_IMAGE317
Figure 541919DEST_PATH_IMAGE319
式中,
Figure 203844DEST_PATH_IMAGE321
Figure 873860DEST_PATH_IMAGE101
时刻经过价格型需求响应后的微电网用户负荷,
Figure 191709DEST_PATH_IMAGE323
Figure 503742DEST_PATH_IMAGE101
时刻风电预测值,
Figure 754595DEST_PATH_IMAGE325
Figure 798774DEST_PATH_IMAGE101
时刻光伏发电预测值,
Figure 666236DEST_PATH_IMAGE327
Figure 250801DEST_PATH_IMAGE101
时刻可转移负荷的转入负荷量,
Figure 825002DEST_PATH_IMAGE329
Figure 102399DEST_PATH_IMAGE101
时刻可转移负荷的转出功率,
Figure 394840DEST_PATH_IMAGE331
Figure 517517DEST_PATH_IMAGE101
时刻原始负荷实际值,
Figure 8541DEST_PATH_IMAGE333
Figure 660102DEST_PATH_IMAGE101
时刻原始负荷预测值,
Figure 236577DEST_PATH_IMAGE335
Figure 162945DEST_PATH_IMAGE101
时刻光伏发电实际值,
Figure 711738DEST_PATH_IMAGE337
Figure 330938DEST_PATH_IMAGE101
时刻风电实际值;
(2)通过净负荷预测值
Figure 129130DEST_PATH_IMAGE313
与净负荷实际值
Figure 62451DEST_PATH_IMAGE315
计算调度后的可再生能源弃用量及失负荷量:当净负荷实际值
Figure 262488DEST_PATH_IMAGE315
小于0时,此时电源侧无需出力,可再生能源弃用量为净负荷实际值
Figure 52590DEST_PATH_IMAGE315
的相反数;当净负荷实际值
Figure 541340DEST_PATH_IMAGE490
大于0且小于净负荷预测值
Figure 809510DEST_PATH_IMAGE491
时,表明微型燃气轮机和储能有出力且出力有余,从减少机组调节次数的角度考虑,此时应减少可再生能源的调度安排值,因此可再生能源弃用量为净负荷实际值
Figure 129633DEST_PATH_IMAGE315
和净负荷预测值
Figure 90636DEST_PATH_IMAGE338
的差值;微电网为孤岛状态时,当净负荷实际值
Figure 863420DEST_PATH_IMAGE315
小于0且净负荷预测值
Figure 872964DEST_PATH_IMAGE341
大于0时,失负荷量为净负荷实际值
Figure 313173DEST_PATH_IMAGE315
;当净负荷预测值
Figure 179497DEST_PATH_IMAGE338
大于0且净负荷实际值
Figure 642840DEST_PATH_IMAGE339
大于净负荷预测值
Figure 518392DEST_PATH_IMAGE338
时,失负荷量为净负荷实际值和净负荷预测值
Figure 750790DEST_PATH_IMAGE340
的差值。此外,还需考虑联络线功率和微电网间交互功率才能得到实际可再生能源弃用量与失负荷量。假设多微电网包含3个微电网,当微电网1与外界交互电量小于0时,表明第二阶段调度方案中微电网1向外界进行售电,当完成售电后的剩余电量即为实际可再生能源弃用量;当联络线功率大于0时,表明第二阶段调度方案中微电网1向外界进行购电,当完成购电后若仍存在失负荷即为实际失负荷量。微电网2和微电网3同理。
备用容量调度模型包括高载能负荷调度模型和备用电源调度模型;高载能负荷调度模型的目标函数为高载能负荷总效益
Figure 53595DEST_PATH_IMAGE343
最小,即:
Figure 800972DEST_PATH_IMAGE493
Figure 417898DEST_PATH_IMAGE347
Figure 567119DEST_PATH_IMAGE349
式中,
Figure 40826DEST_PATH_IMAGE351
为高载能负荷的可再生能源消纳效益,
Figure 213181DEST_PATH_IMAGE353
为高载能负荷的调节成本,
Figure 430536DEST_PATH_IMAGE355
为可再生能源的上网价格,
Figure 434264DEST_PATH_IMAGE357
为第
Figure 282134DEST_PATH_IMAGE359
类高载能负荷的单位调节成本,
Figure 4103DEST_PATH_IMAGE361
为第
Figure 759569DEST_PATH_IMAGE362
类高载能负荷在
Figure 555487DEST_PATH_IMAGE364
时段的投切组数,
Figure 636575DEST_PATH_IMAGE366
为第
Figure 783523DEST_PATH_IMAGE359
类高载能负荷的单位投切容量;
备用电源调度模型为:
Figure 342680DEST_PATH_IMAGE494
Figure 321001DEST_PATH_IMAGE370
式中,
Figure 245094DEST_PATH_IMAGE372
为备用电源运行成本,
Figure 676076DEST_PATH_IMAGE374
为联络线功率波动,
Figure 38924DEST_PATH_IMAGE376
为柴油机组的综合运行成本,
Figure 75013DEST_PATH_IMAGE378
为可削减负荷的综合运行成本,
Figure 232325DEST_PATH_IMAGE380
为第二阶段联络线的综合运行成本,
Figure 150602DEST_PATH_IMAGE382
为第二阶段联络线功率。
Figure 254824DEST_PATH_IMAGE496
Figure 676578DEST_PATH_IMAGE498
Figure 270371DEST_PATH_IMAGE500
表9、表10和表11分别为微电网1、微电网2和微电网3的可再生能源弃用预测、失负荷预测及调度结果。

Claims (10)

1.一种考虑需求响应的多微电网联合互济的日前调度方法,其特征在于,该方法包括以下步骤:
S1、建立各个微电网的价格型需求响应模型、激励型需求响应模型、光伏功率及负荷功率预测模型;
S2、提出以运行成本最小为优化目标的微电网孤岛调度模型,利用CPLEX求解得到各个微电网孤岛调度方案;在孤岛调度的基础上,提出以运行成本最小和联络线功率波动最小为优化目标的多微电网电能互济的调度模型,利用CPLEX求解得到各个微电网之间的交互功率及各个微电网与主网之间的联络线功率;
S3、建立各个微电网可再生能源弃用及失负荷预测模型,提出以运行成本最小和联络线功率波动最小的备用容量调度模型;备用容量调度模型包括高载能负荷调度模型和备用电源调度模型,其中,采用高载能负荷调度可再生能源弃用,采用备用电源调度失负荷,对高载能负荷调度模型和备用电源调度模型进行求解得到各个微电网备用容量调度方案。
2.根据权利要求1所述的一种考虑需求响应的多微电网联合互济的日前调度方法,其特征在于:
步骤S1中,采用电量电价弹性矩阵对价格型需求响应建模,用户电量
Figure 450328DEST_PATH_IMAGE002
对电价
Figure 92662DEST_PATH_IMAGE004
的响应分为对当前时段的响应和对非当前时段的响应,即多时段响应;
在多时段响应模型中,弹性系数分为自弹性系数
Figure 368922DEST_PATH_IMAGE006
和互弹性系数
Figure 930354DEST_PATH_IMAGE008
Figure 229748DEST_PATH_IMAGE010
Figure 206931DEST_PATH_IMAGE012
式中,
Figure 423453DEST_PATH_IMAGE014
Figure 31152DEST_PATH_IMAGE016
时刻电量的变化量,
Figure 880159DEST_PATH_IMAGE018
Figure 457771DEST_PATH_IMAGE016
时刻电量值,
Figure 708624DEST_PATH_IMAGE020
Figure 221645DEST_PATH_IMAGE016
时刻电价,
Figure 885844DEST_PATH_IMAGE022
Figure 204830DEST_PATH_IMAGE016
时刻电价的变化量,
Figure 247872DEST_PATH_IMAGE024
Figure 322008DEST_PATH_IMAGE026
时刻电价,
Figure 880028DEST_PATH_IMAGE028
Figure 940388DEST_PATH_IMAGE026
时刻电价的变化量;
对于
Figure 228150DEST_PATH_IMAGE030
时段的用户对电价的响应行为建模为:
Figure 145290DEST_PATH_IMAGE032
其中,
Figure 393869DEST_PATH_IMAGE034
为电量电价矩阵。
3.根据权利要求1所述的一种考虑需求响应的多微电网联合互济的日前调度方法,其特征在于:
步骤S1中,激励型需求响应包括可转移负荷和可削减负荷;
微电网系统对可转移负荷的补贴成本
Figure 54657DEST_PATH_IMAGE036
为:
Figure 196926DEST_PATH_IMAGE038
式中,
Figure 488230DEST_PATH_IMAGE040
为微电网系统对可转移负荷的补贴单价,
Figure 20842DEST_PATH_IMAGE042
Figure 547638DEST_PATH_IMAGE044
时刻第
Figure 419779DEST_PATH_IMAGE046
类可转移负荷的转出功率;
微电网系统对可削减负荷的补贴成本
Figure 944302DEST_PATH_IMAGE048
为:
Figure 26527DEST_PATH_IMAGE050
式中,
Figure 29118DEST_PATH_IMAGE052
为调度可削减负荷后
Figure 21345DEST_PATH_IMAGE044
时刻的负荷需求,
Figure 779086DEST_PATH_IMAGE054
为补贴单价;
Figure 20711DEST_PATH_IMAGE056
式中,
Figure 30255DEST_PATH_IMAGE058
是0-1变量,表示第
Figure 1622DEST_PATH_IMAGE060
个用户在
Figure 602368DEST_PATH_IMAGE044
时刻是否被选中的状态;
Figure 534552DEST_PATH_IMAGE062
为第
Figure 878946DEST_PATH_IMAGE060
个用户
Figure 970398DEST_PATH_IMAGE044
时刻的削减容量。
4.根据权利要求1所述的一种考虑需求响应的多微电网联合互济的日前调度方法,其特征在于:
步骤S1中,先根据相空间重构法将光伏功率及负荷功率的一周历史数据转换为高维相空间,再将高维相空间作为极限学习机的训练输入数据,将该训练输入数据后移一个预测时间长度得到训练输出数据,然后将训练输入数据与训练输出数据输入极限学习机进行训练,之后,将训练输出数据后移一个预测时间长度得到测试输入数据,输入测试输入数据得到光伏功率及负荷功率的点预测值;
根据训练输入数据与训练输出数据得到预测误差的累计概率分布函数,再求累计概率分布函数的逆函数,然后根据逆函数以及光伏功率及负荷功率的点预测值计算得到给定置信水平下的区间上下限。
5.根据权利要求1所述的一种考虑需求响应的多微电网联合互济的日前调度方法,其特征在于:
步骤S2中,微电网孤岛调度模型的目标函数为:
Figure 679728DEST_PATH_IMAGE064
式中,
Figure 161525DEST_PATH_IMAGE066
为第
Figure 637506DEST_PATH_IMAGE046
个微电网内微型燃气轮机运行产生的综合运行成本,
Figure 193252DEST_PATH_IMAGE068
为第
Figure 401380DEST_PATH_IMAGE046
个微电网内蓄电池出力产生的综合运行成本,
Figure 167210DEST_PATH_IMAGE070
为第
Figure 853407DEST_PATH_IMAGE046
个微电网系统对该微电网可转移负荷的补贴成本,
Figure 794818DEST_PATH_IMAGE072
为第
Figure 970584DEST_PATH_IMAGE046
个微电网向用户供电所得售电收益,
Figure 161394DEST_PATH_IMAGE074
为第
Figure 588964DEST_PATH_IMAGE046
个微电网内多余电量所产生的可再生能源弃用惩罚成本,
Figure 509516DEST_PATH_IMAGE076
为第
Figure 59446DEST_PATH_IMAGE046
个微电网内缺额电量所产生的失负荷惩罚成本;
Figure 675235DEST_PATH_IMAGE077
包括燃料成本
Figure 703234DEST_PATH_IMAGE079
、微型燃气轮机运行维护成本
Figure 212713DEST_PATH_IMAGE081
和环境污染治理成本
Figure 136806DEST_PATH_IMAGE083
Figure 302208DEST_PATH_IMAGE085
Figure 196215DEST_PATH_IMAGE087
Figure 701146DEST_PATH_IMAGE089
式中,
Figure 592878DEST_PATH_IMAGE091
为天然气的单价,
Figure 307894DEST_PATH_IMAGE093
为发电效率,
Figure 677695DEST_PATH_IMAGE095
为第
Figure 37132DEST_PATH_IMAGE097
类污染物的处理费用,
Figure 427662DEST_PATH_IMAGE099
为第
Figure 302077DEST_PATH_IMAGE046
台微型燃气轮机在
Figure 678832DEST_PATH_IMAGE101
时刻的运行功率,
Figure 282989DEST_PATH_IMAGE103
为运行维护系数,
Figure 516524DEST_PATH_IMAGE105
为第
Figure 815918DEST_PATH_IMAGE097
类污染物的单位排放量;
Figure 527522DEST_PATH_IMAGE068
包括蓄电池运行维护成本
Figure 251765DEST_PATH_IMAGE107
和充放电造成的损耗成本
Figure 593884DEST_PATH_IMAGE109
Figure 442892DEST_PATH_IMAGE111
Figure 20504DEST_PATH_IMAGE113
式中,
Figure 474619DEST_PATH_IMAGE115
为蓄电池在
Figure 49956DEST_PATH_IMAGE101
时刻的输出功率,
Figure 448577DEST_PATH_IMAGE117
为运行成本的单位系数,
Figure 767563DEST_PATH_IMAGE119
为单位更换成本,
Figure 76184DEST_PATH_IMAGE121
Figure 884740DEST_PATH_IMAGE123
分别为蓄电池在一个调度周期内充放电变换的次数和寿命周期内额定充放电次数;
Figure 442761DEST_PATH_IMAGE125
为:
Figure 503120DEST_PATH_IMAGE127
式中,
Figure 790882DEST_PATH_IMAGE129
为微电网系统对可转移负荷的补贴单价,
Figure 708023DEST_PATH_IMAGE131
Figure 222181DEST_PATH_IMAGE101
时刻第
Figure 945286DEST_PATH_IMAGE133
类可转移负荷的转出功率;
Figure 759658DEST_PATH_IMAGE135
为:
Figure 50962DEST_PATH_IMAGE137
式中,
Figure 911471DEST_PATH_IMAGE139
Figure 110371DEST_PATH_IMAGE101
时刻微电网内部经过价格型需求响应的分时电价,
Figure 982512DEST_PATH_IMAGE141
为经过价格型需求响应后的微电网用户负荷;
Figure 507034DEST_PATH_IMAGE143
为:
Figure 589260DEST_PATH_IMAGE145
式中,
Figure 795113DEST_PATH_IMAGE147
为余电惩罚系数,
Figure 584078DEST_PATH_IMAGE149
为第
Figure 341818DEST_PATH_IMAGE133
个微电网
Figure 786706DEST_PATH_IMAGE101
时刻的多余电量;
Figure 920884DEST_PATH_IMAGE151
为:
Figure 564355DEST_PATH_IMAGE153
式中,
Figure 368363DEST_PATH_IMAGE155
为缺电惩罚系数,
Figure 425181DEST_PATH_IMAGE157
为第
Figure 35154DEST_PATH_IMAGE133
个微电网
Figure 1973DEST_PATH_IMAGE101
时刻的缺额电量。
6.根据权利要求5所述的一种考虑需求响应的多微电网联合互济的日前调度方法,其特征在于:步骤S2中,微电网孤岛调度模型的约束条件为:
(1)微型燃气轮机爬坡约束和出力上下限约束
Figure 835936DEST_PATH_IMAGE159
Figure 520996DEST_PATH_IMAGE161
式中,
Figure 669080DEST_PATH_IMAGE163
为微型燃气轮机的爬坡上限,
Figure 615040DEST_PATH_IMAGE165
Figure 495271DEST_PATH_IMAGE167
分别为微型燃气轮机的出力最大值和出力最小值;
(2)蓄电池荷电状态约束和出力上下限约束
充电及放电时蓄电池的SOC值为:
Figure 526681DEST_PATH_IMAGE169
Figure 478456DEST_PATH_IMAGE171
式中,
Figure 888709DEST_PATH_IMAGE173
Figure 595634DEST_PATH_IMAGE175
分别为蓄电池在
Figure 786444DEST_PATH_IMAGE101
时刻和
Figure 214014DEST_PATH_IMAGE177
时刻的荷电状态,
Figure 134566DEST_PATH_IMAGE179
为蓄电池在
Figure 684496DEST_PATH_IMAGE101
时刻的输出功率,
Figure 34705DEST_PATH_IMAGE181
为所求荷电状态时刻与上一时刻的时间差,
Figure 656180DEST_PATH_IMAGE183
为蓄电池充电效率,
Figure 103342DEST_PATH_IMAGE185
为蓄电池放电效率,
Figure 761856DEST_PATH_IMAGE187
为蓄电池的额定容量;
蓄电池荷电状态约束为:
Figure 927258DEST_PATH_IMAGE189
式中,
Figure 86844DEST_PATH_IMAGE191
Figure 326195DEST_PATH_IMAGE193
分别为蓄电池荷电状态的最小值和最大值;
蓄电池出力约束为:
Figure 217928DEST_PATH_IMAGE195
式中,
Figure 667364DEST_PATH_IMAGE197
Figure 506007DEST_PATH_IMAGE199
分别为蓄电池出力的最小值和最大值;
(3)可转移负荷约束
Figure 927761DEST_PATH_IMAGE201
Figure 52712DEST_PATH_IMAGE203
Figure 927127DEST_PATH_IMAGE205
Figure 303882DEST_PATH_IMAGE207
Figure 642459DEST_PATH_IMAGE209
式中,
Figure 79257DEST_PATH_IMAGE211
Figure 440968DEST_PATH_IMAGE213
分别为
Figure 480468DEST_PATH_IMAGE101
时刻的转出负荷总量和转入负荷总量,
Figure 80077DEST_PATH_IMAGE215
为每时刻最大转入转出负荷量,
Figure 484513DEST_PATH_IMAGE217
Figure 130258DEST_PATH_IMAGE101
时刻第
Figure 114395DEST_PATH_IMAGE219
种可转移负荷的转入负荷量;
(4)价格型需求响应约束
Figure 365247DEST_PATH_IMAGE221
Figure 2902DEST_PATH_IMAGE223
Figure 276889DEST_PATH_IMAGE225
式中,
Figure 595875DEST_PATH_IMAGE227
Figure 763551DEST_PATH_IMAGE229
时刻的负荷波动率,
Figure 509790DEST_PATH_IMAGE231
Figure 271072DEST_PATH_IMAGE229
时刻负荷波动率的最大值,
Figure 456066DEST_PATH_IMAGE233
为联络线功率的最大值,
Figure 681511DEST_PATH_IMAGE235
Figure 536335DEST_PATH_IMAGE229
时刻联络线功率值,
Figure 909547DEST_PATH_IMAGE237
Figure 570336DEST_PATH_IMAGE101
时刻原始负荷预测值;
价格型需求响应后的负荷值应介于响应前原始负荷的最大值和最小值之间,即:
Figure 587970DEST_PATH_IMAGE239
式中,
Figure 3908DEST_PATH_IMAGE241
Figure 536521DEST_PATH_IMAGE243
分别原始负荷的最小值和最大值;
价格型需求响应前后的负荷总量在一个调度日内保持不变,即:
Figure 938683DEST_PATH_IMAGE245
价格型需求响应需满足用户用电方式满意度和用户电费支出满意度,即:
Figure 201037DEST_PATH_IMAGE247
Figure 459980DEST_PATH_IMAGE249
式中,
Figure 683151DEST_PATH_IMAGE251
Figure 13638DEST_PATH_IMAGE253
分别为用户用电方式满意度和用户电费支出满意度的基准值,
Figure 802603DEST_PATH_IMAGE255
为原始
Figure 170130DEST_PATH_IMAGE101
时刻的分时电价;
(5)风光出力约束
Figure 677335DEST_PATH_IMAGE257
Figure 545934DEST_PATH_IMAGE259
式中,
Figure 392667DEST_PATH_IMAGE261
Figure 258992DEST_PATH_IMAGE263
分别为
Figure 50230DEST_PATH_IMAGE101
时刻风电的实际出力和风电预测值,
Figure 863466DEST_PATH_IMAGE265
Figure 954918DEST_PATH_IMAGE267
分别为
Figure 929828DEST_PATH_IMAGE101
时刻光伏发电的实际出力和光伏发电预测值;
(6)功率平衡等式约束
Figure 473941DEST_PATH_IMAGE269
7.根据权利要求1所述的一种考虑需求响应的多微电网联合互济的日前调度方法,其特征在于:步骤S2中,多微电网电能互济调度模型为:
调度目标为微电网之间进行电能交互以实现多微电网效益
Figure 622026DEST_PATH_IMAGE271
最大,即:
Figure 443351DEST_PATH_IMAGE273
同时抑制多微电网与主网之间联络线功率波动
Figure 713796DEST_PATH_IMAGE275
,即:
Figure 417310DEST_PATH_IMAGE277
式中,
Figure 306768DEST_PATH_IMAGE279
为多微电网之间无交互时,各个微电网仅与主网交易电量所产生的运行成本;
Figure 107234DEST_PATH_IMAGE281
为多微电网之间交互时,各个微电网与主网交易电量所产生的运行成本;
Figure 486263DEST_PATH_IMAGE283
Figure 614756DEST_PATH_IMAGE285
式中,
Figure 104643DEST_PATH_IMAGE287
为第
Figure 25194DEST_PATH_IMAGE046
个微电网与主网之间的联络线功率,
Figure 247228DEST_PATH_IMAGE289
时表示第
Figure 925334DEST_PATH_IMAGE046
个微电网向主网购电,
Figure 281229DEST_PATH_IMAGE291
时表示第
Figure 931653DEST_PATH_IMAGE046
个微电网向主网售电;
Figure 652485DEST_PATH_IMAGE293
Figure 614625DEST_PATH_IMAGE295
分别为
Figure 446314DEST_PATH_IMAGE101
时刻微电网和主网之间的售电电价和购电电价。
8.根据权利要求7所述的一种考虑需求响应的多微电网联合互济的日前调度方法,其特征在于:步骤S2中,多微电网电能互济调度模型的约束条件包括联络线功率容量约束及各个微电网功率平衡等式约束:
Figure 951245DEST_PATH_IMAGE297
Figure 170874DEST_PATH_IMAGE299
式中,当
Figure 557993DEST_PATH_IMAGE301
时,表示第
Figure 131057DEST_PATH_IMAGE046
个微电网向第
Figure 880707DEST_PATH_IMAGE303
个微电网进行购电的电量;当
Figure 943341DEST_PATH_IMAGE305
时,表示第
Figure 755439DEST_PATH_IMAGE046
个微电网向第
Figure 256827DEST_PATH_IMAGE303
个微电网进行售电的电量;
Figure 533088DEST_PATH_IMAGE301
时,有:
Figure 704306DEST_PATH_IMAGE307
Figure 393914DEST_PATH_IMAGE305
时,有:
Figure 371097DEST_PATH_IMAGE309
9.根据权利要求1所述的一种考虑需求响应的多微电网联合互济的日前调度方法,其特征在于:步骤S3中,微电网可再生能源弃用及失负荷预测包括以下步骤:
(1)计算净负荷预测值
Figure 439547DEST_PATH_IMAGE311
和净负荷实际值
Figure 843984DEST_PATH_IMAGE313
Figure 755308DEST_PATH_IMAGE315
Figure 739444DEST_PATH_IMAGE317
式中,
Figure 724718DEST_PATH_IMAGE319
Figure 385810DEST_PATH_IMAGE101
时刻经过价格型需求响应后的微电网用户负荷,
Figure 925376DEST_PATH_IMAGE321
Figure 244362DEST_PATH_IMAGE101
时刻风电预测值,
Figure 412038DEST_PATH_IMAGE323
Figure 158277DEST_PATH_IMAGE101
时刻光伏发电预测值,
Figure 185139DEST_PATH_IMAGE325
Figure 104553DEST_PATH_IMAGE101
时刻可转移负荷的转入负荷量,
Figure 64419DEST_PATH_IMAGE327
Figure 184822DEST_PATH_IMAGE101
时刻可转移负荷的转出功率,
Figure 558034DEST_PATH_IMAGE329
Figure 218823DEST_PATH_IMAGE101
时刻原始负荷实际值,
Figure 236457DEST_PATH_IMAGE331
Figure 324499DEST_PATH_IMAGE101
时刻原始负荷预测值,
Figure 185008DEST_PATH_IMAGE333
Figure 587170DEST_PATH_IMAGE101
时刻光伏发电实际值,
Figure 521628DEST_PATH_IMAGE335
Figure 842888DEST_PATH_IMAGE101
时刻风电实际值;
(2)通过净负荷预测值
Figure 66059DEST_PATH_IMAGE311
与净负荷实际值
Figure 68650DEST_PATH_IMAGE313
计算调度后的可再生能源弃用量及失负荷量:
当净负荷实际值
Figure 919931DEST_PATH_IMAGE313
小于0时,可再生能源弃用量为净负荷实际值
Figure 818617DEST_PATH_IMAGE336
的相反数;当净负荷实际值
Figure 325822DEST_PATH_IMAGE313
大于0且小于净负荷预测值
Figure 928842DEST_PATH_IMAGE337
时,可再生能源弃用量为净负荷实际值
Figure 837892DEST_PATH_IMAGE313
和净负荷预测值
Figure 641900DEST_PATH_IMAGE338
的差值;
当净负荷实际值
Figure 698717DEST_PATH_IMAGE313
小于0且净负荷预测值
Figure 43111DEST_PATH_IMAGE339
大于0时,失负荷量为净负荷实际值
Figure 744351DEST_PATH_IMAGE340
;当净负荷预测值
Figure 109473DEST_PATH_IMAGE339
大于0且净负荷实际值
Figure 325691DEST_PATH_IMAGE336
大于净负荷预测值
Figure 411458DEST_PATH_IMAGE341
时,失负荷量为净负荷实际值和净负荷预测值
Figure 357418DEST_PATH_IMAGE342
的差值。
10.根据权利要求1所述的一种考虑需求响应的多微电网联合互济的日前调度方法,其特征在于:步骤S3中,备用容量调度模型包括高载能负荷调度模型和备用电源调度模型;
高载能负荷调度模型的目标函数为高载能负荷总效益
Figure 565545DEST_PATH_IMAGE344
最小,即:
Figure 206742DEST_PATH_IMAGE346
Figure 892938DEST_PATH_IMAGE348
Figure 958983DEST_PATH_IMAGE350
式中,
Figure 275695DEST_PATH_IMAGE352
为高载能负荷的可再生能源消纳效益,
Figure 466505DEST_PATH_IMAGE354
为高载能负荷的调节成本,
Figure 18709DEST_PATH_IMAGE356
为可再生能源的上网价格,
Figure 549048DEST_PATH_IMAGE358
为第
Figure 98978DEST_PATH_IMAGE360
类高载能负荷的单位调节成本,
Figure 839401DEST_PATH_IMAGE362
为第
Figure DEST_PATH_IMAGE363
类高载能负荷在
Figure DEST_PATH_IMAGE365
时段的投切组数,
Figure DEST_PATH_IMAGE367
为第
Figure 195296DEST_PATH_IMAGE360
类高载能负荷的单位投切容量;
备用电源调度模型为:
Figure DEST_PATH_IMAGE369
Figure DEST_PATH_IMAGE371
式中,
Figure DEST_PATH_IMAGE373
为备用电源运行成本,
Figure DEST_PATH_IMAGE375
为联络线功率波动,
Figure DEST_PATH_IMAGE377
为柴油机组的综合运行成本,
Figure DEST_PATH_IMAGE379
为可削减负荷的综合运行成本,
Figure DEST_PATH_IMAGE381
为第二阶段联络线的综合运行成本,
Figure DEST_PATH_IMAGE383
为第二阶段联络线功率。
CN202210394121.3A 2022-04-15 2022-04-15 一种考虑需求响应的多微电网联合互济的日前调度方法 Active CN114498639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210394121.3A CN114498639B (zh) 2022-04-15 2022-04-15 一种考虑需求响应的多微电网联合互济的日前调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210394121.3A CN114498639B (zh) 2022-04-15 2022-04-15 一种考虑需求响应的多微电网联合互济的日前调度方法

Publications (2)

Publication Number Publication Date
CN114498639A true CN114498639A (zh) 2022-05-13
CN114498639B CN114498639B (zh) 2022-06-24

Family

ID=81489570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210394121.3A Active CN114498639B (zh) 2022-04-15 2022-04-15 一种考虑需求响应的多微电网联合互济的日前调度方法

Country Status (1)

Country Link
CN (1) CN114498639B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115021327A (zh) * 2022-05-19 2022-09-06 合肥工业大学 基于虚拟储能的互联微电网系统的协同日前优化调度方法
CN115062985A (zh) * 2022-06-20 2022-09-16 国网福建省电力有限公司 计及用户舒适度需求侧管理的海上孤岛微电网运行策略
CN115907488A (zh) * 2022-11-11 2023-04-04 中原工学院 考虑用户积极性的新能源微电网多层级车网协同优化方法
CN115986850A (zh) * 2023-03-20 2023-04-18 国网湖北省电力有限公司经济技术研究院 一种考虑多源平衡动态全响应的输配协同优化调度方法
CN116187019A (zh) * 2022-12-30 2023-05-30 华电电力科学研究院有限公司 一种考虑阶梯碳价的含风光储的虚拟电厂经济调度方法
CN116433225A (zh) * 2023-06-12 2023-07-14 国网湖北省电力有限公司经济技术研究院 一种互联微电网多时间尺度故障恢复方法、装置及设备
CN117592620A (zh) * 2024-01-19 2024-02-23 浙江浙达能源科技有限公司 一种面向水泥企业的生产计划优化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107392395A (zh) * 2017-08-23 2017-11-24 天津大学 一种基于价格激励机制的配电网和微电网协调优化方法
CN107958300A (zh) * 2017-08-21 2018-04-24 浙江工业大学 一种考虑互动响应的多微网互联运行协调调度优化方法
CN112308386A (zh) * 2020-10-19 2021-02-02 武汉理工大学 一种价格与激励需求响应下电动汽车负荷聚集商调度方法
CN112383086A (zh) * 2020-10-22 2021-02-19 广东电网有限责任公司 一种孤岛微电网日前能量-备用联合优化调度方法
CN112865174A (zh) * 2021-01-07 2021-05-28 福州大学 基于双层模型预测控制的微能网多时间尺度优化控制方法
CN113471976A (zh) * 2021-07-14 2021-10-01 国网江苏省电力有限公司营销服务中心 基于多能互补微电网与主动配电网的优化调度方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107958300A (zh) * 2017-08-21 2018-04-24 浙江工业大学 一种考虑互动响应的多微网互联运行协调调度优化方法
CN107392395A (zh) * 2017-08-23 2017-11-24 天津大学 一种基于价格激励机制的配电网和微电网协调优化方法
CN112308386A (zh) * 2020-10-19 2021-02-02 武汉理工大学 一种价格与激励需求响应下电动汽车负荷聚集商调度方法
CN112383086A (zh) * 2020-10-22 2021-02-19 广东电网有限责任公司 一种孤岛微电网日前能量-备用联合优化调度方法
CN112865174A (zh) * 2021-01-07 2021-05-28 福州大学 基于双层模型预测控制的微能网多时间尺度优化控制方法
CN113471976A (zh) * 2021-07-14 2021-10-01 国网江苏省电力有限公司营销服务中心 基于多能互补微电网与主动配电网的优化调度方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG XIAOBO: "Microgrid optimal operation considering virtual reserve capacity trading of storage battery", 《2016 IEEE 16TH INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING (EEEIC)》 *
王尧: "微能源网多能协同优化运行及效益评价模型研究", 《工程科技Ⅱ辑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115021327A (zh) * 2022-05-19 2022-09-06 合肥工业大学 基于虚拟储能的互联微电网系统的协同日前优化调度方法
CN115021327B (zh) * 2022-05-19 2024-03-01 合肥工业大学 基于虚拟储能的互联微电网系统的协同日前优化调度方法
CN115062985A (zh) * 2022-06-20 2022-09-16 国网福建省电力有限公司 计及用户舒适度需求侧管理的海上孤岛微电网运行策略
CN115907488A (zh) * 2022-11-11 2023-04-04 中原工学院 考虑用户积极性的新能源微电网多层级车网协同优化方法
CN115907488B (zh) * 2022-11-11 2023-07-28 中原工学院 考虑用户积极性的新能源微电网多层级车网协同优化方法
CN116187019A (zh) * 2022-12-30 2023-05-30 华电电力科学研究院有限公司 一种考虑阶梯碳价的含风光储的虚拟电厂经济调度方法
CN115986850A (zh) * 2023-03-20 2023-04-18 国网湖北省电力有限公司经济技术研究院 一种考虑多源平衡动态全响应的输配协同优化调度方法
CN116433225A (zh) * 2023-06-12 2023-07-14 国网湖北省电力有限公司经济技术研究院 一种互联微电网多时间尺度故障恢复方法、装置及设备
CN116433225B (zh) * 2023-06-12 2023-08-29 国网湖北省电力有限公司经济技术研究院 一种互联微电网多时间尺度故障恢复方法、装置及设备
CN117592620A (zh) * 2024-01-19 2024-02-23 浙江浙达能源科技有限公司 一种面向水泥企业的生产计划优化方法

Also Published As

Publication number Publication date
CN114498639B (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
CN114498639B (zh) 一种考虑需求响应的多微电网联合互济的日前调度方法
Madaeni et al. How thermal energy storage enhances the economic viability of concentrating solar power
CN110188950A (zh) 基于多代理技术的虚拟电厂供电侧和需求侧优化调度建模方法
CN107958300A (zh) 一种考虑互动响应的多微网互联运行协调调度优化方法
CN113988444A (zh) 一种光储系统的电费优化控制系统及方法
CN115271467A (zh) 考虑电碳协同优化的虚拟电厂调度优化方法及应用
Khan et al. Optimal energy scheduling strategy for multi-energy generation grid using multi-agent systems
Khoshjahan et al. Optimal participation of PEV charging stations integrated with smart buildings in the wholesale energy and reserve markets
Zakariazadeh et al. Smart microgrid operational planning considering multiple demand response programs
CN111612248A (zh) 一种配电网侧源-荷协调方法及系统
KR20210094033A (ko) 에너지 관리 시스템을 동작시키기 위한 방법, 그 방법을 수행하기 위한 전자 컴퓨팅 디바이스, 컴퓨터 프로그램, 및 데이터 캐리어
CN116707016A (zh) 基于场景生成和削减的风光氢储日前随机优化调度方法
CN114498769B (zh) 一种高比例风光孤岛微电网群能量调度方法及系统
Rizvi et al. Optimal scheduling of virtual power plants utilizing wind power and electric vehicles
CN112531785B (zh) 多时间尺度下光热-储热的主动配电网主辅联合调度方法
Trinh et al. Optimal pev charging and discharging algorithms to reduce operational cost of microgrid using adaptive rolling horizon framework
Zhang et al. Resilient energy management for residential communities under grid outages
CN110445173B (zh) 一种基于多代理的分层多微网能量管理系统及调度方法
CN110070210B (zh) 一种多微电网系统能量管理与贡献度评估方法和系统
Jin et al. Review of virtual power plant applications for power system management and vehicle-to-grid market development
Yu et al. Transactive control of a residential community with solar photovoltaic and battery storage systems
CN115986812A (zh) 一种考虑储能和需求响应的微电网经济规划方法及装置
Elkazaz et al. A hierarchical centralized community energy management system using a model predictive controller
CN112736950B (zh) 一种面向微电网群的公共储能电站配置方法及系统
Qian et al. Low carbon optimization dispatching of energy intensive industrial park based on adaptive stepped demand response incentive mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant