CN114486560A - Low-temperature rock mass variable-frequency variable-amplitude dynamic shear acoustic physical test system and test method - Google Patents
Low-temperature rock mass variable-frequency variable-amplitude dynamic shear acoustic physical test system and test method Download PDFInfo
- Publication number
- CN114486560A CN114486560A CN202111609329.4A CN202111609329A CN114486560A CN 114486560 A CN114486560 A CN 114486560A CN 202111609329 A CN202111609329 A CN 202111609329A CN 114486560 A CN114486560 A CN 114486560A
- Authority
- CN
- China
- Prior art keywords
- box
- shearing
- rock mass
- horizontal
- acoustic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/24—Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
- G01N3/06—Special adaptations of indicating or recording means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
- G01N3/06—Special adaptations of indicating or recording means
- G01N3/068—Special adaptations of indicating or recording means with optical indicating or recording means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0001—Type of application of the stress
- G01N2203/0003—Steady
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0025—Shearing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/022—Environment of the test
- G01N2203/0222—Temperature
- G01N2203/0228—Low temperature; Cooling means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0641—Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0658—Indicating or recording means; Sensing means using acoustic or ultrasonic detectors
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
技术领域technical field
本发明属于岩石力学特性测试领域,具体涉及一种低温岩体变频变幅动态剪切声学物理试验系统及试验方法。The invention belongs to the field of rock mechanical property testing, in particular to a low-temperature rock mass variable frequency variable amplitude dynamic shear acoustic physical test system and a test method.
背景技术Background technique
露天矿工程边坡经常遭遇开挖及频繁爆破应力波的扰动,当台阶边坡与爆源位置较远时,爆破应力波演化为地震波,对岩体力学性能劣化起到促进作用,为此,矿山边坡岩体结构劣化是一个典型的动力学问题;据不完全统计,露天采场边坡因岩桥贯通而失稳的占滑坡总数的60%以上,典型的露天滑坡有攀钢朱家包铁矿滑坡、内蒙古白云鄂博铁矿东帮滑坡、印尼格拉斯堡露天矿滑坡及美国宾汉姆峡谷露天铜矿滑坡等;持续发生的露天矿顺层岩质边坡滑坡事故,不仅严重威胁着矿山企业的正常运营,也对从业人员的生命安全构成了巨大威胁;相比于低海拔地区的平原矿山,低温寒区露天矿边坡除受开挖和远场爆破等动力扰动外,频繁的冻融作用是引起边坡岩桥结构劣化的另一个不容忽视的因素,水冰相变过程产生的冻胀力以及水分迁移作用加速了岩桥的劣化变异;我国寒区矿产资源丰富,在高海拔高寒地区,面对恶劣的自然环境,边坡环境地质灾害致灾机理认识尚不够深入,未能提供有效防控措施,因此,岩体结构冻融劣化触发了大量灾难性事件;Open-pit mine engineering slopes are often disturbed by excavation and frequent blasting stress waves. When the step slope is far away from the blast source, blasting stress waves evolve into seismic waves, which play a role in promoting the deterioration of rock mass mechanical properties. Deterioration of rock mass structure of mine slopes is a typical dynamic problem; according to incomplete statistics, the instability of open-pit stope slopes due to the penetration of rock bridges accounts for more than 60% of the total number of landslides. Landslides at Bao Iron Mine, Dongbang Landslides at Bayan Obo Iron Mine in Inner Mongolia, Landslides at Grasburg Open-pit Mine in Indonesia and Bingham Canyon Open-pit Copper Mine in the United States, etc. The continuous occurrence of open-pit mine landslides along bedrock rock slopes is not only a serious threat The normal operation of mining enterprises also poses a huge threat to the life safety of employees; compared with plain mines in low-altitude areas, in addition to dynamic disturbances such as excavation and far-field blasting, the slopes of open-pit mines in low-temperature and cold areas are frequently disturbed. The freeze-thaw effect is another factor that cannot be ignored that causes the structural deterioration of the rock bridge on the slope. The frost heave force generated by the water-ice phase transition process and the migration of water accelerate the deterioration and variation of the rock bridge; China's cold regions are rich in mineral resources, and In the high-altitude and cold areas, facing the harsh natural environment, the understanding of the disaster mechanism of slope environmental geological disasters is not deep enough, and effective prevention and control measures cannot be provided. Therefore, the freeze-thaw deterioration of rock mass structures triggers a large number of catastrophic events;
文献调研表明,国内外大量学者采用现场原位试验、室内试验和数值计算等多种手段对含锁固段的关键岩桥断裂贯通进行了较为系统的研究,模型中考虑岩石中的岩桥规模从一个向多个、多组发展,模型试验考虑了节理的粗糙度、空间分布、排列形式、岩桥宽度及法向应力的影响,集中对裂隙岩体的岩桥力学性质、破坏机理、强度及贯通模式进行了探讨,几乎所有的研究都是常温下的静态加载环境,没有考虑冻融的影响。然而,由于工程岩体经常受环境因素、开挖卸荷、爆破振动及地震波的频繁扰动,从而导致岩桥断裂的动力学特性不同于以往的静态加载断裂,是一个典型的动力学(中应变率)问题。目前,有关复杂应力扰动作用下岩石节理动态加载力学试验研究较多,常温下岩桥在法向卸载条件下的力学试验有零星报道,然而关于冻融岩桥剪切断裂机制的研究较少,岩桥断裂过程中因体积膨胀导致的岩桥与节理耦联机制研究不够深入;The literature survey shows that a large number of scholars at home and abroad have used various methods such as field in-situ tests, laboratory tests and numerical calculations to systematically study the fracture penetration of key rock bridges with locking sections. The model considers the scale of rock bridges in the rock. From one to multiple and multiple groups, the model test takes into account the influence of joint roughness, spatial distribution, arrangement form, rock bridge width and normal stress, focusing on the mechanical properties, failure mechanism, strength and strength of rock bridges in fractured rock mass. and through-through mode were discussed, almost all of the studies were static loading environments at room temperature, without considering the effects of freezing and thawing. However, because the engineering rock mass is frequently disturbed by environmental factors, excavation unloading, blasting vibration and seismic waves, the dynamic characteristics of rock bridge fractures are different from those of previous static loading fractures. rate) problem. At present, there are many studies on dynamic loading mechanical tests of rock joints under complex stress disturbances, and there are sporadic reports on mechanical tests of rock bridges under normal unloading conditions at room temperature. However, there are few studies on the shear fracture mechanism of freeze-thawed rock bridges. The research on the coupling mechanism between the rock bridge and the joint caused by the volume expansion during the rock bridge fracture process is not deep enough;
当岩体这种多孔介质处于低温环境时,赋存于岩体内部孔隙及裂隙中的水发生相变、冻结,导致岩体的物理力学性质不仅与其本身物理结构有关,还受其内部赋存的水、温度、受力状态的影响;岩体遭受低温作用会通过收缩产生很高的拉应力,节理裂隙作为岩体中的初始缺陷会因为颗粒间的不均匀收缩进一步扩展,岩体内的温度应力同样会导致拉应力的产生,而岩体内的孔隙或裂隙水低温下发生相变,由液态的水变为固态的冰,体积的膨胀产生冻胀作用加剧裂隙的发展,继而引起裂隙的扩展、碎裂,物理力学性质骤降;在工程建设中,岩体开挖造成岩体应力重分布,伴随岩体的变形破坏,其力学特性也发生变化,对工程安全影响最大的是剪切破坏,而岩体往往会受到由机械开挖、爆破或地震荷载引发的不同频率与幅值动态扰动,因此探究低温岩体在变频变幅的动态剪切扰动下的损伤破裂机理对保障寒区工程安全建设具有重要意义;When the porous medium of rock mass is in a low temperature environment, the water existing in the pores and fissures of the rock mass undergoes phase change and freezes, resulting in the physical and mechanical properties of the rock mass not only related to its own physical structure, but also to its internal occurrence. The influence of water, temperature, and stress state; the rock mass suffers from low temperature, which will generate high tensile stress through shrinkage, and joint cracks, as the initial defects in the rock mass, will further expand due to the uneven shrinkage between particles, and the cracks in the rock mass will be further expanded. Temperature stress can also lead to the generation of tensile stress, and the pore or fissure water in the rock body undergoes a phase change at low temperature, from liquid water to solid ice, and the expansion of volume produces frost heave, which aggravates the development of fissures, and then causes fissures. In engineering construction, rock mass excavation causes stress redistribution of rock mass, and along with the deformation and failure of rock mass, its mechanical properties also change. The biggest impact on engineering safety is shear stress. However, the rock mass is often subjected to dynamic disturbances of different frequencies and amplitudes caused by mechanical excavation, blasting or seismic loads. The safety construction of the district project is of great significance;
目前声学物理测试技术包括超声波成像、声发射定位等技术为实现动态剪切破裂过程中岩体内部结构变化特征提供了手段。岩石超声成像是通过超声波测试得到岩体内部的数据并以此数据重建岩体内部图像并根据此图像上声速值的差异来判读内部情况的方法;声发射信号则通过声发射计数、信号能量、声发射振幅等多个参数以及波形特征反演岩体的内部结构变化特征,对岩体裂纹的萌生进行定位,通过理论研究与相关的数学分析方法能够将声发射参数与波形等丰富的信息进行描述,得出岩体破裂的本质;At present, acoustic physical testing technologies, including ultrasonic imaging, acoustic emission positioning and other technologies, provide a means to realize the change characteristics of the internal structure of the rock mass during the dynamic shear fracture process. Rock ultrasonic imaging is a method of obtaining the data inside the rock mass through ultrasonic testing, reconstructing the internal image of the rock mass based on this data, and interpreting the internal situation according to the difference of the sound velocity value on the image; the acoustic emission signal is calculated by the acoustic emission count, signal energy, Acoustic emission amplitude and other parameters and waveform characteristics can be used to invert the internal structure change characteristics of the rock mass, and locate the initiation of rock mass cracks. Through theoretical research and related mathematical analysis methods, rich information such as acoustic emission parameters and waveforms can be analyzed. Describe, get the essence of rock mass rupture;
目前现有的岩体动态剪切设备大多是是静态或准静态实验设备直接剪切,少数岩体动态剪切设备为冲击剪切,无法实现变频变幅的循环荷载的加载,且大多设备没有考虑到低温对岩体剪切破坏特性的影响并用声学物理手段来实现岩体剪切破裂过程中的声学物理成像,不能模拟测试工程实际中各类工况作用下的节理岩石动态剪切特性以及揭示岩体损伤及破裂过程中的内部裂纹扩展机理,因此,开展低温岩体变频变幅动态剪切声学物理试验机的研制至关重要。At present, most of the existing rock mass dynamic shearing equipment is static or quasi-static experimental equipment for direct shearing, and a few rock mass dynamic shearing equipment is impact shearing, which cannot realize the loading of variable frequency and variable amplitude cyclic loads, and most of the equipment does not have Considering the influence of low temperature on the shear failure characteristics of rock mass and using acoustic physical means to realize the acoustic physical imaging in the process of rock mass shear failure, it is impossible to simulate and test the dynamic shear characteristics of jointed rocks under various working conditions in actual engineering. To reveal the internal crack propagation mechanism in the process of rock mass damage and fracture, it is very important to develop a low-temperature rock mass variable frequency variable amplitude dynamic shear acoustic physical testing machine.
发明内容SUMMARY OF THE INVENTION
针对上述存在的问题,本发明旨在提供一种低温岩体变频变幅动态剪切声学物理试验系统及试验方法,本试验机通过框架系统和环境箱,实现可变频率和可变幅值的疲劳循环剪切试验,同时进行声发射、超声波测试,可以对岩体受剪破裂过程中的震源机制进行反演,也可对岩体变形破裂过程中细观结构的劣化进行声波成像,具有频率、幅值可调,可同时进行声发射、超声波测试,对岩体受剪破裂过程中的震源机制进行反演、对岩体变形破裂过程中细观结构的劣化进行声波成像的特点。In view of the above-mentioned problems, the present invention aims to provide a low-temperature rock mass variable frequency variable amplitude dynamic shear acoustic physical test system and test method. Fatigue cyclic shear test, simultaneous acoustic emission and ultrasonic tests, can invert the source mechanism of the rock mass in the process of shear fracture, and can also perform acoustic imaging of the deterioration of the mesostructure in the process of rock mass deformation and fracture. , adjustable amplitude, can carry out acoustic emission and ultrasonic testing at the same time, invert the focal mechanism in the process of rock mass shearing and fracture, and carry out acoustic imaging of the deterioration of the mesoscopic structure in the process of rock mass deformation and fracture.
为了实现上述目的,本发明所采用的技术方案如下:In order to achieve the above object, the technical scheme adopted in the present invention is as follows:
低温岩体变频变幅动态剪切声学物理试验系统,包括低温控制子系统、动态剪切子系统、声学物理测试子系统和测量与控制子系统;Low temperature rock mass variable frequency variable amplitude dynamic shear acoustic physics test system, including low temperature control subsystem, dynamic shear subsystem, acoustic physics test subsystem and measurement and control subsystem;
所述低温控制子系统包括环境箱、制冷管和温度控制采集箱,所述环境箱设置在主机框架内,通过制冷管与温度控制采集箱连接;The low temperature control subsystem includes an environmental box, a refrigeration pipe and a temperature control collection box, the environmental box is arranged in the frame of the main frame, and is connected to the temperature control acquisition box through the refrigeration pipe;
所述动态剪切子系统设置在环境箱内,包括油源、竖向加载机构、横向剪切机构、剪切盒和岩体试样,所述油源通过油管分别与竖向加载机构和横向剪切机构连接,剪切盒设置在竖向加载机构与横向剪切机构之间;The dynamic shearing subsystem is arranged in the environmental box, including an oil source, a vertical loading mechanism, a transverse shearing mechanism, a shearing box and a rock mass sample, and the oil source is connected to the vertical loading mechanism and the transverse The shearing mechanism is connected, and the shearing box is arranged between the vertical loading mechanism and the transverse shearing mechanism;
所述声学物理测试子系统包括设置在剪切盒上的超声成像系统和声发射定位系统;The acoustic physics testing subsystem includes an ultrasonic imaging system and an acoustic emission positioning system arranged on the shear box;
所述测量与控制子系统包括位移测量系统与数据控制采集计算成像系统。The measurement and control subsystem includes a displacement measurement system and a data control acquisition computing imaging system.
优选的,所述的竖向加载机构包括竖直连接盘、竖直压头、活塞和缸筒,所述缸筒通过竖直油缸支撑环安装在主机框架上,且与油管连接,所述活塞通过竖直油缸缸盖活动安装在缸筒的内腔中,且安装在活塞下端的竖直压板通过竖直连接盘、竖直连接柱与竖直压头连接,所述竖直压头的下端设置有上压板,所述上压板与岩体试样配合使用。Preferably, the vertical loading mechanism includes a vertical connecting plate, a vertical pressure head, a piston and a cylinder, the cylinder is mounted on the main frame through a vertical oil cylinder support ring, and is connected to the oil pipe, the piston The cylinder head is movably installed in the inner cavity of the cylinder through the vertical oil cylinder, and the vertical pressure plate installed at the lower end of the piston is connected with the vertical pressure head through the vertical connecting plate and the vertical connecting column, and the lower end of the vertical pressure head is connected with the vertical pressure head. An upper pressing plate is provided, and the upper pressing plate is used in cooperation with the rock mass sample.
优选的,所述的横向剪切机构包括水平油缸支撑环、水平油缸缸盖、水平连接柱、水平压头和水平反力组件,所述缸筒通过水平油缸支撑环安装在主机框架上,且与油管连接,所述活塞通过水平油缸缸盖活动安装在缸筒的内腔中,且安装在活塞端部的水平压板通过水平连接盘、水平连接柱与水平压头连接,所述水平压头与剪切盒配合使用;所述水平反力组件包括水平被杆、被杆压头和反力杆,所述水平被杆通过圆形螺母与主机框架连接,所述反力杆与水平被杆连接,所述被杆压头设置在反力杆的末端,且与剪切盒配合使用。Preferably, the transverse shearing mechanism includes a horizontal oil cylinder support ring, a horizontal oil cylinder head, a horizontal connecting column, a horizontal pressure head and a horizontal reaction force assembly, and the cylinder barrel is mounted on the main frame through the horizontal oil cylinder support ring, and Connected with the oil pipe, the piston is movably installed in the inner cavity of the cylinder through the horizontal oil cylinder cover, and the horizontal pressure plate installed at the end of the piston is connected with the horizontal pressure head through the horizontal connecting plate and the horizontal connecting column. Used in conjunction with a shear box; the horizontal reaction force assembly includes a horizontal quilt rod, a rod indenter and a reaction force rod, the horizontal quilt rod is connected with the main frame through a circular nut, and the reaction force rod is connected to the horizontal quilt rod connected, the rod indenter is arranged at the end of the reaction rod and used in cooperation with the shear box.
优选的,所述的剪切盒包括相互配合使用的上剪切盒和下剪切盒,且在上剪切盒与下剪切盒之间设置有导向条,所述上剪切盒和下剪切盒均包括连接板、侧板、剪切钳口和主推板,所述侧板对称设置在连接板与主推板的两侧,且通过连接栓与连接板和主推板连接,所述剪切钳口设置在主推板的内侧,且在剪切钳口内侧形成用于安放岩体试样的空腔,所述主推板与横向剪切机构配合使用,所述导向条设置在侧板上的导向槽内,所述下剪切盒的下侧还设置有滑动机构;且在所述连接板、侧板、剪切钳口和主推板上皆开设有固定尺寸的安装圆口。Preferably, the shearing box includes an upper shearing box and a lower shearing box that are used in cooperation with each other, and a guide bar is provided between the upper shearing box and the lower shearing box, and the upper shearing box and the lower shearing box are The shear box includes a connecting plate, a side plate, a shearing jaw and a main push plate. The side plates are symmetrically arranged on both sides of the connecting plate and the main push plate, and are connected to the connecting plate and the main push plate by connecting bolts. The cutting jaw is arranged on the inner side of the main push plate, and a cavity for placing the rock mass sample is formed on the inner side of the cutting jaw. The main push plate is used in cooperation with the transverse shearing mechanism, and the guide strip is arranged on the side plate In the guide groove of the lower shear box, the lower side of the lower shear box is also provided with a sliding mechanism; and the connecting plate, the side plate, the shearing jaw and the main push plate are all provided with installation round openings of a fixed size.
优选的,所述的滑动机构包括底板、辊架、棍架连接垫块和若干垫块,所述底板设置在下剪切盒的下侧,且活动卡合在辊架上侧,沿着设置在辊架上的棍子滑动,所述辊架通过棍架连接垫块与上层垫块连接,所述垫块设置有若干块,且各垫块之间均通过销栓销接,所述底层垫块通过小院垫板与主机框架连接。Preferably, the sliding mechanism includes a bottom plate, a roller frame, a roller frame connecting pad and a plurality of pad blocks, the bottom plate is arranged on the lower side of the lower shear box, and is movably engaged with the upper side of the roller frame, along the The stick on the roller frame slides, and the roller frame is connected to the upper cushion block through the stick frame connection cushion block. The cushion block is provided with several blocks, and each cushion block is connected by pins. It is connected with the frame of the main frame through the backing plate of the small courtyard.
优选的,所述的超声成像子系统包括若干超声波探头和声波控制器,所述超声波探头安装于上剪切盒与下剪切盒两侧的侧板与连接板的中部,且超声波探头与声波控制器中的传感器相连,声波控制器能接收超声波信号并通过计算软件在计算机中实现岩体内部结构的超声成像。Preferably, the ultrasonic imaging subsystem includes a plurality of ultrasonic probes and a sound wave controller, the ultrasonic probes are installed on the side plates on both sides of the upper shear box and the lower shear box and the middle of the connecting plate, and the ultrasonic probe and the sound wave The sensors in the controller are connected, and the acoustic wave controller can receive the ultrasonic signal and realize the ultrasonic imaging of the internal structure of the rock mass in the computer through the calculation software.
优选的,所述的声发射定位子系统包括声发射探头和声发射控制器,所述声发射探头位于上述上剪切盒与下剪切盒两侧的侧板上,且声发射探头与声发射控制器中的传感器相连,所述声发射控制器能接收声发射信号并通过计算软件在计算机中实现岩体内部结构的声发射定位成像。Preferably, the acoustic emission positioning subsystem includes an acoustic emission probe and an acoustic emission controller, the acoustic emission probe is located on the side panels on both sides of the upper shear box and the lower shear box, and the acoustic emission probe is connected to the acoustic emission probe. The sensors in the emission controller are connected, and the acoustic emission controller can receive the acoustic emission signal and realize the acoustic emission localization imaging of the internal structure of the rock mass in the computer through calculation software.
优选的,所述的数据控制采集计算成像子系统包括加载油源控制器和与计算机,所述加载油源控制器、声波控制器和声发射控制器内的传感器均与计算机相连,能实现加载系统的自动控制与数据的读取,并且通过分析软件处理后可实现超声成像与声发射定位成像。Preferably, the data control acquisition computing imaging subsystem includes a loading oil source controller and a computer, and the sensors in the loading oil source controller, the acoustic wave controller and the acoustic emission controller are all connected to the computer, which can realize loading and unloading. The automatic control of the system and the reading of data, and after processing by the analysis software, can realize ultrasonic imaging and acoustic emission localization imaging.
优选的,所述的位移测量子系统包括水平剪切位移测量机构和竖向垂直压缩位移测量机构,所述水平剪切位移测量机构和竖向垂直压缩位移测量机构均包括光栅尺、传感器托架、支架、调节杆和接触片,所述竖向垂直压缩位移测量机构的支架通过连接栓与上压板连接,水平剪切位移测量机构的支架通过连接栓与下剪切盒的连接板连接,所述调节杆与支架螺纹连接,且在调节杆的末端设置有旋钮,所述接触片设置在调节杆上,且所述竖向垂直压缩位移测量机构的光栅尺通过传感器托架和连接栓与辊架连接,且与对应的竖向垂直压缩位移测量机构的接触片配合使用,所述水平剪切位移测量机构的光栅尺通过传感器托架和连接栓与被杆压头连接,且与对应的水平剪切位移测量机构的接触片配合使用。Preferably, the displacement measurement subsystem includes a horizontal shear displacement measurement mechanism and a vertical vertical compression displacement measurement mechanism, and both the horizontal shear displacement measurement mechanism and the vertical vertical compression displacement measurement mechanism include a grating ruler, a sensor bracket , bracket, adjusting rod and contact piece, the bracket of the vertical vertical compression displacement measuring mechanism is connected with the upper pressure plate through the connecting bolt, and the bracket of the horizontal shear displacement measuring mechanism is connected with the connecting plate of the lower shear box through the connecting bolt, so The adjusting rod is threadedly connected with the bracket, and a knob is provided at the end of the adjusting rod, the contact piece is arranged on the adjusting rod, and the grating ruler of the vertical vertical compression displacement measuring mechanism is connected to the roller through the sensor bracket and the connecting bolt. It is connected to the frame and used in conjunction with the contact piece of the corresponding vertical and vertical compression displacement measuring mechanism. It is used in conjunction with the contact piece of the shear displacement measuring mechanism.
低温岩体变频变幅动态剪切声学物理试验系统的试验方法,包括步骤Test method for low temperature rock mass variable frequency variable amplitude dynamic shear acoustic physics test system, including steps
S1.将岩体试样放入剪切盒中,调整旋钮使光栅尺与接触片接触并给予光栅尺适当的压力,然后关闭环境箱门;S1. Put the rock mass sample into the shear box, adjust the knob to make the grating scale contact with the contact piece and give the grating scale appropriate pressure, and then close the environmental chamber door;
S2.连接声发射探头,超声波探头,并紧贴于岩石试样,启动声波控制器、声发射控制器与计算机,并对线路的通畅性和有效信号进行测试;S2. Connect the acoustic emission probe and the ultrasonic probe, and stick to the rock sample, start the acoustic wave controller, the acoustic emission controller and the computer, and test the patency and effective signal of the line;
S3.启动温度控制采集箱,给环境箱内设定某一低温后启动制冷循环;实现对岩石的实时冻融、冻结和融化处理,环境箱内温度和冻融次数可自动控制;S3. Start the temperature control collection box, set a certain low temperature in the environmental box and start the refrigeration cycle; realize the real-time freezing and thawing, freezing and thawing of the rock, and the temperature and the number of freezing and thawing in the environmental box can be automatically controlled;
S4.启动动态剪切试验机、加载油源控制器,对扰动力信号进行测试;S4. Start the dynamic shear testing machine, load the oil source controller, and test the disturbance force signal;
S5.通过计算机的加载控制软件为试验机设定好加载频率,加载幅值与循环圈数,并将光栅尺所测位移数据清零,待到环境箱内温度达到设定值后发射超声波并开始加载;S5. Set the loading frequency, the loading amplitude and the number of cycles for the testing machine through the loading control software of the computer, and clear the displacement data measured by the grating ruler to zero. After the temperature in the environmental box reaches the set value, the ultrasonic wave is emitted to start loading;
S6.加载过程中,通过测量与控制系统对荷载、位移、超声波信号、声发射信号进行数据采集,并观察加载过程中的剪切应力.应变曲线的变化;S6. During the loading process, the measurement and control system is used to collect data on the load, displacement, ultrasonic signal, and acoustic emission signal, and observe the change of the shear stress and strain curve during the loading process;
S7.当岩体试样破坏时,停止加载;S7. When the rock mass sample is damaged, stop loading;
S8.关闭温度控制采集箱,打开环境箱门,待环境箱内温度达到室温后取出破坏后的岩体试样并关闭低温岩体变频变幅动态剪切声学物理试验系统。S8. Close the temperature control collection box, open the door of the environmental box, take out the damaged rock mass sample after the temperature in the environmental box reaches room temperature, and close the low-temperature rock mass variable frequency variable amplitude dynamic shear acoustic physics test system.
本发明的有益效果是:本发明公开了一种低温岩体变频变幅动态剪切声学物理试验机及试验方法,与现有技术相比,本发明的改进之处在于:The beneficial effects of the present invention are as follows: the present invention discloses a low-temperature rock mass variable frequency variable amplitude dynamic shear acoustic physical testing machine and a test method. Compared with the prior art, the improvements of the present invention are:
(1)本发明设计了一种低温岩体变频变幅动态剪切声学物理试验机及试验方法,本试验机通过框架系统和环境箱的设计,实现了变频变幅条件下复杂扰动应力波形的动力加载、伺服控制与响应,能够对疲劳剪切过程中主油缸、剪切油缸两个伺服阀进行精准的伺服控制与高速的伺服响应;(1) The present invention designs a low-temperature rock mass variable frequency variable amplitude dynamic shear acoustic physical testing machine and test method. Through the design of the frame system and the environmental box, the testing machine realizes the complex disturbance stress waveform under the condition of variable frequency and variable amplitude. Power loading, servo control and response, can carry out precise servo control and high-speed servo response to the two servo valves of the main oil cylinder and the shearing oil cylinder during the fatigue shearing process;
(2)同时,低温控制系统能实现对岩体在低温与冻融循环等复杂环境的模拟,真实还原实际工程概况下岩体的动态剪切力学特性,透明且高强度的环境箱门既能保持环境箱的封闭状态又能实时、安全地观察剪切过程中岩体试样地形态;(2) At the same time, the low temperature control system can realize the simulation of complex environments such as low temperature and freeze-thaw cycles of rock mass, and truly restore the dynamic shear mechanical properties of rock mass under the actual engineering situation. The transparent and high-strength environmental box door can not only Keeping the closed state of the environmental box can also observe the shape of the rock mass sample in real time and safely during the shearing process;
(3)声学物理试验系的设计能实现超声波成像以及声发射定位成像,能够揭示动态剪切破裂过程中岩体内部结构变化特征;(3) The design of the acoustic physics test system can realize ultrasonic imaging and acoustic emission localization imaging, and can reveal the internal structure change characteristics of the rock mass during the dynamic shear fracture process;
(4)本试验机采用光栅尺位移传感器解决了动力荷载过程中岩样变形的高分辨动态测量问题,同时光栅尺位移传感器具有量程大于精度高等优点,可实现动态测量,易于实现测量及数据处理的自动化,在实验过程中,具有频率、幅值可调,可同时进行声发射、超声波测试,对岩体受剪破裂过程中的震源机制进行反演、对岩体变形破裂过程中细观结构的劣化进行声波成像的优点。(4) The testing machine adopts the grating scale displacement sensor to solve the problem of high-resolution dynamic measurement of rock sample deformation during dynamic loading. At the same time, the grating scale displacement sensor has the advantages of greater range than high precision, which can realize dynamic measurement, and is easy to realize measurement and data processing. During the experiment, it has adjustable frequency and amplitude, and can perform acoustic emission and ultrasonic tests at the same time. The degradation of the advantages of sonic imaging.
附图说明Description of drawings
图1为本发明低温岩体变频变幅动态剪切声学物理试验系统全系统的结构示意图。FIG. 1 is a schematic structural diagram of the entire system of the low-temperature rock mass variable frequency variable amplitude dynamic shear acoustic physical test system of the present invention.
图2为本发明低温岩体变频变幅动态剪切声学物理试验系统全系统结构的主视图。FIG. 2 is a front view of the whole system structure of the low-temperature rock mass variable frequency variable amplitude dynamic shear acoustic physics test system of the present invention.
图3为本发明动态剪切试验机结构的主视图。3 is a front view of the structure of the dynamic shear testing machine of the present invention.
图4为本发明动态剪切试验机结构剖视图。Figure 4 is a cross-sectional view of the structure of the dynamic shear testing machine of the present invention.
图5为本发明剪切盒的结构示意图。FIG. 5 is a schematic structural diagram of the shear box of the present invention.
图6为本发明声学物理试验子系统的结构示意图。FIG. 6 is a schematic structural diagram of the acoustic physics test subsystem of the present invention.
图7为本发明滑动机构的结构示意图。FIG. 7 is a schematic structural diagram of the sliding mechanism of the present invention.
图8为本发明位移测量子系统的主视图。FIG. 8 is a front view of the displacement measurement subsystem of the present invention.
图9为本发明位移测量子系统的侧视图。Figure 9 is a side view of the displacement measurement subsystem of the present invention.
图10为本发明位移测量子系统的俯视图。FIG. 10 is a top view of the displacement measurement subsystem of the present invention.
其中:1.油源;2.油源控制线;3.油管;4.主机框架;5.竖直油缸缸盖;6.竖直油缸支撑环;7.竖直压板;8.竖直连接盘;9.竖直压头; 10.上压板;11.上剪切盒;12.下剪切盒;13.环境箱;14.上棍;15.棍架连接垫块;16.垫块;17.小院垫板;18.光栅尺;19.水平压头;20. 水平连接盘;21.水平压板;22.制冷管;23.水平被杆;24.温度控制箱; 25.计算机;26.加载油源控制器;27.声波控制器;28.声发射控制器; 29.声波控制线;30.声发射控制线;31.被杆压头;32.反力杆;33.旋钮;34.接触片;35.调节杆;36.支架;37.声发射探头;38.超声波探头;39.底板;40.导向条;41.传感器托架;42.水平油缸盖;43.水平油缸支撑环;44.活塞;45.棍子;46.辊架;47.水平连接柱;48.缸筒; 49.竖直连接柱;50.剪切钳口;51.主推板;52.岩体试样;53.侧板; 54.连接板。Among them: 1. Oil source; 2. Oil source control line; 3. Oil pipe; 4. Main frame; 5. Vertical cylinder head; 6. Vertical cylinder support ring; 7. Vertical pressure plate; 8.
具体实施方式Detailed ways
为了使本领域的普通技术人员能更好的理解本发明的技术方案,下面结合附图和实施例对本发明的技术方案做进一步的描述。In order to enable those skilled in the art to better understand the technical solutions of the present invention, the technical solutions of the present invention are further described below with reference to the accompanying drawings and embodiments.
参照附图1-10所示的低温岩体变频变幅动态剪切声学物理试验系统,包括低温控制子系统、动态剪切子系统、声学物理测试子系统和测量与控制子系统;Referring to the low-temperature rock mass variable frequency variable amplitude dynamic shear acoustic physics test system shown in Figures 1-10, it includes a low temperature control subsystem, a dynamic shear subsystem, an acoustic physics test subsystem and a measurement and control subsystem;
所述低温控制子系统包括环境箱13、制冷管22和温度控制采集箱24,所述环境箱13设置在主机框架4内,通过制冷管22与温度控制采集箱24连接,在使用时,温度控制采集箱24通过制冷管22 传递冷气流,进而控制环境箱13内的温度;The low temperature control subsystem includes an
所述动态剪切子系统设置在环境箱13内,包括油源1、竖向加载机构、横向剪切机构、剪切盒和岩体试样52,所述油源1通过油管3分别与竖向加载机构和横向剪切机构连接,给竖向加载机构和横向剪切机构提供加载压力,所述剪切盒设置在竖向加载机构与横向剪切机构之间,用于对岩体试样52进行固定;The dynamic shearing subsystem is arranged in the
所述声学物理测试子系统包括设置在剪切盒上的超声成像系统和声发射定位系统;The acoustic physics testing subsystem includes an ultrasonic imaging system and an acoustic emission positioning system arranged on the shear box;
所述测量与控制子系统包括位移测量系统与数据控制采集计算成像系统。The measurement and control subsystem includes a displacement measurement system and a data control acquisition computing imaging system.
优选的,如图3-图4所示,动态试验机采用竖向加载子系统与横向剪切子系统相结合的方式实现对剪切盒中的岩体试样52变频变幅条件下复杂扰动应力波形的动力加载;其中所述竖向加载机构包括竖直连接盘8、竖直压头9、活塞44和缸筒48,所述缸筒48通过竖直油缸支撑环6安装在主机框架4上,且与油管3连接,所述活塞44 通过竖直油缸缸盖5活动安装在缸筒48的内腔中,且安装在活塞44 下端的竖直压板7通过竖直连接盘8、竖直连接柱49和六角螺栓与竖直压头9连接,所述竖直压头9的下端设置有上压板10,所述上压板10与岩体试样52配合使用,即在对岩体试样52进行轴向加压的过程中,油源1通过油管3向缸筒48内泵送液压油,随着缸筒48 内油压的增加推动活塞44向下传递轴向压力,轴向荷载通过竖直压板7传导至竖直压头9再向下传导在下压板10上,利用下压板10向岩体试样52施加轴向压力;Preferably, as shown in Figures 3 to 4, the dynamic testing machine adopts the combination of the vertical loading subsystem and the transverse shearing subsystem to realize the complex disturbance of the
所述横向剪切机构包括水平油缸支撑环43、水平油缸缸盖42、水平连接柱47、水平压头49和水平反力组件,所述缸筒48通过水平油缸支撑环43安装在主机框架4上,且与油管3连接,所述活塞 44通过水平油缸缸盖42活动安装在缸筒48的内腔中,且安装在活塞44端部的水平压板21通过水平连接盘20、水平连接柱47和六角螺栓与水平压头19连接,所述水平压头19与剪切盒配合使用,即在使用时,油源1通过油管3向缸筒48内泵送液压油,随着缸筒48内油压的增加推动活塞44向水平方向施加剪切荷载,水平荷载通过水平压板21传导至水平压头19,利用水平压头19向剪切盒的下盒体 12施加水平方向的剪切荷载;所述水平反力组件包括水平被杆23、被杆压头31和反力杆32,所述水平被杆23通过圆形螺母与主机框架4连接,所述反力杆32与水平被杆23连接,所述被杆压头31设置在反力杆32的末端,且与剪切盒的上盒体11配合使用,给上盒体 11施加反向作用力。The transverse shearing mechanism includes a horizontal oil
优选的,如图5所示,所述的剪切盒包括相互配合使用的上剪切盒11和下剪切盒12,且在上剪切盒11与下剪切盒12之间设置有导向条40,所述上剪切盒11和下剪切盒12均包括连接板54、侧板53、剪切钳口50和主推板51,所述侧板53对称设置在连接板54与主推板51的两侧,且通过连接栓与连接板54和主推板51连接,形成一个方形盒体结构,所述剪切钳口50设置在主推板51的内侧,且在剪切钳口50内侧形成用于安放岩体试样52的空腔,所述主推板51与横向剪切机构配合使用,即在使用时,所述水平压头19向下盒体12 施加水平方向的剪切荷载,被杆压头31向上盒体11施加反向作用力;且在减少在施加外力时上盒体11与下盒体12之间的摩擦阻力,所述导向条40设置在侧板53上的导向槽内,在使用时利用作用在下剪切盒12和上剪切盒11上的水平剪切力与反作用力来对岩体试样52进行剪切,为避免下剪切盒12下部的摩擦力影响剪切过程中的剪切精度,在所述下剪切盒12的下侧还设置有滑动机构。Preferably, as shown in FIG. 5 , the shearing box includes an
优选的,所述的滑动机构包括底板39、辊架46、棍架连接垫块 15和若干垫块16,所述底板39设置在下剪切盒12的下侧,且通过滑轨卡槽的卡和方式活动卡合在辊架46上侧,所述辊架46上通过上棍14转动安装有棍子45,所述底板39的下侧还与棍子45紧密接触,在剪切力的作用下,沿着棍子45左右滑动,所述辊架46通过棍架连接垫块15与上层垫块16连接,对辊架46进行固定,所述垫块16设置有若干块,且各垫块16之间均通过销栓销接,所述底层垫块16通过小院垫板17与主机框架4连接,对上部加载机构进行支撑。Preferably, the sliding mechanism includes a
优选的,所述连接板54、侧板53、剪切钳口50和主推板51上皆开设有固定尺寸的安装圆口,利于实现动态剪切过程中岩体破裂的超声波成像和和声发射定位;所述超声成像子系统包括六个超声波探头38和声波控制器27,六个超声波探头38安装于上剪切盒11与下剪切盒13两侧的侧板53与连接板54的中部,且超声波探头38与声波控制器27中的传感器相连,声波控制器27能接收超声波信号并通过计算软件在计算机中实现岩体内部结构的超声成像。Preferably, the connecting
优选的,所述的声发射定位子系统包括十二个声发射探头37和声发射控制器28,所述声发射探头37位于上述上剪切盒11与下剪切盒12两侧的侧板53上,且声发射探头37与声发射控制器28中的传感器相连,所述声发射控制器28能接收声发射信号并通过计算软件在计算机中实现岩体内部结构的声发射定位成像。Preferably, the acoustic emission positioning subsystem includes twelve acoustic emission probes 37 and an
优选的,所述的数据控制采集计算成像子系统包括加载油源控制器26和与计算机25,所述加载油源控制器26、声波控制器27和声发射控制器28内的传感器均与计算机25相连,通过计算机25的控制能实现加载系统的自动控制与数据的读取,并且通过分析软件处理后可实现超声成像与声发射定位成像。Preferably, the data control acquisition computing imaging subsystem includes a loading
优选的,所述的位移测量子系统包括水平剪切位移测量机构和竖向垂直压缩位移测量机构,所述水平剪切位移测量机构和竖向垂直压缩位移测量机构均包括光栅尺18、传感器托架41、支架36、调节杆 35、旋钮33和接触片34,所述竖向垂直压缩位移测量机构的支架36 通过连接栓与上压板10连接,水平剪切位移测量机构的支架36通过连接栓与下剪切盒12的连接板54连接,所述调节杆35与支架36螺纹连接,且在调节杆35的末端设置有旋钮33,用于调节调节杆35 与支架36之间的相对距离,所述接触片34设置在调节杆35上,同时所述竖向垂直压缩位移测量机构的光栅尺18通过传感器托架41和连接栓与辊架46连接,且与对应的竖向垂直压缩位移测量机构的接触片34配合使用,所述水平剪切位移测量机构的光栅尺18通过传感器托架41和连接栓与被杆压头31连接,且与对应的水平剪切位移测量机构的接触片34配合使用;即在使用时,在测量岩体试样52的竖向垂直压缩位移时,竖向垂直压缩位移测量机构的传感器托架41上的光栅尺18首先与接触片34接触并处于受压状态,支架36固定在上压板10上,当岩体试样52被压缩时,上压板10带动调节杆35及接触片34向下位移,使得光栅尺18读数头松弛测出竖向位移;在测量水平剪切位移时,水平剪切位移测量机构的传感器托架41上的光栅尺18首先与接触片34接触并处于受压状态,当岩体试样52产生剪切滑移时,下剪切盒12带动调节杆35及接触片34向反力杆32所在方向位移,光栅尺18读数头随着接触片34的移动松弛测出水平剪切位移。Preferably, the displacement measurement subsystem includes a horizontal shear displacement measurement mechanism and a vertical vertical compression displacement measurement mechanism, and both the horizontal shear displacement measurement mechanism and the vertical vertical compression displacement measurement mechanism include a
优选的,在本发明实施例提供的技术方案中,为便于观测,所述环境箱门采用具有一定强度的透明材料,在实现环境箱13冷却循环封闭的同时还能对动态剪切试验机内部的试验过程进行观测,选用合适的冷却液能保证试验机正常工作时环境箱13内部的最低温度达到零下65℃。Preferably, in the technical solution provided by the embodiment of the present invention, in order to facilitate observation, the environmental box door is made of a transparent material with a certain strength, which can realize the sealing of the cooling cycle of the
优选的,所述的岩体试样52可为完整岩体、非贯通裂隙岩体或贯通裂隙岩体。Preferably, the
优选的,动态剪切试验机加载频率范围为0~10HZ,垂直荷载与水平荷载可加载范围为0~1000t。Preferably, the loading frequency range of the dynamic shear testing machine is 0-10 Hz, and the loading range of vertical load and horizontal load is 0-1000t.
优选的,所述剪切盒尺寸可为100mm×100mm×100mm或 100mm×100mm×200mm;在切换不同尺寸的剪切盒时可通过调节垫块15的数量来调整岩体试样52的加载高度。Preferably, the size of the shear box can be 100mm×100mm×100mm or 100mm×100mm×200mm; when switching shear boxes of different sizes, the loading height of the
本发明的低温岩体变频变幅动态剪切声学物理试验系统的试验方法方法,包括以下步骤:The test method of the low-temperature rock mass variable frequency variable amplitude dynamic shear acoustic physical test system of the present invention comprises the following steps:
S1.将岩体试样52放入剪切盒中,调整旋钮33使光栅尺18与接触片34接触并给予光栅尺18适当的压力,然后关闭环境箱门;S1. Put the
S2.连接声发射探头,超声波探头,并紧贴于岩石试样,启动声波控制器27、声发射控制器28与计算机25,并对线路的通畅性和有效信号进行测试;S2. Connect the acoustic emission probe and the ultrasonic probe, and stick it close to the rock sample, start the
S3.启动温度控制采集箱24,给环境箱内设定某一低温后启动制冷循环;实现对岩石的实时冻融、冻结和融化处理,环境箱内温度和冻融次数可自动控制;S3. Start the temperature
S4.启动动态剪切试验机、加载油源控制器26,对扰动力信号进行测试;S4. Start the dynamic shear testing machine, load the
S5.通过计算机25的加载控制软件为试验机设定好加载频率,加载幅值与循环圈数,并将光栅尺18所测位移数据清零,待到环境箱 13内温度达到设定值后发射超声波并开始加载;S5. Set the loading frequency, the loading amplitude and the number of cycles for the testing machine through the loading control software of the
S6.加载过程中,通过测量与控制系统对荷载、位移、超声波信号、声发射信号进行数据采集,并观察加载过程中的剪切应力-应变曲线的变化;S6. During the loading process, the measurement and control system is used to collect data on the load, displacement, ultrasonic signal, and acoustic emission signal, and observe the change of the shear stress-strain curve during the loading process;
S7.当岩体试样52破坏时,停止加载;S7. When the
S8.关闭温度控制采集箱24,打开环境箱门,待环境箱13内温度达到室温后取出破坏后的岩体试样52并关闭低温岩体变频变幅动态剪切声学物理试验系统。S8. Close the temperature
本发明所述上述低温岩体变频变幅动态剪切声学物理试验系统具有以下优点:The above-mentioned low-temperature rock mass variable frequency variable amplitude dynamic shear acoustic physical test system according to the present invention has the following advantages:
(1)本发明所述试验系统不仅可以满足大部分试验规模要求,同时通过动态剪切系统、低温控制系统、声学物理测试系统、测量与控制系统能实现变频率变幅值加载,能考虑低温对岩体剪切破坏特性的影响并用声学物理手段来实现岩体剪切破裂过程中的声学物理成像,能模拟测试工程实际中各类工况作用下的节理岩石动态剪切特性以及揭示岩体损伤及破裂过程中的内部裂纹扩展机理,丰富了试验所得数据,提高了试验质量;(1) The test system of the present invention can not only meet the requirements of most test scales, but also can realize variable frequency and variable amplitude loading through dynamic shear system, low temperature control system, acoustic physical test system, measurement and control system, and can consider low temperature Influence on the shear failure characteristics of rock mass and the use of acoustic physical means to achieve acoustic physical imaging in the process of rock mass shear failure, it can simulate and test the dynamic shear characteristics of jointed rocks under various working conditions in engineering practice and reveal the rock mass. The internal crack propagation mechanism in the process of damage and rupture enriches the data obtained from the test and improves the test quality;
2.本发明所述试验系统运用声学物理测试系统中的超声波成像技术与声发射定位成像技术,能对加载过程中岩体试样内部裂纹的萌生进行定位,能够揭示动态剪切破裂过程中岩体内部结构变化特征;2. The test system of the present invention uses the ultrasonic imaging technology and the acoustic emission positioning imaging technology in the acoustic physical test system, which can locate the initiation of cracks in the rock mass sample during the loading process, and can reveal the rock mass in the process of dynamic shear fracture. Changes in the internal structure of the body;
3.根据上述具体实施方式可知,本发明所述试验系统的试验机采用应变片与应变仪来对动态扰动下的试样变形进行测量,应变片测量变形的方法均为岩样点上或面上变形的平均,测量结果与应变测量位置密切相关,依次计算出的体应变也是局部的,同时,动态剪切作用下试样变形量大,精度会较差。我们的发明采用光栅尺位移传感器来对岩体试样动态剪切过程中的变形进行测量,解决了动力荷载过程中岩样变形的高分辨动态测量问题,同时光栅尺位移传感器具有量程大于精度高等优点,可实现动态测量,易于实现测量及数据处理的自动化。3. According to the above-mentioned specific embodiments, the testing machine of the test system of the present invention adopts strain gauges and strain gauges to measure the deformation of the sample under dynamic disturbance, and the methods for measuring the deformation of the strain gauges are on the rock sample point or on the surface. On the average of the upper deformation, the measurement results are closely related to the strain measurement position, and the volume strain calculated in turn is also local. Our invention uses a grating scale displacement sensor to measure the deformation of the rock sample during the dynamic shearing process, which solves the problem of high-resolution dynamic measurement of rock sample deformation during dynamic loading. The advantage is that it can realize dynamic measurement, and it is easy to realize the automation of measurement and data processing.
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The foregoing has shown and described the basic principles, main features and advantages of the present invention. Those skilled in the art should understand that the present invention is not limited by the above-mentioned embodiments, and the descriptions in the above-mentioned embodiments and the description are only to illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will have Various changes and modifications fall within the scope of the claimed invention. The claimed scope of the present invention is defined by the appended claims and their equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111609329.4A CN114486560B (en) | 2021-12-27 | 2021-12-27 | Variable frequency and variable amplitude dynamic shear acoustic physical test system and test method for low temperature rock mass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111609329.4A CN114486560B (en) | 2021-12-27 | 2021-12-27 | Variable frequency and variable amplitude dynamic shear acoustic physical test system and test method for low temperature rock mass |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114486560A true CN114486560A (en) | 2022-05-13 |
CN114486560B CN114486560B (en) | 2025-06-03 |
Family
ID=81496624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111609329.4A Active CN114486560B (en) | 2021-12-27 | 2021-12-27 | Variable frequency and variable amplitude dynamic shear acoustic physical test system and test method for low temperature rock mass |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114486560B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115656336A (en) * | 2022-10-31 | 2023-01-31 | 四川大学 | Acoustic real-time imaging system and method for testing state evolution of rock mass under deep-ground condition |
CN118294298A (en) * | 2024-06-05 | 2024-07-05 | 东北大学 | A drop weight test method for the design process of rock breaking equipment for deep engineering machinery |
CN118500935A (en) * | 2024-04-08 | 2024-08-16 | 中国电建集团成都勘测设计研究院有限公司 | Avalanche simulation shear test device and test method based on vibration load |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102116720A (en) * | 2010-01-04 | 2011-07-06 | 中国科学院地质与地球物理研究所 | Rock mechanical test system capable of realizing frequency and amplitude-variable dynamic loading |
CN106596295A (en) * | 2017-01-13 | 2017-04-26 | 中国矿业大学(北京) | Angle-variable subzero-temperature direct shear apparatus for rock and test operation method |
CN109991104A (en) * | 2019-05-06 | 2019-07-09 | 中国矿业大学(北京) | The staight scissors test device and its test method of Rock And Soil bulk material under Freezing-Melting Condition |
CN110779811A (en) * | 2019-10-25 | 2020-02-11 | 武汉科技大学 | Rainfall seepage and blasting vibration coupling simulation soft rock shear rheology test system |
CN111198136A (en) * | 2020-02-17 | 2020-05-26 | 北京科技大学 | An experimental system and method for monitoring the frost heave expansion process of ice-bearing fracture network in rock mass |
CN112284931A (en) * | 2020-09-30 | 2021-01-29 | 中国科学院武汉岩土力学研究所 | Multidirectional rock reciprocating shearing-temperature coupling and acoustic testing method |
US20210123842A1 (en) * | 2019-10-25 | 2021-04-29 | Wuhan University Of Science And Technology | Shear box of shear rheology experiment of a soft rock for simulating the coupling of the rainfall seepage and blasting vibration |
-
2021
- 2021-12-27 CN CN202111609329.4A patent/CN114486560B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102116720A (en) * | 2010-01-04 | 2011-07-06 | 中国科学院地质与地球物理研究所 | Rock mechanical test system capable of realizing frequency and amplitude-variable dynamic loading |
CN106596295A (en) * | 2017-01-13 | 2017-04-26 | 中国矿业大学(北京) | Angle-variable subzero-temperature direct shear apparatus for rock and test operation method |
CN109991104A (en) * | 2019-05-06 | 2019-07-09 | 中国矿业大学(北京) | The staight scissors test device and its test method of Rock And Soil bulk material under Freezing-Melting Condition |
CN110779811A (en) * | 2019-10-25 | 2020-02-11 | 武汉科技大学 | Rainfall seepage and blasting vibration coupling simulation soft rock shear rheology test system |
US20210123842A1 (en) * | 2019-10-25 | 2021-04-29 | Wuhan University Of Science And Technology | Shear box of shear rheology experiment of a soft rock for simulating the coupling of the rainfall seepage and blasting vibration |
CN111198136A (en) * | 2020-02-17 | 2020-05-26 | 北京科技大学 | An experimental system and method for monitoring the frost heave expansion process of ice-bearing fracture network in rock mass |
CN112284931A (en) * | 2020-09-30 | 2021-01-29 | 中国科学院武汉岩土力学研究所 | Multidirectional rock reciprocating shearing-temperature coupling and acoustic testing method |
Non-Patent Citations (2)
Title |
---|
孙红春等: "《机械工程测试技术》", vol. 2, 31 January 2021, 机械工业出版社, pages: 266 - 267 * |
王宇等: "不同频率增幅疲劳荷载下双裂隙花岗岩破裂演化声发射特性与裂纹形态研究", 《岩石力学与工程学报》, vol. 40, no. 10, 1 October 2021 (2021-10-01), pages 1976 - 1989 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115656336A (en) * | 2022-10-31 | 2023-01-31 | 四川大学 | Acoustic real-time imaging system and method for testing state evolution of rock mass under deep-ground condition |
CN118500935A (en) * | 2024-04-08 | 2024-08-16 | 中国电建集团成都勘测设计研究院有限公司 | Avalanche simulation shear test device and test method based on vibration load |
CN118294298A (en) * | 2024-06-05 | 2024-07-05 | 东北大学 | A drop weight test method for the design process of rock breaking equipment for deep engineering machinery |
Also Published As
Publication number | Publication date |
---|---|
CN114486560B (en) | 2025-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xie et al. | Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress: A review | |
CN114486560A (en) | Low-temperature rock mass variable-frequency variable-amplitude dynamic shear acoustic physical test system and test method | |
Akdag et al. | Effects of thermal damage on strain burst mechanism for brittle rocks under true-triaxial loading conditions | |
US10969314B2 (en) | Device and method for anchor bolt (cable) supporting structure test and anchoring system performance comprehensive experiment | |
Hao et al. | Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading | |
EP3712589B1 (en) | Test apparatus and method for key roof block collapse in bidirectional static-dynamic loading | |
CN105865907B (en) | A kind of true triaxial test fixture for energetic disturbance type rock burst simulation | |
Cai et al. | Post-peak stress–strain curves of brittle hard rocks under axial-strain-controlled loading | |
CN102607950B (en) | Rock shearing seepage coupling true triaxial test system | |
Wang et al. | On anisotropic fracture evolution and energy mechanism during marble failure under uniaxial deformation | |
CN108709931B (en) | Laboratory test system and method for stress wave propagation law in deep jointed rock mass | |
CN104237024B (en) | A kind of mine working face base plate Mining failure simulation experiment method | |
WO2020134581A1 (en) | Medium-low strain-based dynamic static integrated experimental test system | |
CN111157356B (en) | A test device for the evolution of frost-heaving force in ice-containing cracks of rock mass under the action of stress disturbance | |
US11921088B2 (en) | Thermal-stress-pore pressure coupled electromagnetic loading triaxial Hopkinson bar system and test method | |
CN110595909A (en) | True triaxial test system and method for simulating the influence of different temperatures on deep rock mass | |
CN104266913B (en) | Mining failure simulation test device for mine working face floor | |
CN102607955B (en) | Biaxial compression test device for fractured rock mass | |
CN202522479U (en) | Novel rock shearing seepage coupling true triaxial test system | |
CN111595682B (en) | Large-scale complex surrounding rock condition anchoring and grouting integrated coupling effect test system and method | |
CN105865925A (en) | Device for utilizing real triaxial testing machine to realize rock biaxial tension test | |
WO2024011651A1 (en) | Large three-dimensional physical simulation experiment system for whole process of deep engineering rock burst development | |
CN103033458A (en) | Indoor test system and test method for seepage characteristics of jointed rock mass | |
CN210775067U (en) | True triaxial test system for simulating different temperature influences of deep rock mass | |
CN205910062U (en) | Utilize true triaxial test machine to realize that two axial tension of rock press experimental device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |