CN114480508A - Tecrl敲除小鼠模型的构建方法及其应用 - Google Patents

Tecrl敲除小鼠模型的构建方法及其应用 Download PDF

Info

Publication number
CN114480508A
CN114480508A CN202210041961.1A CN202210041961A CN114480508A CN 114480508 A CN114480508 A CN 114480508A CN 202210041961 A CN202210041961 A CN 202210041961A CN 114480508 A CN114480508 A CN 114480508A
Authority
CN
China
Prior art keywords
tecrl
mouse model
gene
mice
generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210041961.1A
Other languages
English (en)
Inventor
侯翠兰
肖婷婷
谢利剑
林舒嘉
郑钧敏
陈顺
邱庆竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI CHILDREN'S HOSPITAL
Original Assignee
SHANGHAI CHILDREN'S HOSPITAL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI CHILDREN'S HOSPITAL filed Critical SHANGHAI CHILDREN'S HOSPITAL
Priority to CN202210041961.1A priority Critical patent/CN114480508A/zh
Publication of CN114480508A publication Critical patent/CN114480508A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/89Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microinjection
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • A61K49/0008Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0375Animal model for cardiovascular diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Pathology (AREA)
  • Rheumatology (AREA)
  • Urology & Nephrology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供一种Tecrl敲除小鼠模型的构建方法及其应用,所述Tecrl敲除小鼠模型的构建方法为:A、根据基因敲除的靶点,设计针对Tecrl基因的sgRNA;B、将Cas9mRNA及sgRNA同时注射入实验小鼠的受精卵中,得到Tecrl基因成功敲除的F0代小鼠。本发明首次构建了一种Tecrl敲除小鼠模型,并发现该先天的小鼠基因缺陷导致小鼠在早期的时候就会出现心脏收缩和舒张功能的受损,为研究左心功能提供了模型。且该Tecrl敲除小鼠在肾上腺素和咖啡因的诱导下出现了多形性及双向性室速,模拟了临床上CPVT患者在运动或压力状态下出现的临床表现,为儿茶酚胺敏感性室速的病理生理机制研究提供有力的工具。

Description

Tecrl敲除小鼠模型的构建方法及其应用
技术领域
本发明涉及一种小鼠模型构建技术领域,尤其是涉及一种Tecrl敲除小鼠模型的构建方法及其应用。
背景技术
由心律失常引起的心源性猝死是无心脏器质性改变的患者死亡的主要原因。儿茶酚胺敏感性室速(CPVT)是一种遗传性的离子通道病,主要发生于7-12岁的儿童,发病率约为1/10000。其主要的临床特征为运动或情绪激动所诱发的多形性或双向性室速。部分儿茶酚胺敏感性室速患者的首发症状即为晕厥或猝死。但目前具体的发病机制仍未明确。
儿茶酚胺敏感性室速的诊断主要依靠具有特征性的心电图及基因检测确诊。对于典型CPVT患者,心电图运动负荷试验或注射儿茶酚胺类药物可以有效诱发出多形性或双向性室速。并且在未经任何治疗的情况下,发生心律失常的阈值及心律失常的形态可重复出现。
目前CPVT主要分为三型,分别为CPVT1型、CPVT2型及CPVT3型。CPVT1型是由RyR2基因突变所引起常染色体显性遗传病,约占CPVT患者总数的50-60%。CPVT2型是由CaSQ2基因突变引起的常染色体隐性遗传病,约占CPVT患者总数的5%。CPVT3型由TECRL基因缺陷引起,由法国的Devalla教授在2016年首次发并报道。然而目前缺乏对于TECRL基因缺陷患者在未出现心脏器质性改变前就发生CPVT的发病机制清晰的阐述。
TECRL主要位于内质网,与TECR基因高度同源。TECRL基因的缺陷会伴随有RyR2和CASQ2的减少。而在hiPSC-CM细胞上的研究发现TECRL基因缺陷还会导致细胞内外钙离子失衡,从而导致DADs发生的增加。
近年来,越来越多研究CPVT发病机制的小鼠模型得以构建,但主要包括RyR2基因突变的小鼠模型,如RyR2(R4496C,N2386I,A165D)等表现出CPVT的典型临床表现。CASQ2位点突变的小鼠模型CASQ2(Casq2D307H,Casq2DeltaE9/DeltaE9)可体外模拟CPVT。具有这些突变的小鼠均表现出了运动或压力诱发的心律失常,体内钙环境的紊乱及线粒体超微结构的受损。但目前为止,仍没有Tecrl突变的CPVT小鼠模型。因此构建Tecrl基因敲除的小鼠模型对于研究Tecrl基因缺陷对心脏功能改变的影响有着至关重要的作用。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种Tecrl敲除小鼠模型的构建方法及其应用。
第一方面,本发明提供了一种Tecrl基因缺陷小鼠模型的构建方法,包括以下步骤:
A、根据基因敲除的靶点,设计针对Tecrl基因的sgRNA,所述sgRNA的序列如SEQ IDNO.1和SEQ ID NO.2所示;
B、将Cas9 mRNA及sgRNA同时注射入体外培养的实验小鼠受精卵中,再将受精卵移植到超排的母鼠内,得到Tecrl基因成功敲除的F0代小鼠。
优选地,所述方法还包括将Tecrl基因成功敲除的F0代小鼠进行回交得到稳定基因型的F1代小鼠,将F1代小鼠与野生型小鼠杂交得到F2代小鼠,再将F2代小鼠相互交配得到F3代Tecrl敲除小鼠的步骤。
优选地,步骤B中,所述Cas9 mRNA和sgRNA注射量分别为20ng/μL,5ng/μL。
优选地,步骤B中,还包括通过鉴定获得Tecrl基因成功敲除的F0代小鼠,所述鉴定的方法包括以下步骤:
提取F0代小鼠的尾部DNA,并进行PCR扩增,扩增产物进行凝胶电泳。
更优选地,所述PCR扩增采用的WT引物序列如SEQ ID NO.3所示,Mutant引物序列如SEQ ID NO.4和SEQ ID NO.5所示;
所述PCR扩增的反应体系以20μL体积计,包括:2×TaqMaster Mix 10μL、上游引物0.8μL、下游引物0.8μL、ddH2O 6.4μL、模版DNA 2μL;
所述PCR扩增反应程序为:
Figure BDA0003470651170000021
第二方面,本发明提供了一种Tecrl基因缺陷导致左心功能下降的小鼠模型的构建方法,其特征在于,包括将前述的F3代Tecrl敲除小鼠进行正常饲养6-8周后,表现为心脏收缩和舒张功能受损,即构建得到左心功能下降的小鼠模型。
第三方面,本发明提供了一种前述方法构建的小鼠模型在筛选治疗左心功能下降的药物中的应用。
第四方面,本发明提供了一种Tecrl基因缺陷介导的室性心动过速小鼠模型的构建方法,包括将前述的F3代Tecrl敲除小鼠进行正常饲养6-8周后,对F3代Tecrl敲除小鼠使用腹腔注射肾上腺素和咖啡因,得到室性心动过速的小鼠模型。
优选地,所述肾上腺素和咖啡因的注射剂量分别为1.6-3mg/kg、120mg/kg。
优选地,所述室性心动过速包括儿茶酚胺敏感性室速。
第五方面,本发明提供了一种根据前述方法构建的小鼠模型在筛选治疗室性心动过速的药物中的应用。
第六方面,本发明提供了一种用于构建Tecrl基因缺陷小鼠模型的sgRNA,所述sgRNA的序列如SEQ ID NO.1和SEQ ID NO.2所示。
与现有技术相比,本发明具有如下的有益效果:
本发明首次构建了一种Tecrl敲除小鼠模型,并发现该先天的小鼠基因缺陷导致小鼠在早期的时候就会出现心脏收缩和舒张功能的受损,为研究左心功能提供了模型。
本发明构建的Tecrl敲除小鼠在不加任何干预的情况下出现了收缩和舒张功能的受损并且在肾上腺素和咖啡因的诱导下出现了多形性及双向性室速,模拟了临床上CPVT患者在运动或压力状态下出现的临床表现。该小鼠为儿茶酚胺敏感性室速的病理生理机制研究提供有力的工具。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为实施例1中对FO小鼠进行琼脂糖凝胶电泳的鉴定结果;
图2为实施例2的Tecrl敲除小鼠(KO)和野生型C57BL/6小鼠(WT)的M型超声心动图像;
图3为实施例2的Tecrl敲除小鼠(KO)和野生型C57BL/6小鼠(WT)的心脏功能相关指标的检测结果;
图4为实施例3中野生型C57BL/6小鼠(WT)注射ISO及咖啡因前的心电图;
图5为实施例3中野生型C57BL/6小鼠(WT)注射ISO及咖啡因后的心电图;
图6为实施例3中Tecrl敲除小鼠(KO)注射ISO及咖啡因前的心电图;
图7为实施例3中Tecrl敲除小鼠(KO)注射ISO及咖啡因后的心电图;
图8为实施例1中设计的各sgRNA的活性结果。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
本实施例提供一种Tecrl基因敲除小鼠的构建方法,包括以下步骤:
1.1sgRNA的设计及鉴定
基因敲除的关键在于靶点选择,作用于正确靶点可通过序列突变使基因功能缺失。本实施例在确定基因敲除的靶点后,利用CRISPR Design软件(http://crispr.mit.edu/)设计针对Tecrl基因的8对sgRNA(依次命名为sgRNA1~sgRNA16),按照已设计sgRNA序列合成相应引物,通过退火聚合的方式连入pCS载体,连接产物转化后送样测序验证正确。随后利用百奥斯图公司自主研发的CRISPR/Cas9活性检测方法-UCATM方式检测sgRNA的活性,结果如图8所示,筛选确定其中活性较高的两个sgRNA。具体为sgRNA8和sgRNA14,其序列分别为SgRNA8(SEQ ID NO.1):5’-TTAGGATATGCCCTAGATAAAGG-3’和SgRNA14(SEQ ID NO.2):5’-GATCGAAATACCTACGATCGAGG-3’。
将SgRNA8(SEQ ID NO.1)和SgRNA14(SEQ ID NO.2)分别连入带T7启动子质粒载体上并进行体外转录,得到进行显微注射的RNA。
1.2 Tecrl基因敲除小鼠的构建与鉴定
将sgRNA8、sgRNA14与Cas9 mRNA(三者的注入量分别为:5ng/μL,5ng/μL,20ng/μL)同时注入体外培养的C57BL/6小鼠的受精卵,将受精卵移植到超排的母鼠(通过常规的超排方法处理得到的母鼠)内,得到F0代小鼠。提取F0代小鼠尾部DNA,并且进行PCR扩增技术,所得扩增产物利用琼脂糖凝胶电泳进行鉴定。
采用的PCR扩增的引物序列如下:
WT引物:
Tecrl-WT-F(SEQ ID NO.3):5’-TGTATTGCACAGTTTTGGGCTCATGG-3’
Mutant引物:
Tecrl-Mutant-F(SEQ ID NO.4):5’-CATAGGGACTCGATTGTTGTCCGTG-3’
Tecrl-Mutant-R(SEQ ID NO.5):5’-TGCACTTGAATGGAAAAAGACTGGA-3’
扩增反应体系如下:
PCR反应组分 20μL反应体系(μL)
2×TaqMaster Mix 10
上游引物(浓度10μM) 0.8
下游引物(浓度10μM) 0.8
ddH<sub>2</sub>O 6.4
模版DNA(浓度7.5-15ng/μL) 2
PCR反应程序如下:
Figure BDA0003470651170000051
鉴定结果如图1所示。鉴定为阳性的F0代小鼠回交得到F1代Tecrl基因敲除小鼠。将F1代Tecrl基因敲除小鼠与野生型C57BL/6小鼠杂交,得到F2代Tecrl基因敲除小鼠并进行鉴定,选取F2代杂合子小鼠相互交配,最终得到F3代Tecrl敲除小鼠模型用于后续实验。F1、F2、F3代Tecrl基因敲除小鼠的鉴定方法与F0代小鼠的鉴定方法相同。
实施例2
将实施例1得到的F3代Tecrl敲除(Tecrl-/-)小鼠模型正常饲养6-8周后,将小鼠于3.5ml/min异氟烷下进行麻醉,应用Vevo2100小动物超声影像系统对6-8周的Tecrl敲除小鼠进行超声检查小鼠心脏获得M型超声心动图像及心脏功能相关指标。结果如图2和图3所示,与野生型C57BL/6小鼠(WT)相比,Tecrl敲除小鼠(KO)手所求心脏射血分数及短轴短轴率显著降低。舒张期时,相对野生型小鼠(WT)而言,Tecrl-/-小鼠(KO)等容舒张时间明显延长,左室舒张末期内径明显增加。这一结果表明,Tecrl敲除小鼠在6-8周时就出现了心脏收缩和舒张功能受损的左心功能下降表现,该小鼠模型可用于研究左心功能下降,以及筛选用于治疗左心功能下降的药物。
实施例3
将实施例1得到的F3代Tecrl敲除(Tecrl-/-)小鼠模型正常饲养6-8周后,使用腹腔注射方法同时注入肾上腺素(ISO)及咖啡因,咖啡因剂量为120mg/kg,肾上腺素剂量为2mg/kg(肾上腺素剂量可以在1.6-3mg/kg之间选择,都能够使Tecl-/-小鼠出现明显的双向性的室性心动过速)。在注射前和注射后分别采集小鼠的心电数据,以对比小鼠在注射肾上腺素和咖啡因前后的心电图变化。具体采集小鼠的心电数据的方法为:将小鼠于3.5ml/min异氟烷下进行麻醉,仰卧位固定于心电图记录板上,四肢分别使用胶带固定,接近心电图表面导联,使用心电图软件采集小鼠心电数据。以野生型C57BL/6小鼠作为对照。
结果如图4-图7所示,在注射咖啡因及肾上腺素前,野生型C57BL/6小鼠(WT)及Tecrl-/-小鼠(KO)均未出现室性心动过速的表现(图4和图6);在注射入咖啡因及肾上腺素后,野生型C57BL/6小鼠(WT)仍未出现明显室速的表现(图5和图7),而Tecl-/-小鼠(KO)出现了明显的双向性的室性心动过速。这一结果表明,肾上腺素和咖啡因可以诱发Tecrl-/-小鼠出现双向型室速,这一结果与临床上CPVT患者在注射肾上腺素后可以诱发双向性或多形性室速的表现相一致。由此可见,该小鼠模型为儿茶酚胺敏感性室速的病理生理机制研究提供有力的工具,可以用于筛选治疗CPVT患者的药物。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。
序列表
<110> 上海市儿童医院
<120> Tecrl敲除小鼠模型的构建方法及其应用
<130> SHX1739I
<160> 5
<170> SIPOSequenceListing 1.0
<210> 1
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
ttaggatatg ccctagataa agg 23
<210> 2
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
gatcgaaata cctacgatcg agg 23
<210> 3
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
tgtattgcac agttttgggc tcatgg 26
<210> 4
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
catagggact cgattgttgt ccgtg 25
<210> 5
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
tgcacttgaa tggaaaaaga ctgga 25

Claims (10)

1.一种Tecrl基因缺陷小鼠模型的构建方法,其特征在于,包括以下步骤:
A、根据基因敲除的靶点,设计针对Tecrl基因的sgRNA,所述sgRNA的序列如SEQ IDNO.1和SEQ ID NO.2所示;
B、将Cas9 mRNA及sgRNA同时注射入体外培养的实验小鼠受精卵中,再将受精卵移植到超排的母鼠内,得到Tecrl基因成功敲除的F0代小鼠。
2.根据权利要求1所述的Tecrl基因缺陷小鼠模型的构建方法,其特征在于,所述方法还包括将Tecrl基因成功敲除的F0代小鼠进行回交得到稳定基因型的F1代小鼠,将F1代小鼠与野生型小鼠杂交得到F2代小鼠,再将F2代小鼠相互交配得到F3代Tecrl敲除小鼠的步骤。
3.根据权利要求1所述的Tecrl基因缺陷小鼠模型的构建方法,其特征在于,步骤B中,所述Cas9 mRNA和sgRNA注射量分别为20ng/μL,5ng/μL。
4.一种Tecrl基因缺陷导致左心功能下降的小鼠模型的构建方法,其特征在于,包括将权利要求2所述的F3代Tecrl敲除小鼠进行正常饲养6-8周后,表现为心脏收缩和舒张功能受损,即构建得到左心功能下降的小鼠模型。
5.一种根据权利要求4所述方法构建的小鼠模型在筛选治疗左心功能下降的药物中的应用。
6.一种Tecrl基因缺陷介导的室性心动过速小鼠模型的构建方法,其特征在于,包括将权利要求2所述的F3代Tecrl敲除小鼠进行正常饲养6-8周后,对F3代Tecrl敲除小鼠使用腹腔注射肾上腺素和咖啡因,得到室性心动过速的小鼠模型。
7.根据权利要求6所述的Tecrl基因缺陷介导的室性心动过速小鼠模型的构建方法,其特征在于,所述肾上腺素和咖啡因的注射剂量分别为1.6-3mg/kg、120mg/kg。
8.根据权利要求6所述的Tecrl基因缺陷介导的室性心动过速小鼠模型的构建方法,其特征在于,所述室性心动过速包括儿茶酚胺敏感性室速。
9.一种根据权利要求6-8任一项所述方法构建的小鼠模型在筛选治疗室性心动过速的药物中的应用。
10.一种用于构建Tecrl基因缺陷小鼠模型的sgRNA,其特征在于,所述sgRNA的序列如SEQ ID NO.1和SEQ ID NO.2所示。
CN202210041961.1A 2022-01-14 2022-01-14 Tecrl敲除小鼠模型的构建方法及其应用 Pending CN114480508A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210041961.1A CN114480508A (zh) 2022-01-14 2022-01-14 Tecrl敲除小鼠模型的构建方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210041961.1A CN114480508A (zh) 2022-01-14 2022-01-14 Tecrl敲除小鼠模型的构建方法及其应用

Publications (1)

Publication Number Publication Date
CN114480508A true CN114480508A (zh) 2022-05-13

Family

ID=81512202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210041961.1A Pending CN114480508A (zh) 2022-01-14 2022-01-14 Tecrl敲除小鼠模型的构建方法及其应用

Country Status (1)

Country Link
CN (1) CN114480508A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741529B1 (en) * 2006-05-04 2010-06-22 Priori Silvia G Transgenic animal model for catecholaminergic polymorphic ventricular tachycardia (CPVT) and use thereof
US20130059905A1 (en) * 2011-08-08 2013-03-07 (Italian Research Foundation) Method of Gene Transfer for the Treatment of Recessive Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT)
CN109694881A (zh) * 2018-12-19 2019-04-30 首都医科大学附属北京口腔医院 Ano5基因敲除小鼠模型的构建方法
CN113862305A (zh) * 2021-09-17 2021-12-31 首都医科大学附属北京友谊医院 Atp7b基因敲除小鼠模型的构建方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741529B1 (en) * 2006-05-04 2010-06-22 Priori Silvia G Transgenic animal model for catecholaminergic polymorphic ventricular tachycardia (CPVT) and use thereof
US20130059905A1 (en) * 2011-08-08 2013-03-07 (Italian Research Foundation) Method of Gene Transfer for the Treatment of Recessive Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT)
US20170360957A1 (en) * 2011-08-08 2017-12-21 Istituti Clinici Scientifici Maugeri Spa Sb Method of gene transfer for the treatment of recessive catecholaminergic polymorphic ventricular tachycardia (cpvt)
CN109694881A (zh) * 2018-12-19 2019-04-30 首都医科大学附属北京口腔医院 Ano5基因敲除小鼠模型的构建方法
CN113862305A (zh) * 2021-09-17 2021-12-31 首都医科大学附属北京友谊医院 Atp7b基因敲除小鼠模型的构建方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CUILAN HOU, ET AL.: "A Novel Mice Model of Catecholaminergic Polymorphic Ventricular Tachycardia Generated by CRISPR/Cas9", BIORXIV, pages 1 - 49 *
CUILAN HOU, ET AL.: "TECRL deficiency results in aberrant mitochondrial function in cardiomyocytes", COMMUNICATIONS BIOLOGY, pages 1 - 13 *

Similar Documents

Publication Publication Date Title
Pandey et al. Future perspective of diabetic animal models
Wang et al. Odorant receptors govern the formation of a precise topographic map
US7094948B2 (en) Transgenic animals
RU2019108888A (ru) Животные, отличные от человека, характеризующиеся экспансией гексануклеотидных повторов в локусе c9orf72
CN108018310B (zh) 可诱导的转基因小鼠心肌病动物模型的构建方法及应用
WO2024119960A1 (zh) 一种pkhd1l1基因点突变大鼠模型及其构建方法和检测方法
CN113699152A (zh) Slc35e2b基因敲除小鼠动物模型的构建方法和应用
CN116784253A (zh) 一种鉴定癫痫动物模型皮层兴奋性异常的方法和应用
CN114480508A (zh) Tecrl敲除小鼠模型的构建方法及其应用
CN114317604B (zh) 一种自发性肺动脉高压模型及构建方法
CN110564777B (zh) 糖尿病疾病模型犬的建立方法
CN115851833B (zh) Notch2nlc基因ggc重复扩增突变转基因小鼠及其构建方法和应用
CN106399369B (zh) 构建在海马体区域特异性敲除IKKα基因的小鼠模型的方法及打靶载体和试剂盒
WO2018196874A1 (zh) 遗传工程化的非人类哺乳动物及其构建方法和应用
CN106282123B (zh) 一种非人哺乳动物认知障碍或其相关疾病动物模型的建立方法及其用途
CN114868705A (zh) 一种视网膜色素变性小鼠模型及其构建方法
JPWO2007043589A1 (ja) 統合失調症モデル動物
CN114868707B (zh) 一种代谢性脑病和心律失常疾病的斑马鱼模型及其应用
CN104131036B (zh) 条件型伊维菌素受体ivmr转基因小鼠模型的构建方法及应用
CN116426633B (zh) 一种载脂蛋白h在预防和/或治疗脂肪肝及相关疾病药物中的应用
CN114410691B (zh) Slc35e1基因敲除小鼠动物模型的构建方法和应用
Dou et al. A missense mutation in RRM1 contributes to animal tameness
CN107974464A (zh) Slc6a12基因及其蛋白的用途
Masachs et al. Time-dependent roles of adolescent-and adult-born dentate granule neurons in spatial learning
CN116941576A (zh) 一种Foxg1 p.Tyr392X点突变小鼠模型的构建方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination