CN114498769B - 一种高比例风光孤岛微电网群能量调度方法及系统 - Google Patents

一种高比例风光孤岛微电网群能量调度方法及系统 Download PDF

Info

Publication number
CN114498769B
CN114498769B CN202210357185.6A CN202210357185A CN114498769B CN 114498769 B CN114498769 B CN 114498769B CN 202210357185 A CN202210357185 A CN 202210357185A CN 114498769 B CN114498769 B CN 114498769B
Authority
CN
China
Prior art keywords
microgrid
power
electricity
load
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210357185.6A
Other languages
English (en)
Other versions
CN114498769A (zh
Inventor
桑子夏
方仍存
雷何
杨东俊
詹智红
汪颖翔
颜炯
黄家祺
郑旭
王琪鑫
王娅镭
侯婷婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd
Original Assignee
Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd filed Critical Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd
Priority to CN202210357185.6A priority Critical patent/CN114498769B/zh
Publication of CN114498769A publication Critical patent/CN114498769A/zh
Application granted granted Critical
Publication of CN114498769B publication Critical patent/CN114498769B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0075Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source according to economic or energy efficiency considerations, e.g. economic dispatch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Power Engineering (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种高比例风光孤岛微电网群能量调度方法,包括以下步骤:预测未来时段微电网的发电功率、负荷功率以及获取储能装置的荷电状态;微电网群采用主从博弈方法,微电网群能量管理中心以自身收益最大化为目标制定购电和售电价格,微电网根据购电和售电价格以自身收益最大化为目标制定负荷转移量和充放电功率,并更新购电量或售电量,博弈至获得最佳交易计划;微电网群能量管理中心通过储能装置与需求响应机制进行能量调度以平衡购电量和售电量的差额;微电网群能量管理中心计算微电网群下一时段的电能供需状态,若难以维持电能供需平衡,则采用备用电源或并网运行。本设计不仅降低了发电成本,而且提高了微电网群运行稳定性与微电网运营收益。

Description

一种高比例风光孤岛微电网群能量调度方法及系统
技术领域
本发明涉及孤岛微电网调度领域,尤其涉及一种高比例风光孤岛微电网群能量调度方法及系统。
背景技术
分布式发电是21世纪电力行业发展的重要方向。微电网作为一种灵活且环保的发配电系统和高效的能量管理单元,在电能互联网中起到了联系传统火力发电和可再生能源发电的重要作用。微网群则是多个微网互联组成的群落系统,通过群内子微网及分布式电源之间的能量调度和互济,来增强彼此间的供电可靠性,进一步提高分布式电源的渗透率。微网群概念的提出不但增强了孤岛运行情况下微电网运行的可靠性,而且能够实现微电网与分布式发电系统之间的能量互济。
当今应用较为广泛的微电网群是以风力发电机、光伏电池及储能装置作为核心装置的风光储微网群,各机构和学者对此进行了大量的研究,也取得了丰硕的成果,但目前的研究主要集中在并网微网群方面,利用大电网稳定电压与频率的支撑来稳定电网运行。而风光能源发电具有很强的随机性与波动性,若不施以严格的能量调度策略很难在没有大电网支持的情况下稳定供电。
因此,对于不与大电网相连的孤岛微电网和微电网群,通常需要一定比例的传统能源发电装置来保证微电网的供电可靠性。但这种做法一方面限制了新能源发电比例的提升,带来了环境污染,不符合碳达峰、碳中和目标,且新增的柴油机、燃气轮机等装置将根据风光能源输出功率进行间歇性工作,无法达到最大发电效率,大幅增加了建设和运行成本。另一方面,微电网网间功率传输由于没有主网电价作为定价基准,且要求各子微网的总购电量及售电量必须平衡,故通常不采用自由市场交易的方式进行能量交换,无法发挥微电网作为分布式发电集合的自由决策能力。
发明内容
本发明的目的是克服现有技术中存在的发电成本高、微电网群运行稳定性差、微电网运营收益差的缺陷与问题,提供一种发电成本低、微电网群运行稳定性好、微电网运营收益好的高比例风光孤岛微电网群能量调度方法及系统。
为实现以上目的,本发明的技术解决方案是:一种高比例风光孤岛微电网群能量调度方法,该方法包括以下步骤:
S1、预测未来时段微电网的发电功率、负荷功率以及获取储能装置的荷电状态;
S2、微电网群采用主从博弈方法,每轮博弈中,微电网群能量管理中心以自身收益最大化为目标制定购电和售电价格,微电网根据购电和售电价格以自身收益最大化为目标制定负荷转移量和充放电功率,并更新购电量或售电量,博弈至获得最佳交易计划;
S3、实施交易计划,微电网群能量管理中心通过储能装置与需求响应机制进行能量调度以平衡购电量和售电量的差额;
S4、微电网群能量管理中心计算微电网群下一时段的电能供需状态,若微电网群整体电能缺额或余额较高,且依靠储能装置与需求响应机制难以维持电能供需平衡,则采用备用电源或并网运行。
步骤S1中,微电网的发电功率、负荷功率的预测包括以下步骤:
A、采用Min-Max标准化方式对微电网的发电功率、负荷功率的历史数据进行处理;
B、建立LSTM预测模型;
C、采用均方差损失函数对LSTM预测模型进行训练;
D、将处理后的历史数据输入训练后的LSTM预测模型,对未来时段微电网的发电功率、负荷功率进行预测。
步骤S2中,微电网群能量管理中心的收益模型为:
Figure 953320DEST_PATH_IMAGE001
式中,
Figure 8476DEST_PATH_IMAGE002
Figure 460317DEST_PATH_IMAGE003
时段微电网群能量管理中心的收益,
Figure 121105DEST_PATH_IMAGE004
Figure 404319DEST_PATH_IMAGE003
时段购电电价,
Figure 695623DEST_PATH_IMAGE005
Figure 431498DEST_PATH_IMAGE003
时段售出电量,
Figure 833661DEST_PATH_IMAGE006
Figure 971381DEST_PATH_IMAGE003
时段售电电价,
Figure 230324DEST_PATH_IMAGE007
Figure 453495DEST_PATH_IMAGE003
时段购入电量,
Figure 659348DEST_PATH_IMAGE008
为储能装置 的充放电成本系数,
Figure 651575DEST_PATH_IMAGE009
为储能装置的充放电效率;
Figure 550261DEST_PATH_IMAGE010
为偏离储能装置初 始荷电状态
Figure 463990DEST_PATH_IMAGE011
产生的成本,
Figure 4693DEST_PATH_IMAGE012
为储能装置
Figure 117006DEST_PATH_IMAGE003
时段荷电状态,
Figure 655434DEST_PATH_IMAGE013
为常数;
Figure 867846DEST_PATH_IMAGE014
为微电网
Figure 212240DEST_PATH_IMAGE015
Figure 179058DEST_PATH_IMAGE003
时段的发电量,
Figure 153968DEST_PATH_IMAGE016
为微电网
Figure 573448DEST_PATH_IMAGE015
的负荷在
Figure 721532DEST_PATH_IMAGE003
时段的用电 量;
Figure 542858DEST_PATH_IMAGE017
时,微电网处于售电模式,其收益模型为:
Figure 954248DEST_PATH_IMAGE018
Figure 861024DEST_PATH_IMAGE019
Figure 750482DEST_PATH_IMAGE020
时,微电网处于购电模式,其收益模型为:
Figure 691894DEST_PATH_IMAGE021
Figure 8605DEST_PATH_IMAGE022
Figure 402678DEST_PATH_IMAGE023
式中,
Figure 95827DEST_PATH_IMAGE024
为微电网
Figure 626166DEST_PATH_IMAGE015
Figure 176096DEST_PATH_IMAGE003
时段的收益,
Figure 57464DEST_PATH_IMAGE025
Figure 554304DEST_PATH_IMAGE003
时段售电电价,
Figure 670640DEST_PATH_IMAGE026
Figure 63576DEST_PATH_IMAGE003
时段 购电电价,
Figure 432240DEST_PATH_IMAGE027
为微电网
Figure 467192DEST_PATH_IMAGE015
Figure 34440DEST_PATH_IMAGE003
时段内的用电满意度系数,
Figure 863855DEST_PATH_IMAGE028
为微电网
Figure 454237DEST_PATH_IMAGE015
Figure 292880DEST_PATH_IMAGE003
时段的转移 负荷量,
Figure 449055DEST_PATH_IMAGE029
为转移电量成本系数,
Figure 714951DEST_PATH_IMAGE030
为时间间隔,
Figure 527049DEST_PATH_IMAGE031
为微电网
Figure 169383DEST_PATH_IMAGE015
的储能设备在
Figure 648906DEST_PATH_IMAGE003
时段的 充电功率,
Figure 85703DEST_PATH_IMAGE032
为微电网
Figure 650677DEST_PATH_IMAGE015
的储能设备在
Figure 831123DEST_PATH_IMAGE003
时段的放电功率,
Figure 165152DEST_PATH_IMAGE033
Figure 772851DEST_PATH_IMAGE003
时段用户需求电 量,
Figure 828050DEST_PATH_IMAGE034
Figure 343345DEST_PATH_IMAGE035
为用户满意度影响力的相关系数。
步骤S3中,当售电量大于购电量时,储能装置存储多余的电量;当购电量大于售电量时,储能装置出售存储的电量,即:
Figure 797460DEST_PATH_IMAGE036
式中,
Figure 310481DEST_PATH_IMAGE037
为微电网
Figure 850047DEST_PATH_IMAGE015
Figure 169033DEST_PATH_IMAGE038
时段的充电功率,
Figure 477654DEST_PATH_IMAGE039
为微电网
Figure 161577DEST_PATH_IMAGE040
Figure 922859DEST_PATH_IMAGE038
时段的放电 功率,
Figure 45536DEST_PATH_IMAGE041
Figure 208664DEST_PATH_IMAGE038
时段储能装置的充电功率,
Figure 329067DEST_PATH_IMAGE042
Figure 577646DEST_PATH_IMAGE038
时段储能装置的放电功率。
步骤S3中,微电网购售电及储能装置荷电状态需满足以下条件:
Figure 441696DEST_PATH_IMAGE043
Figure 459331DEST_PATH_IMAGE044
Figure 281793DEST_PATH_IMAGE045
式中,
Figure 17668DEST_PATH_IMAGE046
为充电功率的最小值,
Figure 888672DEST_PATH_IMAGE047
为充电功率的最大值,
Figure 23463DEST_PATH_IMAGE048
为放电功 率的最小值,
Figure 954510DEST_PATH_IMAGE049
为放电功率的最大值,
Figure 974418DEST_PATH_IMAGE050
为储能装置荷电状态的最小值,
Figure 180272DEST_PATH_IMAGE051
为储能装置荷电状态的最大值,
Figure 906919DEST_PATH_IMAGE052
为储能装置
Figure 805605DEST_PATH_IMAGE038
时段荷电状态,
Figure 250493DEST_PATH_IMAGE053
为 时段末储能装置荷电状态,
Figure 56775DEST_PATH_IMAGE054
为时段末储能装置荷电状态的最小值,
Figure 169088DEST_PATH_IMAGE055
为 时段末储能装置荷电状态的最大值,
Figure 707516DEST_PATH_IMAGE056
为时间间隔,
Figure 905279DEST_PATH_IMAGE057
为充放电转换效率。
步骤S3中,所述需求响应机制包括分时电价机制、直接负荷控制机制与需求侧竞价机制;
所述分时电价机制是指将每天负荷需求划分为峰时段负荷、谷时段负荷和平时段负荷,并制定相应的电价;
所述直接负荷控制机制是指用户负荷接受微电网群能量管理中心直接控制;
所述需求侧竞价机制是指用户改变用电方式主动参与市场竞争并由此获得相应的经济补偿。
采用分时电价机制或需求侧竞价机制对微电网群中工商业负荷进行调度,采用直接负荷控制机制对微电网群中居民负荷进行调度。
实行分时电价机制后用户在
Figure 249673DEST_PATH_IMAGE058
时段的需求价格弹性模型为:
Figure 216492DEST_PATH_IMAGE059
式中,
Figure 191401DEST_PATH_IMAGE060
为实行分时电价后
Figure 610881DEST_PATH_IMAGE038
时段用户响应的电量,
Figure 962228DEST_PATH_IMAGE061
Figure 580291DEST_PATH_IMAGE038
时段用户响 应的原始电量,
Figure 991681DEST_PATH_IMAGE062
Figure 898457DEST_PATH_IMAGE038
时段电价,
Figure 513548DEST_PATH_IMAGE063
Figure 454959DEST_PATH_IMAGE038
时段原始电价,
Figure 568408DEST_PATH_IMAGE064
Figure 962481DEST_PATH_IMAGE065
时段用户响应的电价,
Figure 390051DEST_PATH_IMAGE066
Figure 185969DEST_PATH_IMAGE065
时段用户响应的原始电价,
Figure 735899DEST_PATH_IMAGE067
为电量电价自弹性系数,
Figure 617267DEST_PATH_IMAGE068
为电量电价交 叉弹性系数,
Figure 582949DEST_PATH_IMAGE069
Figure 233373DEST_PATH_IMAGE038
时段用户响应电价变化大小,
Figure 954204DEST_PATH_IMAGE070
Figure 322869DEST_PATH_IMAGE038
时段用户响应电量变化大 小,
Figure 92242DEST_PATH_IMAGE071
Figure 597172DEST_PATH_IMAGE038
时段用户响应原始电量,
Figure 488905DEST_PATH_IMAGE072
Figure 344866DEST_PATH_IMAGE065
时段用户响应电价变化大小。
直接负荷控制机制和需求侧竞价机制对负荷转移的数学模型为:
Figure 917929DEST_PATH_IMAGE073
Figure 277367DEST_PATH_IMAGE074
式中,
Figure 543263DEST_PATH_IMAGE075
Figure 417678DEST_PATH_IMAGE038
时段转入负荷,
Figure 60012DEST_PATH_IMAGE076
Figure 271026DEST_PATH_IMAGE038
时段转出负荷,
Figure 707823DEST_PATH_IMAGE077
为可转移负荷种 类数目,
Figure 69535DEST_PATH_IMAGE078
为运行持续时间大于一个调度时段的可转移负荷种类数,
Figure 984401DEST_PATH_IMAGE079
为可转移负荷 单元最大供电持续时间,
Figure 318430DEST_PATH_IMAGE080
Figure 926129DEST_PATH_IMAGE038
时段开始运行的
Figure 978399DEST_PATH_IMAGE081
类负荷转入单元数,
Figure 493694DEST_PATH_IMAGE082
Figure 947809DEST_PATH_IMAGE038
时段开 始运行的
Figure 460830DEST_PATH_IMAGE081
类负荷转出单元数,
Figure 265975DEST_PATH_IMAGE083
为第
Figure 788223DEST_PATH_IMAGE081
类可转移负荷在第
Figure 96845DEST_PATH_IMAGE084
个工作时段的功率,
Figure 249608DEST_PATH_IMAGE085
为第
Figure 10891DEST_PATH_IMAGE081
类可转移负荷在第
Figure 336830DEST_PATH_IMAGE086
个工作时段的功率。
一种高比例风光孤岛微电网群能量调度系统,该系统包括多个微电网、储能装置与微电网群能量管理中心,所述微电网群能量管理中心分别与多个微电网、储能装置连接,储能装置分别与多个微电网连接,所述微电网包括风力发电机、光伏电池、蓄电池、交流负荷与直流负荷,所述交流负荷包括可控交流负荷与不可控交流负荷,所述直流负荷包括可控直流负荷与不可控直流负荷,所述风力发电机、可控交流负荷、不可控交流负荷都通过AC/DC/AC变换器并联接入交流母线,所述光伏电池、蓄电池、可控直流负荷、不可控直流负荷都依次通过DC/DC变换器、AC/DC变换器后并联接入交流母线。
与现有技术相比,本发明的有益效果为:
本发明一种高比例风光孤岛微电网群能量调度方法及系统中,采用网间主从博弈加网内储能装置与需求响应协调运行的方式,实现微电网群在高比例风光能源发电的条件下协调运行;该方法首先可以提高可再生能源的供电比例,减小发电产生的碳排放量,并且解决了传统能源发电带来的成本增加问题;其次,微电网间的能量互补提高了微电网群的运行稳定性,更好地维持微电网群能量供需平衡;最后,提出基于主从博弈的微电网电能交易方法,提高了微电网运营收益。
附图说明
图1是本发明一种高比例风光孤岛微电网群能量调度方法的流程图。
图2是本发明一种高比例风光孤岛微电网群能量调度系统的结构示意图。
图3是本发明中微电网的结构示意图。
具体实施方式
以下结合附图说明和具体实施方式对本发明作进一步详细的说明。
参见图1至图3,一种高比例风光孤岛微电网群能量调度方法,该方法包括以下步骤:
S1、预测未来时段微电网的发电功率、负荷功率以及获取储能装置的荷电状态;
S2、微电网群采用主从博弈方法,每轮博弈中,微电网群能量管理中心以自身收益最大化为目标制定购电和售电价格,微电网根据购电和售电价格以自身收益最大化为目标制定负荷转移量和充放电功率,并更新购电量或售电量,博弈至获得最佳交易计划;
S3、实施交易计划,微电网群能量管理中心通过储能装置与需求响应机制进行能量调度以平衡购电量和售电量的差额;
S4、微电网群能量管理中心计算微电网群下一时段的电能供需状态,若微电网群整体电能缺额或余额较高,且依靠储能装置与需求响应机制难以维持电能供需平衡,则采用备用电源或并网运行。
步骤S1中,微电网的发电功率、负荷功率的预测包括以下步骤:
A、采用Min-Max标准化方式对微电网的发电功率、负荷功率的历史数据进行处理;
B、建立LSTM预测模型;
C、采用均方差损失函数对LSTM预测模型进行训练;
D、将处理后的历史数据输入训练后的LSTM预测模型,对未来时段微电网的发电功率、负荷功率进行预测。
步骤S2中,微电网群能量管理中心的收益模型为:
Figure 296696DEST_PATH_IMAGE001
式中,
Figure 417099DEST_PATH_IMAGE002
Figure 668607DEST_PATH_IMAGE003
时段微电网群能量管理中心的收益,
Figure 532658DEST_PATH_IMAGE004
Figure 347030DEST_PATH_IMAGE003
时段购电电价,
Figure 903913DEST_PATH_IMAGE005
Figure 374209DEST_PATH_IMAGE003
时段售出电量,
Figure 776371DEST_PATH_IMAGE006
Figure 710829DEST_PATH_IMAGE003
时段售电电价,
Figure 438614DEST_PATH_IMAGE007
Figure 130626DEST_PATH_IMAGE003
时段购入电量,
Figure 602059DEST_PATH_IMAGE008
为储能装置 的充放电成本系数,
Figure 391024DEST_PATH_IMAGE009
为储能装置的充放电效率;
Figure 24130DEST_PATH_IMAGE010
为偏离储能装置初 始荷电状态
Figure 469018DEST_PATH_IMAGE011
产生的成本,
Figure 478562DEST_PATH_IMAGE012
为储能装置
Figure 122033DEST_PATH_IMAGE003
时段荷电状态,
Figure 191620DEST_PATH_IMAGE013
为常数;
Figure 858225DEST_PATH_IMAGE014
为微电网
Figure 671460DEST_PATH_IMAGE015
Figure 435017DEST_PATH_IMAGE003
时段的发电量,
Figure 409926DEST_PATH_IMAGE016
为微电网
Figure 94986DEST_PATH_IMAGE015
的负荷在
Figure 115507DEST_PATH_IMAGE003
时段的用电 量;
Figure 202411DEST_PATH_IMAGE087
时,微电网处于售电模式,其收益模型为:
Figure 82643DEST_PATH_IMAGE018
Figure 989419DEST_PATH_IMAGE088
Figure 144457DEST_PATH_IMAGE020
时,微电网处于购电模式,其收益模型为:
Figure 617026DEST_PATH_IMAGE021
Figure 199317DEST_PATH_IMAGE089
Figure 327810DEST_PATH_IMAGE023
式中,
Figure 20960DEST_PATH_IMAGE024
为微电网
Figure 613615DEST_PATH_IMAGE015
Figure 101228DEST_PATH_IMAGE003
时段的收益,
Figure 717017DEST_PATH_IMAGE025
Figure 213858DEST_PATH_IMAGE003
时段售电电价,
Figure 661020DEST_PATH_IMAGE026
Figure 585113DEST_PATH_IMAGE003
时段 购电电价,
Figure 688199DEST_PATH_IMAGE027
为微电网
Figure 723151DEST_PATH_IMAGE015
Figure 24819DEST_PATH_IMAGE003
时段内的用电满意度系数,
Figure 134462DEST_PATH_IMAGE028
为微电网
Figure 459265DEST_PATH_IMAGE015
Figure 297908DEST_PATH_IMAGE003
时段的转移 负荷量,
Figure 922924DEST_PATH_IMAGE029
为转移电量成本系数,
Figure 985558DEST_PATH_IMAGE030
为时间间隔,
Figure 797656DEST_PATH_IMAGE031
为微电网
Figure 174411DEST_PATH_IMAGE015
的储能设备在
Figure 653934DEST_PATH_IMAGE003
时段的 充电功率,
Figure 887469DEST_PATH_IMAGE032
为微电网
Figure 452442DEST_PATH_IMAGE015
的储能设备在
Figure 367309DEST_PATH_IMAGE003
时段的放电功率,
Figure 966917DEST_PATH_IMAGE090
Figure 574616DEST_PATH_IMAGE003
时段用户需求电 量,
Figure 158044DEST_PATH_IMAGE091
Figure 142181DEST_PATH_IMAGE035
为用户满意度影响力的相关系数。
步骤S3中,当售电量大于购电量时,储能装置存储多余的电量;当购电量大于售电量时,储能装置出售存储的电量,即:
Figure 330717DEST_PATH_IMAGE036
式中,
Figure 109317DEST_PATH_IMAGE037
为微电网
Figure 180041DEST_PATH_IMAGE015
Figure 702289DEST_PATH_IMAGE058
时段的充电功率,
Figure 745332DEST_PATH_IMAGE039
为微电网
Figure 691903DEST_PATH_IMAGE040
Figure 718765DEST_PATH_IMAGE058
时段的放电 功率,
Figure 575863DEST_PATH_IMAGE041
Figure 4570DEST_PATH_IMAGE058
时段储能装置的充电功率,
Figure 124973DEST_PATH_IMAGE042
Figure 107972DEST_PATH_IMAGE058
时段储能装置的放电功率。
步骤S3中,微电网购售电及储能装置荷电状态需满足以下条件:
Figure 972023DEST_PATH_IMAGE092
Figure 51975DEST_PATH_IMAGE093
Figure 343279DEST_PATH_IMAGE045
式中,
Figure 813574DEST_PATH_IMAGE046
为充电功率的最小值,
Figure 481316DEST_PATH_IMAGE047
为充电功率的最大值,
Figure 619036DEST_PATH_IMAGE048
为放电功 率的最小值,
Figure 877979DEST_PATH_IMAGE049
为放电功率的最大值,
Figure 101150DEST_PATH_IMAGE050
为储能装置荷电状态的最小值,
Figure 307004DEST_PATH_IMAGE051
为储能装置荷电状态的最大值,
Figure 299231DEST_PATH_IMAGE052
为储能装置
Figure 729075DEST_PATH_IMAGE038
时段荷电状态,
Figure 439542DEST_PATH_IMAGE053
为 时段末储能装置荷电状态,
Figure 183507DEST_PATH_IMAGE054
为时段末储能装置荷电状态的最小值,
Figure 30240DEST_PATH_IMAGE055
为 时段末储能装置荷电状态的最大值,
Figure 102757DEST_PATH_IMAGE056
为时间间隔,
Figure 34941DEST_PATH_IMAGE057
为充放电转换效率。
步骤S3中,所述需求响应机制包括分时电价机制、直接负荷控制机制与需求侧竞价机制;
所述分时电价机制是指将每天负荷需求划分为峰时段负荷、谷时段负荷和平时段负荷,并制定相应的电价;
所述直接负荷控制机制是指用户负荷接受微电网群能量管理中心直接控制;
所述需求侧竞价机制是指用户改变用电方式主动参与市场竞争并由此获得相应的经济补偿。
采用分时电价机制或需求侧竞价机制对微电网群中工商业负荷进行调度,采用直接负荷控制机制对微电网群中居民负荷进行调度。
实行分时电价机制后用户在
Figure 848176DEST_PATH_IMAGE038
时段的需求价格弹性模型为:
Figure 346154DEST_PATH_IMAGE059
式中,
Figure 586642DEST_PATH_IMAGE060
为实行分时电价后
Figure 740543DEST_PATH_IMAGE038
时段用户响应的电量,
Figure 91890DEST_PATH_IMAGE061
Figure 913215DEST_PATH_IMAGE038
时段用户响 应的原始电量,
Figure 121343DEST_PATH_IMAGE062
Figure 28119DEST_PATH_IMAGE038
时段电价,
Figure 917578DEST_PATH_IMAGE063
Figure 593409DEST_PATH_IMAGE038
时段原始电价,
Figure 175701DEST_PATH_IMAGE064
Figure 366510DEST_PATH_IMAGE065
时段用户响应的电价,
Figure 59660DEST_PATH_IMAGE066
Figure 589998DEST_PATH_IMAGE065
时段用户响应的原始电价,
Figure 77612DEST_PATH_IMAGE067
为电量电价自弹性系数,
Figure 755718DEST_PATH_IMAGE068
为电量电价交 叉弹性系数,
Figure 252558DEST_PATH_IMAGE069
Figure 637403DEST_PATH_IMAGE038
时段用户响应电价变化大小,
Figure 824146DEST_PATH_IMAGE070
Figure 661652DEST_PATH_IMAGE038
时段用户响应电量变化大 小,
Figure 696604DEST_PATH_IMAGE071
Figure 263852DEST_PATH_IMAGE038
时段用户响应原始电量,
Figure 358847DEST_PATH_IMAGE072
Figure 683649DEST_PATH_IMAGE065
时段用户响应电价变化大小。
直接负荷控制机制和需求侧竞价机制对负荷转移的数学模型为:
Figure 522292DEST_PATH_IMAGE073
Figure 147308DEST_PATH_IMAGE094
式中,
Figure 209942DEST_PATH_IMAGE075
Figure 287620DEST_PATH_IMAGE038
时段转入负荷,
Figure 398795DEST_PATH_IMAGE076
Figure 878318DEST_PATH_IMAGE038
时段转出负荷,
Figure 111853DEST_PATH_IMAGE077
为可转移负荷种 类数目,
Figure 676827DEST_PATH_IMAGE078
为运行持续时间大于一个调度时段的可转移负荷种类数,
Figure 857272DEST_PATH_IMAGE079
为可转移负荷 单元最大供电持续时间,
Figure 925723DEST_PATH_IMAGE095
Figure 533421DEST_PATH_IMAGE038
时段开始运行的
Figure 382429DEST_PATH_IMAGE096
类负荷转入单元数,
Figure 366565DEST_PATH_IMAGE082
Figure 289522DEST_PATH_IMAGE038
时段开 始运行的
Figure 59333DEST_PATH_IMAGE096
类负荷转出单元数,
Figure 598899DEST_PATH_IMAGE083
为第
Figure 121147DEST_PATH_IMAGE096
类可转移负荷在第
Figure 226506DEST_PATH_IMAGE097
个工作时段的功率,
Figure 176008DEST_PATH_IMAGE085
为第
Figure 937290DEST_PATH_IMAGE096
类可转移负荷在第
Figure 997650DEST_PATH_IMAGE098
个工作时段的功率。
一种高比例风光孤岛微电网群能量调度系统,该系统包括多个微电网、储能装置与微电网群能量管理中心,所述微电网群能量管理中心分别与多个微电网、储能装置连接,储能装置分别与多个微电网连接,所述微电网包括风力发电机、光伏电池、蓄电池、交流负荷与直流负荷,所述交流负荷包括可控交流负荷与不可控交流负荷,所述直流负荷包括可控直流负荷与不可控直流负荷,所述风力发电机、可控交流负荷、不可控交流负荷都通过AC/DC/AC变换器并联接入交流母线,所述光伏电池、蓄电池、可控直流负荷、不可控直流负荷都依次通过DC/DC变换器、AC/DC变换器后并联接入交流母线。
本发明的原理说明如下:
本设计所涉及的微电网群基本结构主要包含高比例负荷型微电网、高比例电源型微电网和自平衡型微电网。所述高比例电源微电网即建立在可再生资源丰富的地区的微电网,这类微电网可吸收大量的风力和光伏资源,具有较高发电量,一般在供给区域内负荷消耗后有剩余功率;所述高比例负荷型微电网即所处区域内有高耗电量设施且风光资源发电无法支持这类设施的长时间运转,一般需要外部发电装置通过联络线向微电网负荷供电。所述高比例风光能源供电指微网群的所有电能都是从风光能源转化而来,尽量不使用柴油发电机、燃气轮机等任何传统发电设施。所述自平衡型微电网指供电量和耗电量相对平衡,通常可以在网内调节下实现供需平衡。
所述工业负荷是指微电网群区域内工业设施所消耗的电力,这类负荷具有能耗大、易转移的特点;所述商业负荷是指区域内商业设施的电能消耗,这类负荷主要包括照明、空调等,相对而言不易转移或中断,但可以通过激励机制调整用电量;所述居民负荷是指区域内居民生活中涉及的可控负荷,主要包括热水器、空调、洗衣机等,单户耗电量较小,具有易转移、易中断、相应速度快等优点,适合用来平抑发电波动。
售电方微网满足自身功率需求后仍然有过剩功率,优先将功率供给购电方微网满足其负荷需求,而不是先给本微网储能充电。微网群内部总购电及售电量不平衡时,将由微电网群能量管理中心侧储能吸收或释放功率以平衡供需关系;一般要求,每个时段末,微电网群能量管理中心储能的荷电状态要维持在规定范围内,以防SOC过高或过低影响后续运行。在可再生能源无法满足微网群内的负荷需求时,首先由售电方微网储能放电补偿功率缺额,购电方微网储能作为最终备用;而可再生能源出力超过负荷需求时,优先由购电方微网储能吸收过剩功率,以确保最终备用。当孤岛运行方式无法满足微网供需平衡时,将考虑在电能缺额较大的微电网加入柴油发电机等备用电源以弥补缺额;更加严重的情况下,微电网群能量管理中心将考虑并入大电网以防止更大的损失。
可再生能源出力优先由本网络中的负荷就地消纳,管理中心提前预测未来24h的负荷及发电功率,并通过分时电价或需求侧竞价的方式对微网群中的可控负荷进行日前调度,主要调度对象为工商业负荷;当日前调度无法满足微网群需求时,管理中心将对工业负荷实施日内紧急调度以维持电力供需平衡;微网群中的居民负荷将接受管理中心的直接负荷控制(DLC),以平抑微网群中的功率波动,进而防止可再生能源发电功率造成的电压波动。
参见图2,微网
Figure 160778DEST_PATH_IMAGE099
Figure 343498DEST_PATH_IMAGE100
)与微网
Figure 592077DEST_PATH_IMAGE101
Figure 190548DEST_PATH_IMAGE102
)分别为购电方微网与售电方微网, 两微网中的基本设施相同,不同的是可再生能源的发电功率与负荷的耗电功率。所述购电 方微电网指某一时段内负荷消耗功率较高,而所在区域内的发电功率通常无法满足负荷消 耗,在该时段内一般需要区域外的发电设施进行供电。所述售电方微电网指自身发电功率 较高,有时在满足自身需求后仍有功率余量,在该时段内一般需要配置大容量储能以避免 电能浪费。需要注意的是,所述购电方与售电方的划分仅在所属时间段内有效,进入下一时 段则需要根据供需平衡情况重新划分。
电能交易采取主从博弈方法,微电网群能量管理中心(MCEM)作为Leader,根据预测数据计算自身获得最大收益的最优交易价格并先一步公布;单个微电网运营商(MGO)作为Follower,根据Leader的决策内容及预测数据计算使自身获得最大收益的购/售电量并随后公布;在此之后,Leader与Follower以自身收益最大化为目标,依次根据对方做出的决策调整自身决策内容,直至双方获得各自的最大收益。微电网群能量管理中心(MCEM)作为主导微电网间能量交易的机构,负责为电能交易制订实时价格,接收及出售各微电网的交易能量。每个时段将微电网群内的各微网划分为购电方和售电方,其中购电方微电网负责从MCEM输入功率,售电方微电网负责从MCEM输出功率,同时应规定单一时段电能交易量的范围。MCEM配置储能设施,以防止孤岛微电网群内部电能供需不平衡导致网内电压、频率不稳定;为使储能装置长时间运行,MCEM应根据荷电状态对储能装置充放电进行管理,确保每个时段末SOC的值均处于特定范围内,以保证下一时段的正常运行。
本设计可以令孤岛微电网群在不凭借传统能源供电的情况下维持一段时间的稳定运行,方法中主要参与能量调度的设施为微网中的负荷与储能设备,考虑到性价比,储能设备一般选用蓄电池;根据微电网群中各微电网的发电功率、耗电功率以及储能装置的荷电状态(SOC)等数据对微电网群运行状态进行综合评估,判断其所处状态并确定储能装置的充放电操作,提高了微电网群运行的稳定性,可以在较长时间维持供需平衡;提高了可再生能源的供电比例,不仅降低了建设和运行成本,还减少了环境污染。
实施例:
参见图1,一种高比例风光孤岛微电网群能量调度方法,该方法包括以下步骤:
S1、预测未来时段微电网的发电功率、负荷功率以及获取储能装置的荷电状态;
本实施例使用的原始数据是微电网群过去两周内的风光发电功率及负荷功率(每隔15min记录一个点),每15min运行一次,每次预测未来4h的风光发电及负荷功率(16个点);微电网的发电功率、负荷功率的预测包括以下步骤:
A、采用Min-Max标准化方式对微电网的发电功率、负荷功率的历史数据进行处理;
除了识别和处理原始数据中的坏数据,也应针对当前日期剔除部分原始数据,例如:若工作日与周末负荷水平差距较大,则应有选择地筛除部分原始数据;基于观测的方便,所制作的发电功率、负荷功率等数据均呈现标幺形式,为避免电压、电压变化率、电流、电流变化率、SOC数据量级不同造成的误差,将数据导入模型之前需先对其进行归一化处理,具体公式如下所示:
Figure 473762DEST_PATH_IMAGE103
B、建立LSTM预测模型;
采用长短时间记忆功能的结合,有效克服了梯度消失的问题,LSTM的计算节点由输入门、输出门、遗忘门和Cell组成,其中Cell作为计算节点核心,用于记录当前时刻所处状态,其公式为:
Figure 561804DEST_PATH_IMAGE104
式中,
Figure 297679DEST_PATH_IMAGE105
为输入门在
Figure 699841DEST_PATH_IMAGE106
时刻的输入,
Figure 837561DEST_PATH_IMAGE107
为遗忘门在
Figure 96504DEST_PATH_IMAGE106
时刻的 输入;
同时有:
Figure 319675DEST_PATH_IMAGE108
式中,
Figure 259949DEST_PATH_IMAGE109
为映射函数,
Figure 252176DEST_PATH_IMAGE110
Figure 947600DEST_PATH_IMAGE106
时刻Cell的状态输出,
Figure 655137DEST_PATH_IMAGE111
Figure 399102DEST_PATH_IMAGE106
时刻遗 忘门与
Figure 245835DEST_PATH_IMAGE112
时刻Cell的状态输出之积,
Figure 846581DEST_PATH_IMAGE113
Figure 44344DEST_PATH_IMAGE106
时刻遗忘门
Figure 326421DEST_PATH_IMAGE114
映射的乘积;
本实施例使用的LSTM神经网络结构为单模型多变量结构,即使用16个输出节点分别对应4h中的16个预测数据(包括各单元风光发电功率及负荷功率),在传统方法如RNN中若采用此种结构的网络结构将会非常复杂;当采用16个输出节点时,LSTM所需要学习的参数相比于传统神经网络大为减少,极大地方便了模型的建立;
C、采用均方差损失函数对LSTM预测模型进行训练;
Figure 293240DEST_PATH_IMAGE115
式中,
Figure 533728DEST_PATH_IMAGE116
为采集数据样本的数量,本实施例考虑过去两周内的风光发电功率及负 荷功率作为样本,
Figure 749946DEST_PATH_IMAGE117
为样本数据的真实值,
Figure 101293DEST_PATH_IMAGE118
为功率估算值,
Figure 657039DEST_PATH_IMAGE119
为样本序号;
本实施例通过训练好的模型计算得到输出功率值
Figure 68429DEST_PATH_IMAGE118
,该值需要和相应的已知真 实功率值进行比对,得到模型当前估算结果与真实值的误差值,此误差值又称为评价指标, 表示当前时刻模型估算的准确度;根据误差利用反向传播算法,其中,对LSTM的权重进行更 新,实现LSTM的监督学习;
D、将处理后的历史数据输入训练后的LSTM预测模型,对未来时段(4h)微电网的发电功率、负荷功率进行预测;
S2、微电网群采用主从博弈方法,每轮博弈中,微电网群能量管理中心以自身收益最大化为目标制定购电和售电价格,微电网根据购电和售电价格以自身收益最大化为目标制定负荷转移量和充放电功率,并更新购电量或售电量,博弈至获得最佳交易计划;
微电网群能量管理中心的收益模型为:
Figure 771943DEST_PATH_IMAGE001
式中,
Figure 661402DEST_PATH_IMAGE002
Figure 337233DEST_PATH_IMAGE003
时段微电网群能量管理中心的收益,
Figure 919525DEST_PATH_IMAGE004
Figure 110334DEST_PATH_IMAGE003
时段购电电价,
Figure 803484DEST_PATH_IMAGE005
Figure 333822DEST_PATH_IMAGE003
时段售出电量,
Figure 821436DEST_PATH_IMAGE006
Figure 705734DEST_PATH_IMAGE003
时段售电电价,
Figure 999312DEST_PATH_IMAGE007
Figure 649736DEST_PATH_IMAGE003
时段购入电量,
Figure 42671DEST_PATH_IMAGE008
为储能装置 的充放电成本系数,
Figure 411336DEST_PATH_IMAGE009
为储能装置的充放电效率;
Figure 243025DEST_PATH_IMAGE010
为偏离储能装置初 始荷电状态
Figure 13535DEST_PATH_IMAGE011
产生的成本,
Figure 577372DEST_PATH_IMAGE012
为储能装置
Figure 433332DEST_PATH_IMAGE003
时段荷电状态,
Figure 271975DEST_PATH_IMAGE013
为常数;
Figure 428150DEST_PATH_IMAGE014
为微电网
Figure 694046DEST_PATH_IMAGE015
Figure 506145DEST_PATH_IMAGE003
时段的发电量,
Figure 945216DEST_PATH_IMAGE016
为微电网
Figure 424739DEST_PATH_IMAGE015
的负荷在
Figure 861537DEST_PATH_IMAGE003
时段的用电 量;
Figure 160931DEST_PATH_IMAGE087
时,微电网处于售电模式,其收益模型为:
Figure 341377DEST_PATH_IMAGE018
Figure 472144DEST_PATH_IMAGE088
Figure 79842DEST_PATH_IMAGE020
时,微电网处于购电模式,其收益模型为:
Figure 866533DEST_PATH_IMAGE021
Figure 582160DEST_PATH_IMAGE089
Figure 833013DEST_PATH_IMAGE023
式中,
Figure 611613DEST_PATH_IMAGE024
为微电网
Figure 151179DEST_PATH_IMAGE015
Figure 673427DEST_PATH_IMAGE003
时段的收益,
Figure 716470DEST_PATH_IMAGE025
Figure 665971DEST_PATH_IMAGE003
时段售电电价,
Figure 427254DEST_PATH_IMAGE026
Figure 18772DEST_PATH_IMAGE003
时段 购电电价,
Figure 181900DEST_PATH_IMAGE027
为微电网
Figure 36724DEST_PATH_IMAGE015
Figure 550882DEST_PATH_IMAGE003
时段内的用电满意度系数,
Figure 414932DEST_PATH_IMAGE028
为微电网
Figure 229305DEST_PATH_IMAGE015
Figure 786188DEST_PATH_IMAGE003
时段的转移 负荷量,
Figure 256484DEST_PATH_IMAGE029
为转移电量成本系数,
Figure 924225DEST_PATH_IMAGE030
为时间间隔,
Figure 593104DEST_PATH_IMAGE031
为微电网
Figure 320889DEST_PATH_IMAGE015
的储能设备在
Figure 371208DEST_PATH_IMAGE003
时段的 充电功率,
Figure 311482DEST_PATH_IMAGE032
为微电网
Figure 303709DEST_PATH_IMAGE015
的储能设备在
Figure 999133DEST_PATH_IMAGE003
时段的放电功率,
Figure 444020DEST_PATH_IMAGE090
Figure 187985DEST_PATH_IMAGE003
时段用户需求电 量,
Figure 300298DEST_PATH_IMAGE091
Figure 901044DEST_PATH_IMAGE035
为用户满意度影响力的相关系数;
用户满意度是衡量用户对于用电量是否达到负荷预期的满意程度;当实际用电量高于用户预期用电量需求时满意度成本为负,代表此时用户是满意的,会增大供电方收益;当实际用电量低于用户预期用电量需求时满意度成本为正,代表此时用户是不满意的,会降低供电方收益;
S3、实施交易计划,微电网群能量管理中心通过储能装置与需求响应机制进行能量调度以平衡购电量和售电量的差额;
当售电量大于购电量时,储能装置存储多余的电量;当购电量大于售电量时,储能装置出售存储的电量,即:
Figure 98807DEST_PATH_IMAGE036
式中,
Figure 380883DEST_PATH_IMAGE037
为微电网
Figure 347702DEST_PATH_IMAGE015
Figure 119349DEST_PATH_IMAGE038
时段的充电功率,
Figure 804409DEST_PATH_IMAGE039
为微电网
Figure 890176DEST_PATH_IMAGE040
Figure 711502DEST_PATH_IMAGE038
时段的放电 功率,
Figure 919629DEST_PATH_IMAGE041
Figure 826405DEST_PATH_IMAGE038
时段储能装置的充电功率,
Figure 450285DEST_PATH_IMAGE042
Figure 391696DEST_PATH_IMAGE038
时段储能装置的放电功率;
微电网购售电及储能装置荷电状态需满足以下条件:
Figure 505145DEST_PATH_IMAGE092
Figure 899218DEST_PATH_IMAGE093
Figure 589437DEST_PATH_IMAGE045
式中,
Figure 119776DEST_PATH_IMAGE046
为充电功率的最小值,
Figure 669706DEST_PATH_IMAGE047
为充电功率的最大值,
Figure 551074DEST_PATH_IMAGE048
为放电功 率的最小值,
Figure 516756DEST_PATH_IMAGE049
为放电功率的最大值,
Figure 167180DEST_PATH_IMAGE050
为储能装置荷电状态的最小值,
Figure 91274DEST_PATH_IMAGE051
为储能装置荷电状态的最大值,
Figure 256676DEST_PATH_IMAGE052
为储能装置
Figure 291628DEST_PATH_IMAGE038
时段荷电状态,
Figure 530980DEST_PATH_IMAGE053
为 时段末储能装置荷电状态,
Figure 625975DEST_PATH_IMAGE054
为时段末储能装置荷电状态的最小值,
Figure 278673DEST_PATH_IMAGE055
为 时段末储能装置荷电状态的最大值,
Figure 851737DEST_PATH_IMAGE056
为时间间隔,
Figure 211174DEST_PATH_IMAGE057
为充放电转换效率;
所述需求响应机制包括分时电价机制、直接负荷控制机制与需求侧竞价机制;
所述分时电价机制是指将每天负荷需求划分为峰时段负荷、谷时段负荷和平时段负荷,并制定相应的电价;
所述直接负荷控制机制是指用户负荷接受微电网群能量管理中心直接控制;
所述需求侧竞价机制是指用户改变用电方式主动参与市场竞争并由此获得相应的经济补偿;
采用分时电价机制或需求侧竞价机制对微电网群中工商业负荷进行调度,采用直接负荷控制机制对微电网群中居民负荷进行调度;
实行分时电价机制后用户在
Figure 477070DEST_PATH_IMAGE038
时段的需求价格弹性模型为:
Figure 351485DEST_PATH_IMAGE059
式中,
Figure 993819DEST_PATH_IMAGE060
为实行分时电价后
Figure 207763DEST_PATH_IMAGE038
时段用户响应的电量,
Figure 644560DEST_PATH_IMAGE061
Figure 6272DEST_PATH_IMAGE038
时段用户响 应的原始电量,
Figure 921138DEST_PATH_IMAGE062
Figure 523676DEST_PATH_IMAGE038
时段电价,
Figure 865796DEST_PATH_IMAGE063
Figure 918066DEST_PATH_IMAGE038
时段原始电价,
Figure 433361DEST_PATH_IMAGE064
Figure 621896DEST_PATH_IMAGE065
时段用户响应的电价,
Figure 400497DEST_PATH_IMAGE066
Figure 736800DEST_PATH_IMAGE065
时段用户响应的原始电价,
Figure 259048DEST_PATH_IMAGE067
为电量电价自弹性系数,
Figure 567670DEST_PATH_IMAGE068
为电量电价交 叉弹性系数,
Figure 251592DEST_PATH_IMAGE069
Figure 12875DEST_PATH_IMAGE038
时段用户响应电价变化大小,
Figure 135551DEST_PATH_IMAGE070
Figure 298680DEST_PATH_IMAGE038
时段用户响应电量变化大 小,
Figure 153503DEST_PATH_IMAGE071
Figure 667661DEST_PATH_IMAGE038
时段用户响应原始电量,
Figure 328449DEST_PATH_IMAGE072
Figure 346084DEST_PATH_IMAGE065
时段用户响应电价变化大小;
直接负荷控制机制和需求侧竞价机制对负荷转移的数学模型为:
Figure 637388DEST_PATH_IMAGE073
Figure 373263DEST_PATH_IMAGE094
式中,
Figure 572163DEST_PATH_IMAGE075
Figure 709883DEST_PATH_IMAGE058
时段转入负荷,
Figure 169159DEST_PATH_IMAGE076
Figure 126751DEST_PATH_IMAGE058
时段转出负荷,
Figure 394921DEST_PATH_IMAGE077
为可转移负荷种 类数目,
Figure 387148DEST_PATH_IMAGE078
为运行持续时间大于一个调度时段的可转移负荷种类数,
Figure 20254DEST_PATH_IMAGE079
为可转移负荷 单元最大供电持续时间,
Figure 465142DEST_PATH_IMAGE080
Figure 474687DEST_PATH_IMAGE058
时段开始运行的
Figure 118158DEST_PATH_IMAGE081
类负荷转入单元数,
Figure 187745DEST_PATH_IMAGE082
Figure 854349DEST_PATH_IMAGE038
时段开 始运行的
Figure 667585DEST_PATH_IMAGE081
类负荷转出单元数,
Figure 431141DEST_PATH_IMAGE083
为第
Figure 406051DEST_PATH_IMAGE081
类可转移负荷在第
Figure 825531DEST_PATH_IMAGE084
个工作时段的功率,
Figure 176877DEST_PATH_IMAGE085
为第
Figure 998203DEST_PATH_IMAGE081
类可转移负荷在第
Figure 940751DEST_PATH_IMAGE086
个工作时段的功率;
S4、微电网群能量管理中心计算微电网群下一时段的电能供需状态,若微电网群整体电能缺额或余额较高,且依靠储能装置与需求响应机制难以维持电能供需平衡,则采用备用电源或并网运行。
参见图2、图3,一种高比例风光孤岛微电网群能量调度系统,该系统包括多个微电网、储能装置与微电网群能量管理中心,所述微电网群能量管理中心分别与多个微电网、储能装置连接,储能装置分别与多个微电网连接,所述微电网包括风力发电机、光伏电池、蓄电池、交流负荷与直流负荷,所述风力发电机用于将风能转化为电能,风力发电功率波动性与随机性较强,需要在发电机出口端设置滤波器以滤去高频波动,所述光伏电池用于将太阳能转化为电能,通过也需要装设滤波器,所述蓄电池用于在功率过剩时存储能量,在出现功率缺额时释放功率为负荷供电,所述交流负荷包括可控交流负荷与不可控交流负荷,所述直流负荷包括可控直流负荷与不可控直流负荷,微电网群能量管理中心可通过需求响应机制对可控交直流负荷进行调度,所述风力发电机、可控交流负荷、不可控交流负荷都通过AC/DC/AC变换器并联接入交流母线,所述光伏电池、蓄电池、可控直流负荷、不可控直流负荷都依次通过DC/DC变换器、AC/DC变换器后并联接入交流母线。

Claims (9)

1.一种高比例风光孤岛微电网群能量调度方法,其特征在于,该方法包括以下步骤:
S1、预测未来时段微电网的发电功率、负荷功率以及获取储能装置的荷电状态;
S2、微电网群采用主从博弈方法,每轮博弈中,微电网群能量管理中心以自身收益最大化为目标制定购电和售电价格,微电网根据购电和售电价格以自身收益最大化为目标制定负荷转移量和充放电功率,并更新购电量或售电量,博弈至获得最佳交易计划;
微电网群能量管理中心的收益模型为:
R(t)=pb(t)Eb(t)-ps(t)Es(t)-βn(Eb(t)+Es(t))-γ|SOC(t)-SOC0|
式中,R(t)为t时段微电网群能量管理中心的收益,pb(t)为t时段购电电价,Eb(t)为t时段售出电量,ps(t)为t时段售电电价,Es(t)为t时段购入电量,β为储能装置的充放电成本系数,n为储能装置的充放电效率;γ|SOC(t)-SOC0|为偏离储能装置初始荷电状态SOC0产生的成本,SOC(t)为储能装置t时段荷电状态,γ为常数;
令Er,i(t)为微电网i在t时段的发电量,ei(t)为微电网i的负荷在t时段的用电量;
当Er,i(t)>ei(t)时,微电网处于售电模式,其收益模型为:
Ui(t)=ki(t)ln(1+ei(t))+ps(t)Es(t)-αdi(t)-βnPc,i(t)Δt
Figure FDA0003680127100000011
当Er,i(t)<ei(t)时,微电网处于购电模式,其收益模型为:
Ui(t)=ki(t)ln(1+ei(t))-pb(t)Eb(t)-αdi(t)-βnPd,i(t)Δt
Figure FDA0003680127100000012
Figure FDA0003680127100000021
式中,Ui(t)为微电网i在t时段的收益,ps(t)为t时段售电电价,pb(t)为t时段购电电价,ki(t)为微电网i在t时段内的用电满意度系数,di(t)为微电网i在t时段的转移负荷量,α为转移电量成本系数,Δt为时间间隔,Pc,i(t)为微电网i的储能设备在t时段的充电功率,Pd,i(t)为微电网i的储能设备在t时段的放电功率,qi(t)为t时段用户需求电量,ak、bk为用户满意度影响力的相关系数;
S3、实施交易计划,微电网群能量管理中心通过储能装置与需求响应机制进行能量调度以平衡购电量和售电量的差额;
S4、微电网群能量管理中心计算微电网群下一时段的电能供需状态,若微电网群整体电能缺额或余额较高,且依靠储能装置与需求响应机制难以维持电能供需平衡,则采用备用电源或并网运行。
2.根据权利要求1所述的一种高比例风光孤岛微电网群能量调度方法,其特征在于:步骤S1中,微电网的发电功率、负荷功率的预测包括以下步骤:
A、采用Min-Max标准化方式对微电网的发电功率、负荷功率的历史数据进行处理;
B、建立LSTM预测模型;
C、采用均方差损失函数对LSTM预测模型进行训练;
D、将处理后的历史数据输入训练后的LSTM预测模型,对未来时段微电网的发电功率、负荷功率进行预测。
3.根据权利要求1所述的一种高比例风光孤岛微电网群能量调度方法,其特征在于:步骤S3中,当售电量大于购电量时,储能装置存储多余的电量;当购电量大于售电量时,储能装置出售存储的电量,即:
Figure FDA0003680127100000022
s.t.Pbc(t)×Pbd(t)=0
式中,Pi.bc(t)为微电网i在t时段的充电功率,Pj.bd(t)为微电网j在t时段的放电功率,Pbc(t)为t时段储能装置的充电功率,Pbd(t)为t时段储能装置的放电功率。
4.根据权利要求3所述的一种高比例风光孤岛微电网群能量调度方法,其特征在于:步骤S3中,微电网购售电及储能装置荷电状态需满足以下条件:
Figure FDA0003680127100000031
Figure FDA0003680127100000032
SOC(T)=SOC(t)+(ηPbc(t)Δt-Pbd(t)Δt/η)
式中,Pbc.min为充电功率的最小值,Pbc.max为充电功率的最大值,Pbd.min为放电功率的最小值,Pbd.max为放电功率的最大值,SOCmin为储能装置荷电状态的最小值,SOCmax为储能装置荷电状态的最大值,SOC(t)为储能装置t时段荷电状态,SOC(T)为时段末储能装置荷电状态,SOCT.min为时段末储能装置荷电状态的最小值,SOCT.max为时段末储能装置荷电状态的最大值,Δt为时间间隔,η为充放电转换效率。
5.根据权利要求1所述的一种高比例风光孤岛微电网群能量调度方法,其特征在于:
步骤S3中,所述需求响应机制包括分时电价机制、直接负荷控制机制与需求侧竞价机制;
所述分时电价机制是指将每天负荷需求划分为峰时段负荷、谷时段负荷和平时段负荷,并制定相应的电价;
所述直接负荷控制机制是指用户负荷接受微电网群能量管理中心直接控制;
所述需求侧竞价机制是指用户改变用电方式主动参与市场竞争并由此获得相应的经济补偿。
6.根据权利要求5所述的一种高比例风光孤岛微电网群能量调度方法,其特征在于:采用分时电价机制或需求侧竞价机制对微电网群中工商业负荷进行调度,采用直接负荷控制机制对微电网群中居民负荷进行调度。
7.根据权利要求5所述的一种高比例风光孤岛微电网群能量调度方法,其特征在于:实行分时电价机制后用户在t时段的需求价格弹性模型为:
Figure FDA0003680127100000041
式中,Pload(t)为实行分时电价后t时段用户响应的电量,Pload0(t)为t时段用户响应的原始电量,I(t)为t时段电价,I0(t)为t时段原始电价,I(τ)为τ时段用户响应的电价,I0(τ)为τ时段用户响应的原始电价,ρ(t,t)为电量电价自弹性系数,ρ(t,τ)为电量电价交叉弹性系数,ΔI(t)为t时段用户响应电价变化大小,ΔR(t)为t时段用户响应电量变化大小,R0(t)为t时段用户响应原始电量,ΔI(τ)为τ时段用户响应电价变化大小。
8.根据权利要求5所述的一种高比例风光孤岛微电网群能量调度方法,其特征在于:直接负荷控制机制和需求侧竞价机制对负荷转移的数学模型为:
Figure FDA0003680127100000042
Figure FDA0003680127100000043
式中,Lin(t)为t时段转入负荷,Lout(t)为t时段转出负荷,Nsl为可转移负荷种类数目,Nsla为运行持续时间大于一个调度时段的可转移负荷种类数,hmax为可转移负荷单元最大供电持续时间,xk(t)为t时段开始运行的k类负荷转入单元数,yk(t)为t时段开始运行的k类负荷转出单元数,Pl,k为第k类可转移负荷在第l个工作时段的功率,P(h+1),k为第k类可转移负荷在第h+1个工作时段的功率。
9.一种应用于权利要求1-8中任意一项所述调度方法的高比例风光孤岛微电网群能量调度系统,其特征在于,该系统包括多个微电网、储能装置与微电网群能量管理中心,所述微电网群能量管理中心分别与多个微电网、储能装置连接,储能装置分别与多个微电网连接,所述微电网包括风力发电机、光伏电池、蓄电池、交流负荷与直流负荷,所述交流负荷包括可控交流负荷与不可控交流负荷,所述直流负荷包括可控直流负荷与不可控直流负荷,所述风力发电机、可控交流负荷、不可控交流负荷都通过AC/DC/AC变换器并联接入交流母线,所述光伏电池、蓄电池、可控直流负荷、不可控直流负荷都依次通过DC/DC变换器、AC/DC变换器后并联接入交流母线。
CN202210357185.6A 2022-04-07 2022-04-07 一种高比例风光孤岛微电网群能量调度方法及系统 Active CN114498769B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210357185.6A CN114498769B (zh) 2022-04-07 2022-04-07 一种高比例风光孤岛微电网群能量调度方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210357185.6A CN114498769B (zh) 2022-04-07 2022-04-07 一种高比例风光孤岛微电网群能量调度方法及系统

Publications (2)

Publication Number Publication Date
CN114498769A CN114498769A (zh) 2022-05-13
CN114498769B true CN114498769B (zh) 2022-07-19

Family

ID=81487421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210357185.6A Active CN114498769B (zh) 2022-04-07 2022-04-07 一种高比例风光孤岛微电网群能量调度方法及系统

Country Status (1)

Country Link
CN (1) CN114498769B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115940295B (zh) * 2023-02-21 2023-06-13 国网山东省电力公司乳山市供电公司 电能监测控制系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258559A (zh) * 2021-03-25 2021-08-13 上海电机学院 一种冷热电联供微电网群系统博弈优化方法
CN113675893B (zh) * 2021-10-22 2022-02-18 国网湖北省电力有限公司经济技术研究院 一种非计划孤岛模式切换及谐波补偿装置及其控制方法

Also Published As

Publication number Publication date
CN114498769A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
CN107565607A (zh) 一种基于实时电价机制的微电网多时间尺度能量调度方法
CN112821465B (zh) 包含热电联产的工业微网负荷优化调度方法与系统
CN114498639B (zh) 一种考虑需求响应的多微电网联合互济的日前调度方法
CN112800658A (zh) 一种考虑源储荷互动的主动配电网调度方法
CN113988444A (zh) 一种光储系统的电费优化控制系统及方法
Eseye et al. Grid-price dependent optimal energy storage management strategy for grid-connected industrial microgrids
CN114938035B (zh) 考虑储能退化成本的共享储能能量调度方法及系统
CN114498769B (zh) 一种高比例风光孤岛微电网群能量调度方法及系统
CN116384039A (zh) 一种基于模型预测的智能电网能源优化高效管理方法
Ma et al. Two-stage optimal dispatching for microgrid considering dynamic incentive-based demand response
Chang et al. Model predictive control based energy collaborative optimization management for energy storage system of virtual power plant
CN114301081A (zh) 一种考虑蓄电池储能寿命损耗与需求响应的微电网优化方法
Yu et al. Energy management of wind turbine-based DC microgrid utilizing modified differential evolution algorithm
CN110070210B (zh) 一种多微电网系统能量管理与贡献度评估方法和系统
TW201915838A (zh) 一種應用於智慧電網之粒群最佳化模糊邏輯控制充電法
CN109119988B (zh) 基于动态批发市价的光伏-电池微电网能量调度管理方法
CN116667406A (zh) 基于非线性规划的储能充放电策略优化方法
Hosseini et al. Battery swapping station as an energy storage for capturing distribution-integrated solar variability
Chen et al. Robust optimization based multi-level coordinated scheduling strategy for energy hub in spot market
CN113255957A (zh) 综合服务站不确定因素的定量优化分析方法及系统
Gong et al. Economic dispatching strategy of double lead-acid battery packs considering various factors
Pu et al. Optimal Planning of Energy Storage for Wind Farm GENCO in Power Spot Market
Luo et al. Optimal scheduling for a multi-energy microgrid by a soft actor-critic deep reinforcement learning
Bian et al. Economic Dispatch of A Virtual Power Plant with Wind-photovoltaic-storage Considering Demand Response
Khezri et al. Energy management and optimal planning of a residential microgrid with time-of-use electricity tariffs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant