CN114481129A - 一种耐腐蚀高隔热的低辐射率氧化锆基热障涂层及其制备方法 - Google Patents

一种耐腐蚀高隔热的低辐射率氧化锆基热障涂层及其制备方法 Download PDF

Info

Publication number
CN114481129A
CN114481129A CN202111679820.4A CN202111679820A CN114481129A CN 114481129 A CN114481129 A CN 114481129A CN 202111679820 A CN202111679820 A CN 202111679820A CN 114481129 A CN114481129 A CN 114481129A
Authority
CN
China
Prior art keywords
temperature
barrier coating
thermal barrier
emissivity
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111679820.4A
Other languages
English (en)
Other versions
CN114481129B (zh
Inventor
李红霞
张陆洋
冯晶
陈琳
王建坤
荣菊
王刚
赵世贤
粱鹏鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Original Assignee
Kunming University of Science and Technology
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology, Sinosteel Luoyang Institute of Refractories Research Co Ltd filed Critical Kunming University of Science and Technology
Priority to CN202111679820.4A priority Critical patent/CN114481129B/zh
Publication of CN114481129A publication Critical patent/CN114481129A/zh
Application granted granted Critical
Publication of CN114481129B publication Critical patent/CN114481129B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开了一种耐高温热疲劳的低辐射率氧化锆基复合热障涂层及其制备方法。该热障涂层由自下而上依次设置的粘结层、阻氧降温陶瓷层、耐腐蚀隔热陶瓷层和低辐射层组成。本发明依次在高温合金基底表面制备粘结层、阻氧降温层、耐腐蚀隔热层和低辐射层,并根据各层不同的的功能和性质针对性的采用超音速火焰和等离子喷涂分别制备上述复合涂层材料。本发明所制备得到的热障涂层于1400℃时的表面辐射率为0.19‑0.20,测量结果远远低于常见热障涂层材料,为内部高温合金基底提供了较强的隔热保护。另外,基于其优越的涂层材料、喷涂技术和涂层结构设计方案,本发明热障涂层在1150℃下热疲劳考核高达11000次,适用于严苛的服役环境,是对现有涂层技术极大的飞跃。

Description

一种耐腐蚀高隔热的低辐射率氧化锆基热障涂层及其制备 方法
技术领域
本发明属于热障涂层技术领域,具体涉及一种耐腐蚀高隔热的低辐射率氧化锆基热障涂层及其制备方法。
背景技术
作为国防安全的重大核心装备,高超音速飞行器、火箭、导弹、大功率航空发动机以及重型燃气轮机等大国重器随着技术领域的不断突破,其热端部件的服役环境愈加恶劣,对于基础材料的性能要求也不断提高。高温合金具有较高的高温强度,良好的抗氧化和抗腐蚀性能,良好的疲劳性能、断裂韧性等综合性能,广泛应用于航天航空,石油化工等重要领域。伴随着发动机推重比的不断提高,高温合金服役条件更加苛刻,高温环境下材料的各种退化速度都被加速,在使用过程中极易发生组织不稳定、在温度和应力作用下产生变形和裂纹长大、材料表面的氧化腐蚀,单晶合金材料已发展到第四代,承温能力提升到1140℃,已近金属材料使用温度极限,无法进一步满足先进航空发动机的需求。热障涂层技术的出现对关键热端部件提供了有效的防护手段,现役热障涂层材料氧化钇稳定氧化锆由于其相对较高的热导率和辐射率,较低的热膨胀系数,高温下较高的氧通量以及1200℃左右发生的体积相变,使其在温度高于相变点后YGO层快速生长,无法有效附着于合金基体并提供合适的降温梯度,已无法满足越来越严苛的服役环境要求,限制了高超音速飞行器及高性能大飞机的快速发展。
发明内容
本发明的第一目的是提供一种耐高温热疲劳的低辐射率氧化锆基复合热障涂层,本发明的第二目的是提供一种耐高温热疲劳的低辐射率氧化锆基复合热障涂层的制备方法。
本发明的第一目的是这样实现的,一种耐高温热疲劳的低辐射率氧化锆基复合热障涂层,由自下而上依次设置的粘结层、阻氧降温陶瓷层、耐腐蚀隔热陶瓷层和低辐射层组成;
其中,粘结层组分为贵金属改性的NiCoCrAlY粉末;
阻氧降温陶瓷层组分为RETa1-xNbxO4粉末;
耐腐蚀隔热陶瓷层组分为RE2O3-ZrO2粉末;
低辐射层组分为难熔金属改性的铂基合金粉末;
所述粘结层厚度为100-200μm,所述阻氧降温陶瓷层厚度为75-125μm,所述耐腐蚀隔热陶瓷层厚度为150-250μm;所述低辐射层厚度为10-50μm。
所述复合热障涂层于25℃时的表面辐射率为0.24-0.25,于1400℃时的表面辐射率为0.19-0.20;
所述复合热障涂层在1150℃下的热疲劳考核循环次数达11000次。
本发明的第二目的是这样实现的,一种耐高温热疲劳的低辐射率氧化锆基复合热障涂层的制备方法,是先使用丙酮或乙醇对高温合金表面清洁干燥,并使用白刚玉在0.55-0.65Mpa气压下对洁净表面粗糙化,之后分别利用超音速火焰,真空等离子,大气等离子以及磁控溅射对各功能层进行制备,最终在高温合金表面形成一层耐高温热疲劳的低辐射率氧化锆基复合热障涂层;
本发明的原理为:
1、本发明依次在高温合金基底表面制备粘结层、阻氧降温层、耐腐蚀隔热层和低辐射层,并根据各层不同的的功能和性质针对性的采用超音速火焰和等离子喷涂分别制备上述复合涂层材料。其中通过在NiCoCrAlY粘结层中加入一定量的稀贵金属(铂、钯、铑、钌、铱或锇)能够有效提高粘结层的抗氧化性能从而抑制热生成氧化物的产生;使用强氧离子绝缘体钽/铌酸盐作为阻氧降温层除了利用这类材料低热导率和孔隙结构实现陶瓷内层梯度降温,其极低的氧离子扩散系数还显著降低TGO层的生长速率;作为耐腐蚀隔热层的氧化锆基陶瓷材料通过稀土元素掺杂,在氧化锆原有优异性能上,同时实现加剧声子散射,抑制降解,提高化学惰性,从而极大的提高涂层耐高温耐腐蚀性能,并通过调整孔隙结构提供优异的降温梯度;使用难熔金属改性的低辐射层利用金属铂极低的辐射率显著降低整体涂层体系的表面温度,为内部提供更为稳定的服役环境。
2、本发明选择NiCoCrAlY合金作为粘结层是因为本身具有熔点高和抗氧化能力强的特点,同时加入一定量的具有强抗氧化性能的稀贵金属(铂、钯、铑、铪、钌、铱和锇)能够进一步提高粘结层材料的抗氧化性能,从而抑制粘结层表面热生成氧化物的产生,减小涂层体系内层与层之间的热应力;
3、本发明使用稀土钽/铌酸盐RETa1-xNbxO4陶瓷作为阻氧降温层是由于钽酸盐作为强氧离子绝缘体阻碍在高温下活性氧原子在材料体系中的内扩散,减缓粘结层氧化速率,大幅提高热障涂层材料体系寿命;其次由于铁弹性和纤维状铁弹畴协同增韧使得钽酸盐具有极高的高温断裂韧性,在涂层体系中作为内陶瓷层承担系统内部热失配产生的内应力,其极低的热导率也可以提供可观的隔热梯度,提高了涂层系统的容错率,保证了整体涂层体系结构稳定。
4、本发明使用RE2O3-ZrO2氧化锆基陶瓷材料作为耐腐蚀隔热层是由于氧化锆陶瓷具有较低的热导率以及良好的高温稳定性,同时涂层为多孔结构进一步降低热导率从而能够提供优异隔热降温的效果。在这一基础上,掺杂了一定量的稀土元素(铈、铕、钆、铒、镱、镥,钇和钪)而两相组成的特点可以相关抑制晶粒长大提高材料的抗烧结性能,稀土掺杂相互固溶同时抑制降解,提高氧化锆的相变点,保证涂层优异的高温稳定性,其中离子半径差较大的掺杂取代形成新的声子散射位点,加剧声子散射程度,有效降低热导率,提高抗CMAS渗透能力,在一定程度上提高涂层抗CMAS能力以及化学惰性,通过喷涂参数调整进一步在孔隙结构上提供可观的隔热梯度,保证体系内部化学服役环境及温度场的稳定;
5、本发明使用难熔金属改性金属铂作为低辐射层由于金属铂辐射率仅有0.05-0.18,且金属铂层也具有良好的高温抗氧化性和化学稳定性,同时加入一定量的钨,钼,铱等难熔金属进一步提高其高温稳定性和耐蚀性,通过磁控溅射制备于体系表面显著降低了体系的整体温度,在相同热源条件下为体系内部提供相对温和的温度梯度。
6、本发明针对高温热疲劳循环考核的条件特性,通过设备调整及控制喷涂工艺,对复合涂层表面功能层孔隙数量,尺寸,分布区间进行优化设计,氧化锆基陶瓷材料作为最外功能层,对热应力循环和梯度降温较为敏感,在喷涂过程中,适当降低输出功率,减少送粉量,增加主气和辅气比例,缩短枪距,从而增加孔隙率,提高孔隙密度,扩大孔隙范围,通过包覆气体,降低了表面热导率,为隔热系统提供了平缓的温度梯度,并从结构角度提高了表层应力容限,极大的提高了复合涂层高温热疲劳耐性。
本发明的有益效果为:
本发明所制备得到的热障涂层于1400℃时的表面辐射率为0.19-0.20,测量结果远远低于常见热障涂层材料,为内部高温合金基底提供了较强的隔热保护。另外,基于其优越的涂层材料、喷涂技术和涂层结构设计方案,本发明热障涂层在1150℃下热疲劳考核高达11000次,适用于严苛的服役环境,是对现有涂层技术极大的飞跃。
附图说明
图1为实施例1氧化锆基复合热障涂层体系结构图,其中,1—粘结层,2—阻氧降温陶瓷层,3—耐腐蚀隔热陶瓷层,4—低辐射层,5—高温合金基体;
图2为实施例1氧化锆基复合热障涂层微距实物图;
图3为实施例1氧化锆基复合热障涂层循环次数为11000次热疲劳考核实拍图;
图4为实施例1氧化锆基复合热障涂层的截面微观图;
图5为实施例1氧化锆基复合热障涂层25℃下的0.4-1.1μm辐射率;
图6为实施例1氧化锆基复合热障涂层1400℃下的0.4-1.1μm辐射率。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明,但不以任何方式对本发明加以限制,基于本发明教导所作的任何变换或改进,均落入本发明的保护范围。
本发明一种耐高温热疲劳的低辐射率氧化锆基复合热障涂层,由自下而上依次设置的粘结层1、阻氧降温陶瓷层2、耐腐蚀隔热陶瓷层3和低辐射层4组成,如图1所示;
其中,粘结层1组分为贵金属改性的NiCoCrAlY粉末;
阻氧降温陶瓷层2组分为RETa1-xNbxO4粉末;
耐腐蚀隔热陶瓷层3组分为RE2O3-ZrO2粉末;
低辐射层4组分为难熔金属改性的铂基合金粉末;
所述粘结层1厚度为100-200μm,所述阻氧降温陶瓷层2厚度为75-125μm,所述耐腐蚀隔热陶瓷层3厚度为150-250μm;所述低辐射层4厚度为10-50μm。
所述复合热障涂层于25℃时的表面辐射率为0.24-0.25,于1400℃时的表面辐射率为0.19-0.20;
所述复合热障涂层在1150℃下的热疲劳考核循环次数达11000次。
所述贵金属改性的NiCoCrAlY粉末由以下质量百分数的元素组成:Ni49.12%,Cr24.18%,Co19.22%,Al6.87%,Y0.61%。
所述贵金属为铂、钯、铑、铪、钌、铱或锇中的一种或几种。
所述RETa1-xNbxO4粉末中RE、Nb2O5和Ta2O5的摩尔配比为1:1-x:x 。
x的值为0.2-0.6。
RE为Ce、Eu、Gd、Er、Yb、Lu,Y或Sc中的一种或几种。
在保证结合强度大于20Mpa的条件下,阻氧降温陶瓷层2与耐腐蚀隔热陶瓷层3的厚度之和为150-500μm。
所述RE2O3-ZrO2粉末组分配比为RE2O3:ZrO2=1:1。
所述难熔金属改性的铂基合金粉末组分配比为:难熔金属质量为铂基合金的0.1-5%;所述难熔金属为铱,铑,钼和钴金属中的一种或几种。
所述耐高温热疲劳的低辐射率氧化锆基复合热障涂层的制备方法,是先使用丙酮或乙醇对高温合金表面清洁干燥,并使用白刚玉在0.55-0.65Mpa气压下对洁净表面粗糙化,之后分别利用超音速火焰,真空等离子,大气等离子以及磁控溅射对各功能层进行制备,最终在高温合金表面形成一层耐高温热疲劳的低辐射率氧化锆基复合热障涂层;
所述超音速火焰喷涂的工艺参数如下:工件最高温度350±10℃,x轴喷枪枪速50-700mm/s,y轴喷枪枪速00-400mm/s,喷枪步距-10mm,喷枪枪距0-340mm,燃烧室压力0-95Pa,送粉-6rpm,氧气流量500-1700scfh,载气流量0-18.5scfh,进水温度0-30℃,回水温度不高于55.5℃;
真空等离子喷涂的工艺参数为:工件最高温度250±50℃,喷枪功率35-50kW,电流200-270A,系统喷枪电压比130/75-200/120,喷枪距离60-160mm,喷枪步距3-6mm,x轴喷枪移速1000-1600mm/s,y轴喷枪移速250-330mm/s,氮气流量60-80scfh,氢气流量20-40scfh,载气流量20-40scfh,送粉速度:5-10rpm;
大气等离子喷涂的工艺参数为:工件最高温度170±5℃,喷枪功率80-130kW,电流200-350A,系统喷枪电压比200/100-350/195,喷枪距离90-160mm,喷枪步距3-10mm,x轴喷枪移速1200-1700mm/s,y轴喷枪移速150-300mm/s,氩气流量150-200scfh,氮气流量60-110scfh,氢气流量25-55S scfh,载气流量20-50 scfh,送粉速度5-11rpm;
磁控溅射的工艺参数为:真空度1.5-2.4Pa,溅射电流110-130mA,溅射时间50-320s,校正因子1.0-2.0,样品台旋转速度5-10rpm,进水温度≤40℃,回水温度≤70℃。
所述高温合金基体为GH系列、Inconel系列、Incoloy系列、蒙乃尔系列、哈氏系列、海纳系列铁基、镍基、钴基或高铬高温合金。
实施例1
(1)选取Φ24.9mm高温合金Inconel718棒材,于精密线切割机床制备厚度为6mm的合金试片,将高温合金基材完全淹没于乙醇超声震荡仪中20min,使用脱脂棉对高温合金表面进行初步擦拭清洁,放置于80℃真空干燥箱中3h,随后使用白刚玉在0.65Mpa气压下对洁净表面粗糙化,并用吹扫气清理表面浮渣;
(1)将洁净喷砂态Inconel718高温合金基材装夹在特定工装上,控制火焰对试片包括装夹工装预热2次,保持温度在350℃以下的预热温度,通过超音速火焰喷涂的方式在高温合金Inconel718表面制备厚度为150μm孔隙率为4%的NiCoCrAlYHf粘结层;超音速火焰喷涂参数设置:x轴y轴喷枪枪速分别为500mm/s和250mm/s,喷枪步距5mm,喷枪枪距335mm,燃烧室压力89.4Pa,送粉4.5rpm,氧气和载气流量分别为1640scfh和23scfh,进水温度和回水温度分别为56.6℃和84℃;
(2)在较短时间内将Inconel718高温合金换取到等离子喷涂工装上,通过真空等离子喷涂的方式在粘结层表面制备厚度为100μm,气孔率8%,YTa0.8Nb0.2O4阻氧降温层:首先使用Y2O3、Nb2O5和Ta2O5为原料通过高温固相法制备得到球形的YTa0.8Nb0.2O4球形粉体,喷涂前预热1次,工件最高温度250℃,在大气等离子喷涂时工艺参数为喷枪功率40kW,电流230A,系统喷枪电压比150/110,喷枪距离120mm,喷枪步距5mm,x轴y轴喷枪移动速度为1400mm/s、290mm/s,氮气、氢气以及载气的流量分别为70scfh、30scfh、30scfh,送粉速度7rpm;
(3)等喷涂环境稳定,将Inconel718高温合金取下,吹扫清洁表面,通过大气等离子喷涂的方式在阻氧降温层表面制备厚度为200μm,气孔率17%,(Sc0.8Er0.22Zr2O7耐腐蚀隔热层:首先使用Sc2O3、Er2O3和Zr2O3为原料通过高温固相法制备得到球形的(Sc0.8Er0.22Zr2O7球形粉体,喷涂前预热2次,工件最高温度170℃,在高焓等离子喷涂时工艺参数为喷枪功率100kW,电流230A,系统喷枪电压比300/150,喷枪距离130mm,喷枪步距6.4mm,x轴y轴喷枪移动速度为150mm/s、240mm/s,氩气、氮气、氢气以及载气的流量分别为180scfh、80scfh、30scfh、40scfh,送粉速度7.5rpm;
(4)将制备有耐腐蚀隔热层的Inconel718高温合金放置于旋转台上,安装好铂基合金靶材,将沉积室抽真空,通过等离子磁控溅射的方式在耐腐蚀隔热层表面制备厚度约为15nm的铂铱合金,在等离子磁控溅射低辐射层时工艺参数为真空度2.1Pa,溅射电流110-130mA,溅射时间180s,校正因子1.6,样品台旋转速度6rpm,进水温度17℃、回水温度34℃。
实施例1所制得的(Sc0.8Er0.22Zr2O7/ YTa0.8Nb0.2O4低辐射率氧化锆基复合热障涂层体系结构图、微距实物图及截面微观图分别见图1、2及4。
一、对实施例1制得的(Sc0.8Er0.22Zr2O7/ YTa0.8Nb0.2O4低辐射率氧化锆基复合热障涂层进行热疲劳考核
试验仪器:采用昆明理工大学及中环联合研制全自动航空材料高温热循环系统
试验条件:1150°C恒温保温5 min;室温下(25 °C)空气冷却5 min;
失效判定:单个试样涂层脱落面积≥涂层总面积的20%。
试验装置及试样要求:
(1)实验采用管式电炉作为加热电炉。
(2)电炉要求:控温精度≤±1 °C,1150 °C恒温不间断工作。
(3)试样要求:热疲劳试样直径25±0.2mm,厚度10±0.1mm
(4)试样表面无污染,两平面平行度不大于0.1mn。
(5)采用自动推杆机作为热疲劳循环实验机;
(6)自动推杆机采用PLC编程精准控制时间,样品台采用全石英管。
试验方法:多温区单向热疲劳试验,样品IN-02放置于载物台前端5cm处,于恒温电炉恒温区范围内保温10min,通过压缩空气冷却3min为一个循环周期。
具体操作方法如下:将喷涂好的Inconel718 高温合金表面吹扫清洁,在不
触碰涂层侧边缘的前提下,与载物台前端5cm处特定工装凹槽契合后固定放置,加热恒温室至1150℃,设置单维激光伸缩仪参数,载物台移速80mm/s,调整工装与恒温室位置,开启伸缩仪,试样移至恒温区范围内保温10min,后随自动载物台单向移出加热区,通过压缩空气冷却3min,记录考核温度变化及观察涂层考核失效状态,考核过程试样参数如表1所示,考核过程中试样的变化如图3所示。
表1 实施例1制备的热障涂层的热疲劳考核数据
考核次数 冷却温度(℃) 辐射率(%) 失效占比 脱落部位
1000 25 0.19 1% 少量倒角
2000 26 0.19 1% 少量倒角
3000 26 0.19 4% 少量面层
4000 26 0.19 4% 少量面层
5000 24 0.19 4% 少量面层
6000 25 0.19 4% 少量面层
7000 26 0.2 4% 少量面层
8000 25 0.2 6% 大量倒角
9000 25 0.2 6% 大量倒角
10000 24 0.2 6% 大量倒角
11000 27 0.2 11% 大量面层
从表1可知,实施例1所制得的(Sc0.8Er0.22Zr2O7/ YTa0.8Nb0.2O4低辐射率氧化锆基复合热障涂层1150℃热疲劳循环实验11000次后,涂层倒角包括考核面总体脱落11%,达到失效条件,考核结束。
从图3中可以看出,随着热循环次数的不断增加,由于尖端效应,于1000次涂层倒角处出现开裂,并伴随有少量脱落,表层析出少量黑色点状物,为高温偏析产物,对涂层隔热并无影响,于3000次循环后,面层边缘出现少量脱落,整体状态稳定,维持相关隔热参数至8000次后,倒角大量脱落,导致边缘应力过于集中,在11000次考核后,小部分面层呈片状脱落,脱落整体面积超过11%,达到失效条件,停止热疲劳考核。
二、对实施例1制得的(Sc0.8Er0.22Zr2O7/ YTa0.8Nb0.2O4低辐射率氧化锆基复合热障涂层进行辐射率测量
分别运用反射法和能量法在室温及1400℃高温下对喷涂态试样表面进行辐射率测量。
1、反射法具体步骤如下:
步骤1:在放置样品之前,放置经过标定的高反射保护金膜平面反射镜,测量光源的强度Is;
步骤2:测量时将样品放置在半抛物面反射镜的轴截面处,使样品表面与半抛物面反射镜的轴截面重合,且半抛物面反射镜焦点位于样品表面的待测区域内;
步骤3:开启加热器,将样品加热到设定温度;
步骤4:将光源移动至设定位置,打开光源,打开光电探测器,计算机记录探测器数值,即可得到材料表面在四分之一球面空间反射和散射强度IHI(λ,θi,Φi,T);
步骤5:将加热器绕焦点处表面的法线旋转180°,重复步骤2-4即可得到目标表面在另外四分之一球面空间反射和散射强度IH2(λ,θi,Φi,T);
步骤6:计算材料表面在全空间的反射率ρ(λ,θi,Φi,T)=( IHI+ IH2)/ Is,从而计算材料表面的辐射率。
2、能量法基体步骤如下:
步骤1:开启加热器,将样品加热到设定温度;
步骤2:当温度达到所需温度时,用计算机控制电动位移台,将待测样品移动至测量位置使样品表面与半抛物面反射镜的轴截面重合,保证半抛物面反射镜的焦点在样品的待测区域内,用光电探测器记录样品在1/4空间内各个方向下的辐射能量值;
步骤3:用计算机控制电动旋转台转动180°,重复步骤2即可得到样品半空间内各个方向下的辐射能量值;
步骤4:将中温黑体的温度升高至与样品相同温度,用计算机控制电动位移台移动中温黑体,使中温黑体腔上截面的几何中心与半抛物面反射镜的焦点重合,测量中温黑体法向的辐射能量值;
步骤5:计算机将两次记录的数据进行提取计算,所记录的样品辐射能量值和中温黑体辐射能量值进行计算得出样品的辐射率。
结果:
测试样均为喷涂态,并无表面抛光处理。测量结果如图5和图6所示。从图中,可以得知在0.4-1.1μm波长下,涂层表面辐射率在环境温度25℃时,辐射率为0.243;环境温度1400℃时,辐射率仅为0.192,这一测量结果远远低于常见热障涂层材料,为内部高温合金基底提供了可观的隔热保护。
三、对实施例1制备的涂层试样热力学性能检测,检测结果如表2所示:
表2实施例1涂层的试样热力学性能
项目 实施例1热障涂层
热导率(W.K<sup>-1</sup>.m<sup>-1</sup>) 16
结合强度(MPa) 24
热膨胀系数(×10<sup>-6</sup>K<sup>-1</sup>) 11
硬度(GPa) 8
模量(GPa) 70
断裂韧性(MPa.m<sup>1/2</sup>) 6
实施例2
(1)除高温合金改为使用Incoloy825高温合金外,其他步骤均与实施例1步骤1相同;
(2)将洁净喷砂态Incoloy825高温合金基材装夹在特定工装上,控制火焰对试片包括装夹工装预热2次,保持温度在360℃以下的预热温度,通过超音速火焰喷涂的方式在高温合金Incoloy825表面制备厚度为100μm孔隙率为3%的NiCoCrAlYRh粘结层;超音速火焰喷涂参数设置:x轴y轴喷枪枪速分别为450mm/s和200mm/s,喷枪步距5.5mm,喷枪枪距330mm,燃烧室压力72.4Pa,送粉2.5rpm,氧气和载气流量分别为1500scfh和19scfh,进水温度和回水温度分别为43.1℃和70℃;
(3)较短时间内将Incoloy825高温合金换取到等离子喷涂工装上,2次不高于140℃预热后,通过真空等离子喷涂的方式在粘结层表面制备厚度为75μm,气孔率5%,Lu(Ta0.4Nb0.6)O4阻氧降温层;首先使用Lu2O3、Nb2O5和Ta2O5为原料通过高温固相法制备得到球形的Lu(Ta0.4Nb0.6)O4球形粉体,在真空等离子喷涂时工艺参数为喷枪功率35kW,电流200A,系统喷枪电压比135/75,喷枪距离69mm,喷枪步距4.5mm,x轴y轴喷枪移动速度为1000mm/s、250mm/s,氮气、氢气以及载气的流量分别为60scfh、20scfh、20scfh,送粉速度5.5rpm;
(4)等喷涂环境稳定,将Incoloy825高温合金取下,吹扫清洁表面,通过大气等离子喷涂的方式在阻氧降温层表面制备厚度为150μm,气孔率15%,(Sc0.4Rh0.62Zr2O7耐腐蚀隔热层;首先使用Sc2O3、Rh2O3和Zr2O3为原料通过高温固相法制备得到球形的(Sc0.4Rh0.62Zr2O7球形粉体,喷涂前预热2次,工件最高温度165℃,在大气等离子喷涂时工艺参数为喷枪功率83kW,电流210A,系统喷枪电压比200/100,喷枪距离90mm,喷枪步距3.5mm,x轴y轴喷枪移动速度为1200mm/s、150mm/s,氩气、氮气、氢气以及载气的流量分别为150scfh、60scfh、25scfh、20scfh,送粉速度5.4rpm;
(5)将制备有耐腐蚀隔热层的Incoloy825高温合金放置于旋转台上,安装好铂基合金靶材,将沉积室抽真空,通过等离子磁控溅射的方式在耐腐蚀隔热层表面制备厚度约为15nm的铂铑合金,在等离子磁控溅射低辐射层时工艺参数为真空度1.6Pa,溅射电流110-130mA,溅射时间150s,校正因子1.1,样品台旋转速度5.5rpm,进水温度17℃、回水温度34℃。
对制备好的涂层进行热冲击考核,具体考核条件除辐射率调至0.16外,其他条件均与实施例1考核条件相同。
试验结果:循环考核次数为8600次时,低辐射层部分脱落,陶瓷层倒角略有破损,并未达成失效条件。
辐射率经检测,在0.4-1.1μm波长下,涂层表面辐射率在环境温度25℃时,辐射率为0.248;环境温度1400℃时,辐射率仅为0.196。
实施例2制备的热障涂层试样热力学性能检测结果如表3所示:
表3实施例2热障涂层试样热力学性能
项目 实施例2热障涂层
热导率(W.K<sup>-1</sup>.m<sup>-1</sup>) 15.4
结合强度(MPa) 22
热膨胀系数(×10<sup>-6</sup>K<sup>-1</sup>) 11.5
硬度(GPa) 9
模量(GPa) 81
断裂韧性(MPa.m<sup>1/2</sup>) 7.3
实施例3
(1)通过超音速火焰喷涂的方式在高温合金Monel400表面制备厚度为200μm孔隙率为5%NiCoCrAlYRu粘结层;在制备过程中工件前期预热2次,工件最高温度360℃,超音速火焰喷涂参数设置:x轴y轴喷枪枪速分别为700mm/s和400mm/s,喷枪步距9.5mm,喷枪枪距350mm,燃烧室压力84.5Pa,送粉5.5rpm,氧气和载气流量分别为1695scfh和19.5scfh,进水温度和回水温度分别为56.6℃和94℃;
(2)通过大气等离子喷涂的方式在粘结层表面制备厚度为100μm,气孔率10%,Gd(Ta0.5Nb0.5)O4阻氧降温层;首先使用Gd 2O3、Nb2O5和Ta2O5为原料通过高温固相法制备得到球形的Gd (Ta0.5Nb0.5)O4球形粉体,喷涂前预热1次,工件最高温度300℃,在大气等离子喷涂时工艺参数为喷枪功率50kW,电流270A,系统喷枪电压比200/120,喷枪距离155mm,喷枪步距5.5mm,x轴y轴喷枪移动速度为1560mm/s、300mm/s,氮气、氢气以及载气的流量分别为80scfh、40scfh、40scfh,送粉速度8.6rpm;
(3)通过高焓等离子喷涂的方式在阻氧降温层表面制备厚度为250μm,气孔率20%,(Lu0.8Er0.22Zr2O7耐腐蚀隔热层;首先使用Lu2O3、Er2O3和Zr2O3为原料通过高温固相法制备得到球形的(Lu0.8Er0.22Zr2O7球形粉体,喷涂前预热2次,工件最高温度175℃,在高焓等离子喷涂时工艺参数为喷枪功率120kW,电流350A,系统喷枪电压比350/195,喷枪距离155mm,喷枪步距9.5mm,x轴y轴喷枪移动速度为1650mm/s、300mm/s,氩气、氮气、氢气以及载气的流量分别为200scfh、105scfh、50scfh、45scfh,送粉速度10rpm;
(4)通过等离子磁控溅射的方式在耐腐蚀隔热层表面制备厚度约为45nm的铂钴合金,在等离子磁控溅射低辐射层时工艺参数为真空度2.1Pa,溅射电流110-130mA,溅射时间300s,校正因子1.8,样品台旋转速度8rpm,进水温度38℃、回水温度68℃。
对比例1-5
表4为现有技术YSZ单层、La2Zr2O7/YSZ双层及Al/Al2O3/ZrO2梯度涂层热疲劳考核数据。
表4 对比例1-5的涂层结构热疲劳考核数据
样例 涂层结构 制备方式 考核温度(℃) 循环次数
对比例1 YSZ单层 等离子喷涂 1000 50
对比例2 YSZ单层 等离子喷涂 1200 8
对比例3 La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>/YSZ双层 等离子喷涂 1000 160
对比例4 La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>/YSZ双层 等离子喷涂 1200 45
对比例5 Al/Al<sub>2</sub>O<sub>3</sub>/ZrO<sub>2</sub>梯度涂层 EB-PVD 1050 300
对比表1和表2可知,与现有技术相比,本发明所制备得到的热障涂层基于其优越的涂层材料、喷涂技术和涂层设计方案,在1150℃下热疲劳考核高达11000次,与现有技术相比,在考核温度与对比例1-4考核温度相近的情况下,循环次数远远高于对比例1-5(循环次数是现有技术的近200倍),因此可知本发明技术方案是现有涂层技术热冲击领域极大的飞跃。
对比例6
以与实施例1相同的方法对常见热障涂层即YSZ单层、La2Ce2O7、La2Zr2O7、LaPO4及Y3Al5O12进行辐射率检测,具体数据见表3。
表5对比例6各常见热障涂层结构辐射率
涂层面层材料 涂层状态 涂层颜色 1400℃辐射率
YSZ 喷涂态 白灰色 0.45
YSZ 900℃热处理态 白色 0.42
YSZ 抛光态 白色 0.34
La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> 喷涂态 灰色 0.46
LaPO<sub>4</sub> 喷涂态 白色 0.40
La<sub>2</sub>Ce<sub>2</sub>O<sub>7</sub> 喷涂态 黄白色 0.50
Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> 喷涂态 淡黄色 0.71
对比可知,本发明制备得到的热障涂层辐射率测量结果远远低于常见热障涂层材料,为内部高温合金基底提供了较强的隔热保护。

Claims (10)

1.一种耐高温热疲劳的低辐射率氧化锆基复合热障涂层,其特征在于,由自下而上依次设置的粘结层、阻氧降温陶瓷层、耐腐蚀隔热陶瓷层和低辐射层组成;
其中,粘结层组分为贵金属改性的NiCoCrAlY粉末;
阻氧降温陶瓷层组分为RETa1-xNbxO4粉末;
耐腐蚀隔热陶瓷层组分为RE2O3-ZrO2粉末;
低辐射层组分为难熔金属改性的铂基合金粉末;
所述粘结层厚度为100-200μm,孔隙度3-5%;
所述阻氧降温陶瓷层厚度为75-125μm,孔隙度为5-10%;
所述耐腐蚀隔热陶瓷层厚度为150-250μm,孔隙度为15-20%;
所述低辐射层厚度为10-50μm;
所述复合热障涂层于25℃时的表面辐射率为0.24-0.25,于1400℃时的表面辐射率为0.19-0.20;
所述复合热障涂层在1150℃下的热疲劳考核循环次数达11000次。
2.根据权利要求1所述耐高温热疲劳的低辐射率氧化锆基复合热障涂层,其特征在于,所述贵金属改性的NiCoCrAlY粉末由以下质量百分数的元素组成:Ni49.12%,Cr24.18%,Co19.22%,Al6.87%,Y0.61%。
3.根据权利要求2所述耐高温热疲劳的低辐射率氧化锆基复合热障涂层,其特征在于,所述贵金属为铂、钯、铑、铪、钌、铱或锇中的一种或几种。
4.根据权利要求1所述耐高温热疲劳的低辐射率氧化锆基复合热障涂层,其特征在于,所述RETa1-xNbxO4粉末中RE、Nb2O5和Ta2O5的摩尔配比为1:1-x:x ,x的值为0.2-0.6。
5.根据权利要求1所述耐高温热疲劳的低辐射率氧化锆基复合热障涂层,其特征在于,RE为Ce、Eu、Gd、Er、Yb、Lu,Y或Sc中的一种或几种。
6.根据权利要求1所述耐高温热疲劳的低辐射率氧化锆基复合热障涂层,其特征在于,在保证结合强度大于20Mpa的条件下,阻氧降温陶瓷层与耐腐蚀隔热陶瓷层的厚度之和为150-500μm。
7.根据权利要求1所述耐高温热疲劳的低辐射率氧化锆基复合热障涂层,其特征在于,所述RE2O3-ZrO2粉末组分配比为RE2O3:ZrO2=1:1。
8.根据权利要求1所述耐高温热疲劳的低辐射率氧化锆基复合热障涂层,其特征在于,所述难熔金属改性的铂基合金粉末组分配比为:难熔金属质量为铂基合金的0.1-5%;所述难熔金属为铱,铑,钼和钴金属中的一种或几种。
9.权利要求1-8任意一项耐高温热疲劳的低辐射率氧化锆基复合热障涂层的制备方法,其特征在于,先使用丙酮或乙醇对高温合金表面清洁干燥,并使用白刚玉在0.55-0.65Mpa气压下对洁净表面粗糙化,之后分别利用超音速火焰,真空等离子,大气等离子以及磁控溅射对各功能层进行制备,最终在高温合金表面形成一层耐高温热疲劳的低辐射率氧化锆基复合热障涂层;
所述超音速火焰喷涂的工艺参数如下:工件最高温度350±10℃,x轴喷枪枪速50-700mm/s,y轴喷枪枪速00-400mm/s,喷枪步距-10mm,喷枪枪距0-340mm,燃烧室压力0-95Pa,送粉-6rpm,氧气流量500-1700scfh,载气流量0-18.5scfh,进水温度0-30℃,回水温度不高于55.5℃;
真空等离子喷涂的工艺参数为:工件最高温度250±50℃,喷枪功率35-50kW,电流200-270A,系统喷枪电压比130/75-200/120,喷枪距离60-160mm,喷枪步距3-6mm,x轴喷枪移速1000-1600mm/s,y轴喷枪移速250-330mm/s,氮气流量60-80scfh,氢气流量20-40scfh,载气流量20-40scfh,送粉速度:5-10rpm;
大气等离子喷涂的工艺参数为:工件最高温度170±5℃,喷枪功率80-130kW,电流200-350A,系统喷枪电压比200/100-350/195,喷枪距离90-160mm,喷枪步距3-10mm,x轴喷枪移速1200-1700mm/s,y轴喷枪移速150-300mm/s,氩气流量150-200scfh,氮气流量60-110scfh,氢气流量25-55S scfh,载气流量20-50 scfh,送粉速度5-11rpm;
磁控溅射的工艺参数为:真空度1.5-2.4Pa,溅射电流110-130mA,溅射时间50-320s,校正因子1.0-2.0,样品台旋转速度5-10rpm,进水温度≤40℃,回水温度≤70℃。
10.根据权利要求9所述制备方法,其特征在于,所述高温合金基体为GH系列、Inconel系列、Incoloy系列、蒙乃尔系列、哈氏系列、海纳系列铁基、镍基、钴基或高铬高温合金。
CN202111679820.4A 2021-12-31 2021-12-31 一种耐腐蚀高隔热的低辐射率氧化锆基热障涂层及其制备方法 Active CN114481129B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111679820.4A CN114481129B (zh) 2021-12-31 2021-12-31 一种耐腐蚀高隔热的低辐射率氧化锆基热障涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111679820.4A CN114481129B (zh) 2021-12-31 2021-12-31 一种耐腐蚀高隔热的低辐射率氧化锆基热障涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN114481129A true CN114481129A (zh) 2022-05-13
CN114481129B CN114481129B (zh) 2022-12-30

Family

ID=81510494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111679820.4A Active CN114481129B (zh) 2021-12-31 2021-12-31 一种耐腐蚀高隔热的低辐射率氧化锆基热障涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN114481129B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040126599A1 (en) * 2002-09-25 2004-07-01 Volvo Aero Corporation Thermal barrier coating and a method of applying such a coating
US20110300357A1 (en) * 2008-12-15 2011-12-08 Alstom Technology Ltd Thermal barrier coating system, components coated therewith and method for applying a thermal barrier coating system to components
CN109457210A (zh) * 2018-11-27 2019-03-12 中国航发沈阳黎明航空发动机有限责任公司 一种耐高温低发射率涂层及其制备方法
CN109627000A (zh) * 2018-12-29 2019-04-16 昆明理工大学 稀土钽/铌酸盐(RETa/NbO4)陶瓷粉体及其制备方法
CN110002872A (zh) * 2019-04-26 2019-07-12 昆明理工大学 一种抗低熔点氧化物腐蚀的稀土钽酸镱陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040126599A1 (en) * 2002-09-25 2004-07-01 Volvo Aero Corporation Thermal barrier coating and a method of applying such a coating
US20110300357A1 (en) * 2008-12-15 2011-12-08 Alstom Technology Ltd Thermal barrier coating system, components coated therewith and method for applying a thermal barrier coating system to components
CN109457210A (zh) * 2018-11-27 2019-03-12 中国航发沈阳黎明航空发动机有限责任公司 一种耐高温低发射率涂层及其制备方法
CN109627000A (zh) * 2018-12-29 2019-04-16 昆明理工大学 稀土钽/铌酸盐(RETa/NbO4)陶瓷粉体及其制备方法
CN110002872A (zh) * 2019-04-26 2019-07-12 昆明理工大学 一种抗低熔点氧化物腐蚀的稀土钽酸镱陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QI ZHENG 等: "Thermophysical and mechanical properties of YTaO4 ceramic by niobium substitution tantalum", 《MATERIALS LETTERS》 *

Also Published As

Publication number Publication date
CN114481129B (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
Wei et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings
Zhou et al. Thermophysical properties and cyclic lifetime of plasma sprayed SrAl12O19 for thermal barrier coating applications
Bansal et al. Thermal properties of oxides with magnetoplumbite structure for advanced thermal barrier coatings
Kumar et al. Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications
Mahade et al. Thermal conductivity and thermal cyclic fatigue of multilayered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray
EP0969117A2 (en) Method of forming a thermal barrier coating system
JP2001151571A (ja) 熱バリヤー組成物、熱バリヤー組成物を有するセラミック被膜を設けた超合金機械製品、およびセラミック被膜を製造する方法
EP2258889A1 (en) Thermal barrier coatings and methods
CN109628929A (zh) 一种热障涂层及其制备方法与应用、航空发动机涡轮叶片
EP0897019B1 (en) Method and device for forming porous ceramic coatings, in particular thermal barrier coatings, on metal substrates
Wu et al. Thermal cyclic response of yttria-stabilized zirconia/CoNiCrAlY thermal barrier coatings
Feng et al. An optimized strategy toward multilayer ablation coating for SiC-coated carbon/carbon composites based on experiment and simulation
Feng et al. Thermophysical properties of solution precursor plasma-sprayed La 2 Ce 2 O 7 thermal barrier coatings
Bakan et al. Oxidation kinetics of atmospheric plasma sprayed environmental barrier coatings
NO322611B1 (no) Superlegert metallelement belagt med en kledning med liten varmeledningsevne, og fremgangsmate for dets fremstilling
CN114481129B (zh) 一种耐腐蚀高隔热的低辐射率氧化锆基热障涂层及其制备方法
Chen et al. Hybrid chemical-physical vapor deposition of highly durable environmental barrier coatings
EP1074637B1 (en) Method for forming a thermal barrier coating by electron beam physical vapor deposition
CN108018522A (zh) 一种曲折柱状结构的热障涂层陶瓷层及其制备方法
Jamali et al. Investigation of thermal shock behavior of plasma-sprayed NiCoCrAlY/YSZ thermal barrier coatings
Ghosh Thermal properties of glass-ceramic bonded thermal barrier coating system
CN113789496A (zh) 一种自愈合梯度热障涂层的制备方法
CN115029695B (zh) 一种耐超高温循环热冲击的低辐射率复合涂层及其制备方法
Vencl et al. Thermal cycling behaviour of plasma sprayed NiCr-Al-Co-Y2O3 bond coat in thermal barrier coating system
CN113755793A (zh) 一种薄膜传感器用抗氧化自修复防护层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant