CN114480990A - 一种冷喷涂用Cu基非晶粉末及其制备方法与应用 - Google Patents

一种冷喷涂用Cu基非晶粉末及其制备方法与应用 Download PDF

Info

Publication number
CN114480990A
CN114480990A CN202210002356.3A CN202210002356A CN114480990A CN 114480990 A CN114480990 A CN 114480990A CN 202210002356 A CN202210002356 A CN 202210002356A CN 114480990 A CN114480990 A CN 114480990A
Authority
CN
China
Prior art keywords
powder
based amorphous
pure
spraying
amorphous powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210002356.3A
Other languages
English (en)
Other versions
CN114480990B (zh
Inventor
吴玉萍
汪煜钧
程杰
乔磊
洪晟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN202210002356.3A priority Critical patent/CN114480990B/zh
Publication of CN114480990A publication Critical patent/CN114480990A/zh
Application granted granted Critical
Publication of CN114480990B publication Critical patent/CN114480990B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/001Amorphous alloys with Cu as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • C23C24/045Impact or kinetic deposition of particles by trembling using impacting inert media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开了一种冷喷涂用Cu基非晶粉末及其制备方法与应用。所述粉末包含:13.0‑17.4at%Zr、23.5‑27.7at%Ti、5.0‑7.2at%Ni、4.0‑6.4 at%Al,0.5‑1.5at%Sn,余量为Cu,粉末为10‑45μm的球形粉。将原材料加入真空感应电磁炉内加热至完全熔化,采用氩气进行真空气雾化处理,对雾化粉末进行干燥分级得到Cu基非晶粉末。粉末可采用超音速冷喷涂系统沉积形成Cu基非晶防护涂层。本发明可获得全非晶结构的Cu基非晶粉末。使用该粉末制备的Cu基非晶涂层也具有全非晶结构,涂层致密度高,不存在氧化物夹杂,孔隙率<1%,显微硬度>600HV0.1

Description

一种冷喷涂用Cu基非晶粉末及其制备方法与应用
技术领域
本发明属于材料加工工程的冷喷涂领域,具体涉及一种冷喷涂用Cu基非晶粉末及其制备方法与应用。
技术背景
非晶合金,也称为金属玻璃,不同于一般的结晶合金,其原子具有长程无序短程有序的结构特征,无位错、晶界等晶体缺陷。这一特性使得非晶合金具有比相同成分的晶态合金更为优异的性能,如高强度、高弹性模量、高硬度、高耐蚀性、高耐磨性和抗疲劳性等。
目前,研究人员已开发了Fe基、Al基、Cu基、Ni基、Co基、Ti基、Zr基等系列的非晶合金。值得注意的是,与其他体系的非晶合金相比,Cu基非晶合金不仅具有高强度、高硬度、高耐蚀、高耐磨性等优点,还表现出了优异的广谱杀菌性能,在医院、公共设施抗菌和海洋防腐蚀抗污损等领域具有广阔的应用前景。然而,与大多非晶合金相似,Cu基非晶合金同样具有临界尺寸小及室温脆性问题,而非晶合金的涂层化技术可以有效突破两者的制约。然而,目前鲜有关于Cu基非晶涂层的研究,且大部分非晶合金涂层化技术(如热喷涂技术)在沉积Cu基非晶合金涂层时均存在严重的氧化现象,而冷喷涂技术具有沉积温度低,粒子速度高,不使用燃料气体等特点,可以有效解决Cu基非晶合金涂层沉积过程中的氧化问题,并显著提高涂层沉积质量。
发明内容
针对现有技术的不足,本发明提供了一种冷喷涂用Cu基非晶粉末及其制备方法与应用。针对Cu基非晶粉末热喷涂过程中易氧化的问题,采用超音速冷喷涂技术进行涂层沉积,沉积涂层具有高非晶含量、高热力学稳定性、高致密度等优点,可应用于抗菌、防腐蚀和抗污损等领域。
为解决现有技术问题,本发明采取的技术方案:
一种冷喷涂用Cu基非晶粉末,由以下元素组成,各元素原子百分比如下所示:Zr13.0-17.4at%、Ti 23.5-27.7at%、Ni 5.0-7.2at%、Al 4.0-6.4at%、Sn 0.5-1.5at%,余量为Cu,所述Cu基非晶粉末为近球形结构,粒径10-45μm。
作为改进的是,由以下元素组成,各元素原子百分比如下所示:Zr 15.5at%、Ti25.3at%、Ni 6.2at%、Al 5.4at%,Sn 1.2at%,余量为Cu。
上述一种冷喷涂用Cu基非晶粉末的制备方法,包括如下步骤:
1)按6种元素的成分配比,准确计算并称量CuZr合金、纯Cu、Ti粉、纯Ni、纯Al、纯Sn;
2)按熔点由高到低的顺序依次将纯Ti粉、纯Ni、CuZr合金、纯Cu、纯Al和纯Sn加入真空感应电磁炉内,以50℃/s升温至1670±5℃并保温30min使其完全熔化,保温期间持续向真空炉内通入氩气,并不断通过电磁搅拌器搅拌金属液体,使熔融液体混合均匀,保温结束后,采用氩气对熔融的混合液体进行真空气雾化处理,雾化室真空度为10±0.5Pa,氩气压力5MPa,气雾化后的粉末在真空干燥箱中75-85℃下干燥1~3h,并在真空手套箱中筛分出粒径为10-45μm的粉末,得到Cu基非晶粉末。
作为改进的是,步骤2)中,干燥温度为80℃,干燥时间为2h。
上述任一种冷喷涂用Cu基非晶粉末在制备防护涂层上的应用。
上述Cu基非晶粉末在制备防护涂层中的应用,包括如下步骤:选用QAl9-2青铜板作为基体材料,首先采用无水乙醇对其进行除油除锈,并采用10~30目氧化铝砂进行喷砂粗化处理,采用超音速冷喷涂系统进行Cu基非晶涂层沉积,喷涂时的参数具体为:喷涂载气为氮气,载气预热温度为750-850℃,喷涂压力5-7MPa,喷枪移动速度0.15-0.25m/s,喷涂距离20-40mm,送粉器转速为5rpm,喷涂的厚度250μm。
作为改进的是,所述喷砂压力为0.4MPa,喷砂角度90°,喷枪移动速度280mm/s,喷砂距离640mm。
作为改进的是载气预热温度为800℃,喷涂压力6MPa,喷枪移动速度为0.20m/s,喷涂距离为30mm。
有益效果:
与现有技术相比,本发明一种冷喷涂用Cu基非晶粉末及其制备方法与应用,具有如下优势:
1、Cu非晶粉末成分中,Zr的原子半径远大于其他组元,Zr、Ti、Sn、Cu、Ni的原子半径呈梯度式下降,可以有效增加体系的错配度,增大体系的结构熵,进而提升体系的混乱度。此外,Zr、Ti、Al与Cu原子形成的原子对均具有高的负混合焓,即当它们互相间形成原子对时可以释放更多的能量,进而使得体系总能量降低,体系更加稳定,也更利于非晶结构的形成与保留。同时,Zr、Ti、Al元素均可以促进耐氯离子侵蚀的钝化膜的形成,有效提高涂层的耐腐蚀性能。而涂层中的Cu、Sn原子均具有良好的广谱杀菌效果,可以有效提升涂层的抗菌、防污损性能。Ni的加入则可以有效改善非晶防护涂层的韧性,并提高体系的组态熵值,进一步增加体系的非晶形成能力;
2、粉末为全非晶结构,圆整度良好,满足冷喷涂粉末的要求。
3、制备的Cu基非晶涂层具有全非晶结构,热力学稳定性高,涂层致密度高,孔隙率<1%,涂层中不存在氧化物夹杂,显微硬度超过600HV0.1
附图说明
图1为实施例3制备的Cu基非晶粉末及涂层的X射线衍射(XRD)图谱;
图2为实施例3制备的Cu基非晶粉末的扫描电镜形貌;
图3为实施例3制备的Cu基非晶涂层的差示扫描量热分析(DSC)图谱。
具体实施方式
实施例中具体的物料配比、工艺条件及其结果仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。若未特别指明,实施例中所用技术手段为本领域技术人员所熟知的常规手段。
实施例1
一种冷喷涂用Cu基非晶粉末,由以下元素组成,各元素原子百分比如下所示:13.0at%Zr、27.7wt%Ti、5.0at%Ni、4.0at%Al,0.5at%Sn,余量为Cu,粉末为近球形,粒径10-45μm。
上述冷喷涂用Cu基非晶粉末的制备方法,包括如下步骤:
1)按6种元素的成分配比,准确计算并称量CuZr合金、纯Cu、Ti粉、纯Ni、纯Al、纯Sn;
2)按熔点由高到低的顺序依次将纯Ti粉、纯Ni、CuZr合金、纯Cu、纯Al和纯Sn加入真空感应电磁炉内,然后以50℃/s升温至1670±5℃并保温30min使其全部熔化。保温期间持续向真空炉内通入氩气,并不断通过电磁搅拌器搅拌金属液体,使得熔融液体混合均匀,保温结束后,采用氩气对熔融的混合液体进行真空气雾化处理,雾化室真空度为10Pa,氩气压力5MPa,气雾化后的粉末在75℃真空干燥箱中烘干3h,并在真空手套箱中筛分出粒径为10-45μm的粉末,得到Cu基非晶粉末。
将上述Cu基非晶粉末用于制备防护涂层,具体步骤如下:
基体选用QAl9-2青铜板,首先采用无水乙醇对其进行除油除锈,并采用10~30目氧化铝砂进行喷砂粗化处理,喷砂压力取0.4MPa,喷砂角度90°,喷枪移动速度280mm/s,喷砂距离640mm;
采用超音速冷喷涂系统进行Cu基非晶涂层沉积,喷涂载气选用氮气;载气预热温度为750℃,喷涂压力5MPa,喷枪移动速度0.15m/s,喷涂距离20mm,送粉器转速5rpm,喷涂厚度250μm。
实施例2
一种冷喷涂用Cu基非晶粉末,由以下元素组成,各元素原子百分比如下所示:14.2at%Zr、25.7at%Ti、5.4at%Ni、4.5at%Al,0.7at%Sn,余量为Cu,粉末为近球形,粒径10~45μm。
制备方法以及制备防护涂层的步骤,同实施例1。
实施例3
一种冷喷涂用Cu基非晶粉末,由以下元素组成,各元素原子百分比如下所示:15.5at%Zr、25.3at%Ti、6.2at%Ni、5.4at%Al,1.2at%Sn,余量为Cu,粉末为近球形,粒径10~45μm。
制备方法中除步骤2)的干燥温度改为80℃,干燥时间为2h,其余同实施例1。
制备防护涂层的步骤中,除载气预热温度为800℃,喷涂压力6MPa,喷枪移动速度0.20m/s,喷涂距离30mm,送粉器转速5rpm,喷涂厚度250μm,其余同实施例1。
由图1可以看出,制备的Cu基非晶粉末与涂层均只存在一个宽化的馒头峰,呈现出典型的非晶结构。XRD图谱中均为出现锐利的结晶峰,说明粉末和涂层中均不存在晶化相。
从图2可以看出,制备的Cu基非晶粉末表面光滑,圆整度良好,这能保证粉末在沉积过程中具有良好的流动性,有效降低喷枪堵塞风险,并提高沉积效率。
从图3可以看出,制备的Cu非晶涂层在加热时存在两次明显的晶化放热现象,这也说明了涂层具有非晶结构。涂层的晶化温度分别为797℃(1070.15K)和823℃(1096.15K),远高于目前已公开的Cu基非晶体系的晶化温度(参见《一种铜基大块非晶合金的制备方法》,曹鹏军等,[0044],2016年12月;《铜基块体非晶合金复合材料及其制备方法》,梁维中等,[0021],2017年3月;《一种块体铜基非晶合金及其制备方法》,魏先顺等,[0074],2019年6月),表现出了极高的热力学稳定性,具有突出的实质性特点和显著的进步。
实施例4
一种冷喷涂用Cu基非晶粉末,由以下元素组成,各元素原子百分比如下所示:16.6at%Zr、24.5wt%Ti、7.0at%Ni、5.8at%Al,1.3at%Sn,余量为Cu,粉末为近球形,粒径10~45μm。
制备方法中除步骤2)的干燥温度改为85℃,干燥时间为1h,其余同实施例1。
制备防护涂层的步骤中,除载气预热温度为850℃,喷涂压力7MPa,喷枪移动速度0.25m/s,喷涂距离40mm,送粉器转速5rpm,喷涂厚度250μm,其余同实施例1。
实施例5
一种冷喷涂用Cu基非晶粉末,由以下元素组成,各元素原子百分比如下所示:17.4at%Zr、23.5wt%Ti、7.2at%Ni、6.4at%Al,1.5at%Sn,余量为Cu,粉末为近球形,粒径10~45μm。
制备方法中除步骤2)的干燥温度改为85℃,干燥时间为1h,其余同实施例1。
制备防护涂层的步骤中,除载气预热温度为850℃,喷涂压力7MPa,喷枪移动速度0.25m/s,喷涂距离40mm,送粉器转速5rpm,喷涂厚度250μm,其余同实施例1。
对比例1
除不含Sn外,其余同实施例3。
从图1可以看出,对比例1制备的Cu基合金粉末与实施例3中的组成相似,仅缺少元素Sn,但其XRD图谱却出现了明显的结晶峰,粉末主要由AlCu2Zr相组成。这是因为非晶合金的形成与体系成分、混合焓、熔融液体的拓扑结构、冷却速度(实施例3通过雾化参数给出限定,范围在104~106K/s数量级)等因素均存在密切联系,即不可能通过不同成分的简单组合获得新体系的非晶合金。综上,本发明所述Cu基非晶粉末具有突出的实质性特点和显著的进步。
为了更好的表达本发明技术方案,对实施例1-2、以及实施例4-5的Cu基非晶粉末进行XRD检测,所得图谱与实施例3的相似,所有实施例具有形式相似的XRD图谱和DSC图谱,XRD图谱均表现为单一馒头峰结构,DSC图谱均具有明显的晶化放热峰。为了不影响图1的表达,此处省略了实施例1-2和实施例4-5的表征。
本实施方案中采用DT2000图像分析软件依据灰度法测量涂层的孔隙率,采用HXD-1000TMC/LCD型显微硬度计测量涂层硬度。
上述实施例1~5制备的Cu基非晶涂层,在200×下测定的孔隙率,在100g载荷,加载时间15s的条件下测定的显微硬度,其检测结果如表1所示。
表1实施例1~5制备的Cu基非晶涂层的孔隙率和显微硬度
Figure BDA0003455291330000061
从表1中可以看出,本发明冷喷涂用Cu基非晶粉末制备的涂层结构致密,孔隙率不超过1%,其中实施例3的孔隙率仅为0.524%,远低于等离子喷涂、电弧喷涂等热喷涂技术制备的非晶涂层。该涂层具有极高的显微硬度,实施例3的显微硬度达697±27HV0.1,远高于Cu合金涂层。低的孔隙率可以有效提高涂层的耐腐蚀性,高的显微硬度表明涂层具有良好的力学性能,可以有效提高涂层的抗空蚀、耐磨损性能。
由此可知,本发明冷喷涂用Cu基非晶粉末制备的涂层集防腐蚀、抗空蚀、抗污损、耐磨损于一身,是一种多功能一体化的防护涂层,具有良好的应用前景。
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。

Claims (8)

1.一种冷喷涂用Cu基非晶粉末,其特征在于,由以下元素组成,各元素原子百分比如下所示:Zr 13.0-17.4at%、Ti 23.5-27.7at%、Ni 5.0-7.2at%、Al 4.0-6.4 at%、Sn 0.5-1.5at%,余量为Cu,所述Cu基非晶粉末为近球形结构,粒径10-45μm。
2.根据权利要求1所述的一种冷喷涂用Cu基非晶粉末,其特征在于,由以下元素组成,各元素原子百分比如下所示:Zr 15.5at%、Ti 25.3at%、Ni 6.2at%、Al 5.4at%,Sn 1.2at%,余量为Cu。
3.基于权利要求1所述的一种冷喷涂用Cu基非晶粉末的制备方法,其特征在于,包括如下步骤:
1)按6种元素的成分配比,准确计算并称量CuZr合金、纯Cu、Ti粉、纯Ni、纯Al、纯Sn;
2)按熔点由高到低的顺序依次将纯Ti粉、纯Ni、CuZr合金、纯Cu、纯Al和纯Sn加入真空感应电磁炉内,以50℃/s升温至1670±5℃并保温30min使其完全熔化,保温期间持续向真空炉内通入氩气,并不断通过电磁搅拌器搅拌金属液体,使熔融液体混合均匀,保温结束后,采用氩气对熔融的混合液体进行真空气雾化处理,雾化室真空度为10±0.5Pa,氩气压力5MPa,气雾化后的粉末在真空干燥箱中75-85℃下干燥1-3h,并在真空手套箱中筛分出粒径为10-45μm的粉末,得到Cu基非晶粉末。
4.根据权利要求3所述的一种冷喷涂用Cu基非晶粉末的制备方法,其特征在于:步骤2)中,干燥温度为80℃,干燥时间为2h。
5.基于权利要求1或3所述的一种冷喷涂用Cu基非晶粉末在制备防护涂层上的应用。
6.根据权利要求5所述的应用,其特征在于,具体步骤如下:选用QAl9-2青铜板作为基体材料,首先采用无水乙醇对其进行除油除锈,并采用10-30目氧化铝砂进行喷砂粗化处理,采用超音速冷喷涂系统进行Cu基非晶涂层沉积,喷涂时的参数具体为:喷涂载气为氮气,载气预热温度为750-850℃,喷涂压力5-7MPa,喷枪移动速度0.15-0.25m/s,喷涂距离20-40mm,送粉器转速为5rpm,喷涂的厚度250μm。
7.根据权利要求6所述的应用,其特征在于:所述喷砂压力为0.4MPa,喷砂角度90°,喷枪移动速度280mm/s,喷砂距离640mm。
8.根据权利要求6所述的应用,其特征在于:载气预热温度为800℃,喷涂压力6MPa,喷枪移动速度为0.20m/s,喷涂距离为30mm。
CN202210002356.3A 2022-01-04 2022-01-04 一种冷喷涂用Cu基非晶粉末及其制备方法与应用 Active CN114480990B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210002356.3A CN114480990B (zh) 2022-01-04 2022-01-04 一种冷喷涂用Cu基非晶粉末及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210002356.3A CN114480990B (zh) 2022-01-04 2022-01-04 一种冷喷涂用Cu基非晶粉末及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114480990A true CN114480990A (zh) 2022-05-13
CN114480990B CN114480990B (zh) 2022-07-29

Family

ID=81509467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210002356.3A Active CN114480990B (zh) 2022-01-04 2022-01-04 一种冷喷涂用Cu基非晶粉末及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114480990B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073070A (zh) * 2022-05-31 2022-09-20 河海大学 一种抗菌砂浆涂层的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050211340A1 (en) * 2004-03-29 2005-09-29 Korea Institute Of Science And Technology Cu-based amorphous alloy composition
CN1847424A (zh) * 2005-04-15 2006-10-18 中国科学院金属研究所 一种铜基块状非晶合金
CN109023159A (zh) * 2017-06-08 2018-12-18 比亚迪股份有限公司 铜基非晶合金及其制备方法和手机
CN110172649A (zh) * 2019-06-25 2019-08-27 同济大学 一种块体铜基非晶合金及其制备方法
US20210087663A1 (en) * 2019-09-19 2021-03-25 Cornerstone Intellectual Property, Llc Additive manufacturing of iron-based amorphous metal alloys

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050211340A1 (en) * 2004-03-29 2005-09-29 Korea Institute Of Science And Technology Cu-based amorphous alloy composition
CN1847424A (zh) * 2005-04-15 2006-10-18 中国科学院金属研究所 一种铜基块状非晶合金
CN109023159A (zh) * 2017-06-08 2018-12-18 比亚迪股份有限公司 铜基非晶合金及其制备方法和手机
CN110172649A (zh) * 2019-06-25 2019-08-27 同济大学 一种块体铜基非晶合金及其制备方法
US20210087663A1 (en) * 2019-09-19 2021-03-25 Cornerstone Intellectual Property, Llc Additive manufacturing of iron-based amorphous metal alloys

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ENHUAI YIN 等: "Formation of Ti–Zr–Cu–Ni–Sn–Si bulk metallic glasses with good plasticity", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
HAO-RAN JIANG 等: "Design of Cu-Zr-Al and Cu-Zr-Al-Sn bulk amorphous alloys with high glass-forming ability", 《JOURNAL OF NON-CRYSTALLINE SOLIDS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073070A (zh) * 2022-05-31 2022-09-20 河海大学 一种抗菌砂浆涂层的制备方法及应用

Also Published As

Publication number Publication date
CN114480990B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CA2565090C (en) Method for forming a hardened surface on a substrate
US6767419B1 (en) Methods of forming hardened surfaces
Jin et al. Strengthening behavior of AlCoCrFeNi (TiN) x high-entropy alloy coatings fabricated by plasma spraying and laser remelting
US7323071B1 (en) Method for forming a hardened surface on a substrate
Xie et al. Comparison of microstructure and tribological properties of plasma, high velocity oxy-fuel and detonation sprayed coatings from an iron-based powder
Zhang et al. Synthesis and characterization of MAX phase Cr2AlC based composite coatings by plasma spraying and post annealing
CN114480990B (zh) 一种冷喷涂用Cu基非晶粉末及其制备方法与应用
Zhai et al. Characterizations the deposition behavior and mechanical properties of detonation sprayed Fe-based amorphous coatings
Wu et al. Effects of annealing on the microstructures and wear resistance of CoCrFeNiMn high-entropy alloy coatings
Luo et al. Micro-nanostructured cermet coatings
Xiao et al. Effects of particle size on the microstructure and mechanical properties of HVAF-sprayed Al-based quasicrystalline coatings
JP2000290765A (ja) 研磨性準結晶コーティング
Jiang et al. Corrosion resistance of plasma-sprayed Fe-based coatings by using core-shell structure powders
Liang et al. Erosion properties of Fe based amorphous/nanocrystalline coatings prepared by wire arc spraying process
Jiang et al. Improvements in microstructure and wear resistance of plasma-sprayed Fe-based amorphous coating by laser-remelting
Inoue et al. Multicomponent bulk metallic glasses with elevated-temperature resistance
CA2177921C (en) Method for producing a tib 2-based coating and the coated article so produced
Qin et al. Microstructure evolution and reaction mechanism of reactive plasma sprayed Ti–C–N coatings
Zhang et al. Phase formation and microstructure evolution of plasma sprayed Cr2AlC MAX phase coatings under post annealing
MXPA96002104A (en) Method to produce a coating based on tib2 and the article covered asi produc
Wang et al. Microstructure and tribological properties of FeCoCrNi high-entropy alloy coatings fabricated by atmospheric plasma spraying
Wong et al. Formation and crystallization of amorphous structure in the laser-cladding plasma-sprayed coating of Al-Si alloy
Ryabtsev et al. Ion-plasma deposition of thin quasicrystalline Al-Cu-Fe and Al-Cu-Co films
Debasish et al. Improvement of microstructural and mechanical properties of plasma sprayed Mo coatings deposited on Al-Si substrates by pre-mixing of Mo with TiN powder
CN115142000B (zh) 锅具的处理方法以及锅具

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant