CN114498639A - 一种考虑需求响应的多微电网联合互济的日前调度方法 - Google Patents
一种考虑需求响应的多微电网联合互济的日前调度方法 Download PDFInfo
- Publication number
- CN114498639A CN114498639A CN202210394121.3A CN202210394121A CN114498639A CN 114498639 A CN114498639 A CN 114498639A CN 202210394121 A CN202210394121 A CN 202210394121A CN 114498639 A CN114498639 A CN 114498639A
- Authority
- CN
- China
- Prior art keywords
- load
- power
- micro
- grid
- moment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004044 response Effects 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000003993 interaction Effects 0.000 claims abstract description 15
- 238000005457 optimization Methods 0.000 claims abstract description 8
- 230000005284 excitation Effects 0.000 claims abstract description 4
- 230000005611 electricity Effects 0.000 claims description 64
- 238000012549 training Methods 0.000 claims description 27
- 239000007789 gas Substances 0.000 claims description 19
- 238000010248 power generation Methods 0.000 claims description 15
- 230000006870 function Effects 0.000 claims description 13
- 230000008901 benefit Effects 0.000 claims description 11
- 238000007599 discharging Methods 0.000 claims description 10
- 238000012546 transfer Methods 0.000 claims description 10
- 230000009194 climbing Effects 0.000 claims description 7
- 238000005315 distribution function Methods 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 6
- 238000012423 maintenance Methods 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000006399 behavior Effects 0.000 claims description 3
- 230000006735 deficit Effects 0.000 claims description 3
- 239000003344 environmental pollutant Substances 0.000 claims description 3
- 238000003912 environmental pollution Methods 0.000 claims description 3
- 239000000446 fuel Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000003345 natural gas Substances 0.000 claims description 3
- 231100000719 pollutant Toxicity 0.000 claims description 3
- 230000001629 suppression Effects 0.000 claims description 3
- 238000005265 energy consumption Methods 0.000 claims description 2
- 238000009499 grossing Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/007—Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
- H02J3/0075—Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source according to economic or energy efficiency considerations, e.g. economic dispatch
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06312—Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06315—Needs-based resource requirements planning or analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/003—Load forecast, e.g. methods or systems for forecasting future load demand
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/004—Generation forecast, e.g. methods or systems for forecasting future energy generation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/14—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
- H02J3/144—Demand-response operation of the power transmission or distribution network
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/388—Islanding, i.e. disconnection of local power supply from the network
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/466—Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/10—Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/50—The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
- H02J2310/56—The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
- H02J2310/58—The condition being electrical
- H02J2310/60—Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/50—The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
- H02J2310/56—The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
- H02J2310/62—The condition being non-electrical, e.g. temperature
- H02J2310/64—The condition being economic, e.g. tariff based load management
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
- Y02B70/3225—Demand response systems, e.g. load shedding, peak shaving
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/222—Demand response systems, e.g. load shedding, peak shaving
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Power Engineering (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Educational Administration (AREA)
- Development Economics (AREA)
- Health & Medical Sciences (AREA)
- Game Theory and Decision Science (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Water Supply & Treatment (AREA)
- Public Health (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
一种考虑需求响应的多微电网联合互济的日前调度方法,包括以下步骤:建立各个微电网的价格型及激励型需求响应模型、光伏功率及负荷功率预测模型;提出以运行成本最小为优化目标的微电网孤岛调度模型,求解得到各个微电网孤岛调度方案;在孤岛调度的基础上,提出以运行成本最小和联络线功率波动最小为优化目标的多微电网电能互济的调度模型,求解得到各个微电网之间的交互功率及各个微电网与主网之间的联络线功率;建立各个微电网可再生能源弃用及失负荷预测模型,提出以运行成本最小和联络线功率波动最小的备用容量调度模型,求解得到各个微电网备用容量调度方案。本设计不仅提高了系统高效性和可靠性,而且降低了系统运行成本。
Description
技术领域
本发明涉及电力系统调度技术领域,尤其涉及一种考虑需求响应的多微电网联合互济的日前调度方法。
背景技术
单微电网在解决电力供需平衡及可再生能源带来的不确定性问题上处理能力有限。多微电网技术的发展为解决以上问题提供了更广阔的思路,多微电网通过自治管理,各微电网之间可能量互济,在提高电网运行的经济性、可靠性及高效性上优势明显。多微电网指两个或两个以上单微电网之间通过公共耦合点互连形成的电网,这种互连可以使多个微电网之间或者与上级电网之间进行功率交互,通过将区域内多个微电网以一定组网形式连接起来后,如果某个微电网出现故障或能量短缺时,可通过与区域内其他微电网进行能量交互来完成能量互济。多微电网已得到了实际应用,如海岛、偏远地区等孤岛型多微电网系统;以及智能园区、商业建筑群、家庭能源局域网等并网型多微电网系统。虽然多微电网优势明显,但由于其结构相对复杂,在模型构建及调度策略等方面仍有不小挑战,从而使得多微电网系统高效性和可靠性较低、运行成本较高。
发明内容
本发明的目的是克服现有技术中存在的高效性和可靠性低、运行成本高的缺陷与问题,提供一种高效性和可靠性高、运行成本低的考虑需求响应的多微电网联合互济的日前调度方法。
为实现以上目的,本发明的技术解决方案是:一种考虑需求响应的多微电网联合互济的日前调度方法,该方法包括以下步骤:
S1、建立各个微电网的价格型需求响应模型、激励型需求响应模型、光伏功率及负荷功率预测模型;
S2、提出以运行成本最小为优化目标的微电网孤岛调度模型,利用CPLEX求解得到各个微电网孤岛调度方案;在孤岛调度的基础上,提出以运行成本最小和联络线功率波动最小为优化目标的多微电网电能互济的调度模型,利用CPLEX求解得到各个微电网之间的交互功率及各个微电网与主网之间的联络线功率;
S3、建立各个微电网可再生能源弃用及失负荷预测模型,提出以运行成本最小和联络线功率波动最小的备用容量调度模型;备用容量调度模型包括高载能负荷调度模型和备用电源调度模型,其中,采用高载能负荷调度可再生能源弃用,采用备用电源调度失负荷,对高载能负荷调度模型和备用电源调度模型进行求解得到各个微电网备用容量调度方案。
步骤S1中,激励型需求响应包括可转移负荷和可削减负荷;
步骤S1中,先根据相空间重构法将光伏功率及负荷功率的一周历史数据转换为高维相空间,再将高维相空间作为极限学习机的训练输入数据,将该训练输入数据后移一个预测时间长度得到训练输出数据,然后将训练输入数据与训练输出数据输入极限学习机进行训练,之后,将训练输出数据后移一个预测时间长度得到测试输入数据,输入测试输入数据得到光伏功率及负荷功率的点预测值;
根据训练输入数据与训练输出数据得到预测误差的累计概率分布函数,再求累计概率分布函数的逆函数,然后根据逆函数以及光伏功率及负荷功率的点预测值计算得到给定置信水平下的区间上下限。
步骤S2中,微电网孤岛调度模型的目标函数为:
式中,为第个微电网内微型燃气轮机运行产生的综合运行成本,为第个微电网内蓄电池出力产生的综合运行成本,为第个微电网系统对该微电网可转移负荷的补贴成本,为第个微电网向用户供电所得售电收益,为第个微电网内多余电量所产生的可再生能源弃用惩罚成本,为第个微电网内缺额电量所产生的失负荷惩罚成本;
步骤S2中,微电网孤岛调度模型的约束条件为:
(1)微型燃气轮机爬坡约束和出力上下限约束
(2)蓄电池荷电状态约束和出力上下限约束
充电及放电时蓄电池的SOC值为:
(3)可转移负荷约束
(4)价格型需求响应约束
价格型需求响应后的负荷值应介于响应前原始负荷的最大值和最小值之间,即:
价格型需求响应前后的负荷总量在一个调度日内保持不变,即:
价格型需求响应需满足用户用电方式满意度和用户电费支出满意度,即:
(5)风光出力约束
(6)功率平衡等式约束
步骤S2中,多微电网电能互济调度模型为:
步骤S2中,多微电网电能互济调度模型的约束条件包括联络线功率容量约束及各个微电网功率平衡等式约束:
步骤S3中,微电网可再生能源弃用及失负荷预测包括以下步骤:
式中,为时刻经过价格型需求响应后的微电网用户负荷,为时刻风电预测值,为时刻光伏发电预测值,为时刻可转移负荷的转入负荷量,为时刻可转移负荷的转出功率,为时刻原始负荷实际值,为时刻原始负荷预测值,为时刻光伏发电实际值,为时刻风电实际值;
(2)通过净负荷预测值与净负荷实际值计算调度后的可再生能源弃用量及失负荷量:当净负荷实际值小于0时,可再生能源弃用量为净负荷实际值的相反数;当净负荷实际值大于0且小于净负荷预测值时,可再生能源弃用量为净负荷实际值和净负荷预测值的差值;当净负荷实际值小于0且净负荷预测值大于0时,失负荷量为净负荷实际值;当净负荷预测值大于0且净负荷实际值大于净负荷预测值时,失负荷量为净负荷实际值和净负荷预测值的差值。
步骤S3中,备用容量调度模型包括高载能负荷调度模型和备用电源调度模型;
备用电源调度模型为:
与现有技术相比,本发明的有益效果为:
本发明一种考虑需求响应的多微电网联合互济的日前调度方法中,考虑价格型需求响应和激励型需求响应,起到了平滑负荷曲线及削峰填谷的作用;同时,通过促进微电网之间能量互济,降低了系统运行成本;对于日前调度方案中可再生能源弃用与失负荷具有较高预测精度,因此,采用备用容量调度可有效减少可再生能源弃用与失负荷,提高系统高效性和可靠性;另外,采用相空间重构技术处理历史光伏功率及负荷功率数据,可减少收集和处理多因素数据的繁琐步骤。
附图说明
图1是本发明一种考虑需求响应的多微电网联合互济的日前调度方法的流程图。
图2是本发明中多微电网系统的结构示意图。
具体实施方式
以下结合附图说明和具体实施方式对本发明作进一步详细的说明。
参见图1、图2,一种考虑需求响应的多微电网联合互济的日前调度方法,该方法包括以下步骤:
S1、建立各个微电网的价格型需求响应模型、激励型需求响应模型、光伏功率及负荷功率预测模型;
激励型需求响应包括可转移负荷和可削减负荷;
先根据相空间重构法将光伏功率及负荷功率的一周历史数据转换为高维相空间,再将高维相空间作为极限学习机的训练输入数据,将该训练输入数据后移一个预测时间长度得到训练输出数据,然后将训练输入数据与训练输出数据输入极限学习机进行训练,之后,将训练输出数据后移一个预测时间长度得到测试输入数据,输入测试输入数据得到光伏功率及负荷功率的点预测值;根据训练输入数据与训练输出数据得到预测误差的累计概率分布函数,再求累计概率分布函数的逆函数,然后根据逆函数以及光伏功率及负荷功率的点预测值计算得到给定置信水平下的区间上下限;
选取互信息法求取延迟时间,选取伪近邻法求取嵌入维数;假设风电功率预测误差服从均值为、标准差为的概率分布;假设光伏功率及负荷功率的点预测值为,预测误差的累计分布函数为,为预测误差,则在置信水平为下的预测区间为:;
采用基于指数平滑法的改进正态分布预测求解风电区间上下限,即:
表1、表2和表3分别为光伏功率、风电功率及用户负荷的点预测结果。
S2、提出以运行成本最小为优化目标的微电网孤岛调度模型,利用CPLEX求解得到各个微电网孤岛调度方案;在孤岛调度的基础上,提出以运行成本最小和联络线功率波动最小为优化目标的多微电网电能互济的调度模型,利用CPLEX求解得到各个微电网之间的交互功率及各个微电网与主网之间的联络线功率;
微电网孤岛调度模型的目标函数为:
式中,为第个微电网内微型燃气轮机运行产生的综合运行成本,为第个微电网内蓄电池出力产生的综合运行成本,为第个微电网系统对该微电网可转移负荷的补贴成本,为第个微电网向用户供电所得售电收益,为第个微电网内多余电量所产生的可再生能源弃用惩罚成本,为第个微电网内缺额电量所产生的失负荷惩罚成本;
对于同个微电网的同一时刻,不会同时产生多余电量和缺额电量,即:
微电网孤岛调度模型的约束条件为:
(1)微型燃气轮机爬坡约束和出力上下限约束
(2)蓄电池荷电状态约束和出力上下限约束
充电及放电时蓄电池的SOC值为:
(3)可转移负荷约束
(4)价格型需求响应约束
价格型需求响应需满足负荷波动率约束,即负荷波动不能超过系统爬坡容量;
价格型需求响应后的负荷值应介于响应前原始负荷的最大值和最小值之间,即:
价格型需求响应前后的负荷总量在一个调度日内保持不变,即:
价格型需求响应需满足用户用电方式满意度和用户电费支出满意度,即:
(5)风光出力约束
(6)功率平衡等式约束
将上述模型分别应用于微电网1、微电网2和微电网3,得到各个微电网孤岛调度方案,即表4、表5和表6。
根据区间预测结果对各个微电网的极端场景进行调度,即风光出力均为区间下限而用户负荷为区间上限的一个极端场景、风光出力均为区间上限而用户负荷为区间下限的另一个极端场景。根据两个极端场景下的可再生能源弃用与失负荷量进行备用容量定容。微电网1的高载能负荷备用为1200kW,备用电源为400kW;微电网2的高载能负荷备用为400kW,备用电源为600kW;微电网3的高载能负荷备用为1000kW,备用电源为300kW。
多微电网电能互济调度模型为:
多微电网电能互济调度模型的约束条件包括联络线功率容量约束及各个微电网功率平衡等式约束:
表7展示了各个微电网与主网之间的联络线功率,表8为微电网之间的交互功率。
S3、建立各个微电网可再生能源弃用及失负荷预测模型,提出以运行成本最小和联络线功率波动最小的备用容量调度模型;备用容量调度模型包括高载能负荷调度模型和备用电源调度模型,其中,采用高载能负荷调度可再生能源弃用,采用柴油机组、可削减负荷和联络线功率作为备用电源调度失负荷,利用混合整数线性规划对高载能负荷调度模型和利用多目标粒子群算法备用电源调度模型进行求解得到各个微电网备用容量调度方案;微电网可再生能源弃用及失负荷预测包括以下步骤:
式中,为时刻经过价格型需求响应后的微电网用户负荷,为时刻风电预测值,为时刻光伏发电预测值,为时刻可转移负荷的转入负荷量,为时刻可转移负荷的转出功率,为时刻原始负荷实际值,为时刻原始负荷预测值,为时刻光伏发电实际值,为时刻风电实际值;
(2)通过净负荷预测值与净负荷实际值计算调度后的可再生能源弃用量及失负荷量:当净负荷实际值小于0时,此时电源侧无需出力,可再生能源弃用量为净负荷实际值的相反数;当净负荷实际值大于0且小于净负荷预测值时,表明微型燃气轮机和储能有出力且出力有余,从减少机组调节次数的角度考虑,此时应减少可再生能源的调度安排值,因此可再生能源弃用量为净负荷实际值和净负荷预测值的差值;微电网为孤岛状态时,当净负荷实际值小于0且净负荷预测值大于0时,失负荷量为净负荷实际值;当净负荷预测值大于0且净负荷实际值大于净负荷预测值时,失负荷量为净负荷实际值和净负荷预测值的差值。此外,还需考虑联络线功率和微电网间交互功率才能得到实际可再生能源弃用量与失负荷量。假设多微电网包含3个微电网,当微电网1与外界交互电量小于0时,表明第二阶段调度方案中微电网1向外界进行售电,当完成售电后的剩余电量即为实际可再生能源弃用量;当联络线功率大于0时,表明第二阶段调度方案中微电网1向外界进行购电,当完成购电后若仍存在失负荷即为实际失负荷量。微电网2和微电网3同理。
表9、表10和表11分别为微电网1、微电网2和微电网3的可再生能源弃用预测、失负荷预测及调度结果。
Claims (10)
1.一种考虑需求响应的多微电网联合互济的日前调度方法,其特征在于,该方法包括以下步骤:
S1、建立各个微电网的价格型需求响应模型、激励型需求响应模型、光伏功率及负荷功率预测模型;
S2、提出以运行成本最小为优化目标的微电网孤岛调度模型,利用CPLEX求解得到各个微电网孤岛调度方案;在孤岛调度的基础上,提出以运行成本最小和联络线功率波动最小为优化目标的多微电网电能互济的调度模型,利用CPLEX求解得到各个微电网之间的交互功率及各个微电网与主网之间的联络线功率;
S3、建立各个微电网可再生能源弃用及失负荷预测模型,提出以运行成本最小和联络线功率波动最小的备用容量调度模型;备用容量调度模型包括高载能负荷调度模型和备用电源调度模型,其中,采用高载能负荷调度可再生能源弃用,采用备用电源调度失负荷,对高载能负荷调度模型和备用电源调度模型进行求解得到各个微电网备用容量调度方案。
4.根据权利要求1所述的一种考虑需求响应的多微电网联合互济的日前调度方法,其特征在于:
步骤S1中,先根据相空间重构法将光伏功率及负荷功率的一周历史数据转换为高维相空间,再将高维相空间作为极限学习机的训练输入数据,将该训练输入数据后移一个预测时间长度得到训练输出数据,然后将训练输入数据与训练输出数据输入极限学习机进行训练,之后,将训练输出数据后移一个预测时间长度得到测试输入数据,输入测试输入数据得到光伏功率及负荷功率的点预测值;
根据训练输入数据与训练输出数据得到预测误差的累计概率分布函数,再求累计概率分布函数的逆函数,然后根据逆函数以及光伏功率及负荷功率的点预测值计算得到给定置信水平下的区间上下限。
5.根据权利要求1所述的一种考虑需求响应的多微电网联合互济的日前调度方法,其特征在于:
步骤S2中,微电网孤岛调度模型的目标函数为:
式中,为第个微电网内微型燃气轮机运行产生的综合运行成本,为第个微电网内蓄电池出力产生的综合运行成本,为第个微电网系统对该微电网可转移负荷的补贴成本,为第个微电网向用户供电所得售电收益,为第个微电网内多余电量所产生的可再生能源弃用惩罚成本,为第个微电网内缺额电量所产生的失负荷惩罚成本;
6.根据权利要求5所述的一种考虑需求响应的多微电网联合互济的日前调度方法,其特征在于:步骤S2中,微电网孤岛调度模型的约束条件为:
(1)微型燃气轮机爬坡约束和出力上下限约束
(2)蓄电池荷电状态约束和出力上下限约束
充电及放电时蓄电池的SOC值为:
蓄电池荷电状态约束为:
蓄电池出力约束为:
(3)可转移负荷约束
(4)价格型需求响应约束
价格型需求响应后的负荷值应介于响应前原始负荷的最大值和最小值之间,即:
价格型需求响应前后的负荷总量在一个调度日内保持不变,即:
价格型需求响应需满足用户用电方式满意度和用户电费支出满意度,即:
(5)风光出力约束
(6)功率平衡等式约束
9.根据权利要求1所述的一种考虑需求响应的多微电网联合互济的日前调度方法,其特征在于:步骤S3中,微电网可再生能源弃用及失负荷预测包括以下步骤:
式中,为时刻经过价格型需求响应后的微电网用户负荷,为时刻风电预测值,为时刻光伏发电预测值,为时刻可转移负荷的转入负荷量,为时刻可转移负荷的转出功率,为时刻原始负荷实际值,为时刻原始负荷预测值,为时刻光伏发电实际值,为时刻风电实际值;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210394121.3A CN114498639B (zh) | 2022-04-15 | 2022-04-15 | 一种考虑需求响应的多微电网联合互济的日前调度方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210394121.3A CN114498639B (zh) | 2022-04-15 | 2022-04-15 | 一种考虑需求响应的多微电网联合互济的日前调度方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114498639A true CN114498639A (zh) | 2022-05-13 |
CN114498639B CN114498639B (zh) | 2022-06-24 |
Family
ID=81489570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210394121.3A Active CN114498639B (zh) | 2022-04-15 | 2022-04-15 | 一种考虑需求响应的多微电网联合互济的日前调度方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114498639B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115021327A (zh) * | 2022-05-19 | 2022-09-06 | 合肥工业大学 | 基于虚拟储能的互联微电网系统的协同日前优化调度方法 |
CN115062985A (zh) * | 2022-06-20 | 2022-09-16 | 国网福建省电力有限公司 | 计及用户舒适度需求侧管理的海上孤岛微电网运行策略 |
CN115907488A (zh) * | 2022-11-11 | 2023-04-04 | 中原工学院 | 考虑用户积极性的新能源微电网多层级车网协同优化方法 |
CN115986850A (zh) * | 2023-03-20 | 2023-04-18 | 国网湖北省电力有限公司经济技术研究院 | 一种考虑多源平衡动态全响应的输配协同优化调度方法 |
CN116187019A (zh) * | 2022-12-30 | 2023-05-30 | 华电电力科学研究院有限公司 | 一种考虑阶梯碳价的含风光储的虚拟电厂经济调度方法 |
CN116433225A (zh) * | 2023-06-12 | 2023-07-14 | 国网湖北省电力有限公司经济技术研究院 | 一种互联微电网多时间尺度故障恢复方法、装置及设备 |
CN117592620A (zh) * | 2024-01-19 | 2024-02-23 | 浙江浙达能源科技有限公司 | 一种面向水泥企业的生产计划优化方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107392395A (zh) * | 2017-08-23 | 2017-11-24 | 天津大学 | 一种基于价格激励机制的配电网和微电网协调优化方法 |
CN107958300A (zh) * | 2017-08-21 | 2018-04-24 | 浙江工业大学 | 一种考虑互动响应的多微网互联运行协调调度优化方法 |
CN112308386A (zh) * | 2020-10-19 | 2021-02-02 | 武汉理工大学 | 一种价格与激励需求响应下电动汽车负荷聚集商调度方法 |
CN112383086A (zh) * | 2020-10-22 | 2021-02-19 | 广东电网有限责任公司 | 一种孤岛微电网日前能量-备用联合优化调度方法 |
CN112865174A (zh) * | 2021-01-07 | 2021-05-28 | 福州大学 | 基于双层模型预测控制的微能网多时间尺度优化控制方法 |
CN113471976A (zh) * | 2021-07-14 | 2021-10-01 | 国网江苏省电力有限公司营销服务中心 | 基于多能互补微电网与主动配电网的优化调度方法 |
-
2022
- 2022-04-15 CN CN202210394121.3A patent/CN114498639B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107958300A (zh) * | 2017-08-21 | 2018-04-24 | 浙江工业大学 | 一种考虑互动响应的多微网互联运行协调调度优化方法 |
CN107392395A (zh) * | 2017-08-23 | 2017-11-24 | 天津大学 | 一种基于价格激励机制的配电网和微电网协调优化方法 |
CN112308386A (zh) * | 2020-10-19 | 2021-02-02 | 武汉理工大学 | 一种价格与激励需求响应下电动汽车负荷聚集商调度方法 |
CN112383086A (zh) * | 2020-10-22 | 2021-02-19 | 广东电网有限责任公司 | 一种孤岛微电网日前能量-备用联合优化调度方法 |
CN112865174A (zh) * | 2021-01-07 | 2021-05-28 | 福州大学 | 基于双层模型预测控制的微能网多时间尺度优化控制方法 |
CN113471976A (zh) * | 2021-07-14 | 2021-10-01 | 国网江苏省电力有限公司营销服务中心 | 基于多能互补微电网与主动配电网的优化调度方法 |
Non-Patent Citations (2)
Title |
---|
ZHANG XIAOBO: "Microgrid optimal operation considering virtual reserve capacity trading of storage battery", 《2016 IEEE 16TH INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING (EEEIC)》 * |
王尧: "微能源网多能协同优化运行及效益评价模型研究", 《工程科技Ⅱ辑》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115021327A (zh) * | 2022-05-19 | 2022-09-06 | 合肥工业大学 | 基于虚拟储能的互联微电网系统的协同日前优化调度方法 |
CN115021327B (zh) * | 2022-05-19 | 2024-03-01 | 合肥工业大学 | 基于虚拟储能的互联微电网系统的协同日前优化调度方法 |
CN115062985A (zh) * | 2022-06-20 | 2022-09-16 | 国网福建省电力有限公司 | 计及用户舒适度需求侧管理的海上孤岛微电网运行策略 |
CN115907488A (zh) * | 2022-11-11 | 2023-04-04 | 中原工学院 | 考虑用户积极性的新能源微电网多层级车网协同优化方法 |
CN115907488B (zh) * | 2022-11-11 | 2023-07-28 | 中原工学院 | 考虑用户积极性的新能源微电网多层级车网协同优化方法 |
CN116187019A (zh) * | 2022-12-30 | 2023-05-30 | 华电电力科学研究院有限公司 | 一种考虑阶梯碳价的含风光储的虚拟电厂经济调度方法 |
CN115986850A (zh) * | 2023-03-20 | 2023-04-18 | 国网湖北省电力有限公司经济技术研究院 | 一种考虑多源平衡动态全响应的输配协同优化调度方法 |
CN116433225A (zh) * | 2023-06-12 | 2023-07-14 | 国网湖北省电力有限公司经济技术研究院 | 一种互联微电网多时间尺度故障恢复方法、装置及设备 |
CN116433225B (zh) * | 2023-06-12 | 2023-08-29 | 国网湖北省电力有限公司经济技术研究院 | 一种互联微电网多时间尺度故障恢复方法、装置及设备 |
CN117592620A (zh) * | 2024-01-19 | 2024-02-23 | 浙江浙达能源科技有限公司 | 一种面向水泥企业的生产计划优化方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114498639B (zh) | 2022-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114498639B (zh) | 一种考虑需求响应的多微电网联合互济的日前调度方法 | |
Madaeni et al. | How thermal energy storage enhances the economic viability of concentrating solar power | |
CN110188950A (zh) | 基于多代理技术的虚拟电厂供电侧和需求侧优化调度建模方法 | |
CN107958300A (zh) | 一种考虑互动响应的多微网互联运行协调调度优化方法 | |
CN113988444A (zh) | 一种光储系统的电费优化控制系统及方法 | |
CN115271467A (zh) | 考虑电碳协同优化的虚拟电厂调度优化方法及应用 | |
Khan et al. | Optimal energy scheduling strategy for multi-energy generation grid using multi-agent systems | |
Khoshjahan et al. | Optimal participation of PEV charging stations integrated with smart buildings in the wholesale energy and reserve markets | |
Zakariazadeh et al. | Smart microgrid operational planning considering multiple demand response programs | |
CN111612248A (zh) | 一种配电网侧源-荷协调方法及系统 | |
KR20210094033A (ko) | 에너지 관리 시스템을 동작시키기 위한 방법, 그 방법을 수행하기 위한 전자 컴퓨팅 디바이스, 컴퓨터 프로그램, 및 데이터 캐리어 | |
CN116707016A (zh) | 基于场景生成和削减的风光氢储日前随机优化调度方法 | |
CN114498769B (zh) | 一种高比例风光孤岛微电网群能量调度方法及系统 | |
Rizvi et al. | Optimal scheduling of virtual power plants utilizing wind power and electric vehicles | |
CN112531785B (zh) | 多时间尺度下光热-储热的主动配电网主辅联合调度方法 | |
Trinh et al. | Optimal pev charging and discharging algorithms to reduce operational cost of microgrid using adaptive rolling horizon framework | |
Zhang et al. | Resilient energy management for residential communities under grid outages | |
CN110445173B (zh) | 一种基于多代理的分层多微网能量管理系统及调度方法 | |
CN110070210B (zh) | 一种多微电网系统能量管理与贡献度评估方法和系统 | |
Jin et al. | Review of virtual power plant applications for power system management and vehicle-to-grid market development | |
Yu et al. | Transactive control of a residential community with solar photovoltaic and battery storage systems | |
CN115986812A (zh) | 一种考虑储能和需求响应的微电网经济规划方法及装置 | |
Elkazaz et al. | A hierarchical centralized community energy management system using a model predictive controller | |
CN112736950B (zh) | 一种面向微电网群的公共储能电站配置方法及系统 | |
Qian et al. | Low carbon optimization dispatching of energy intensive industrial park based on adaptive stepped demand response incentive mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |