CN114480448A - 一种促进银杏黄酮醇苷合成的基因GbF3′H及其载体、蛋白、和应用 - Google Patents

一种促进银杏黄酮醇苷合成的基因GbF3′H及其载体、蛋白、和应用 Download PDF

Info

Publication number
CN114480448A
CN114480448A CN202210244250.4A CN202210244250A CN114480448A CN 114480448 A CN114480448 A CN 114480448A CN 202210244250 A CN202210244250 A CN 202210244250A CN 114480448 A CN114480448 A CN 114480448A
Authority
CN
China
Prior art keywords
gbf3
gene
ginkgo
synthesis
promoting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210244250.4A
Other languages
English (en)
Other versions
CN114480448B (zh
Inventor
陆金凯
褚伊萱
王莉
刘思安
王庆杰
江洋
茅丹阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202210244250.4A priority Critical patent/CN114480448B/zh
Publication of CN114480448A publication Critical patent/CN114480448A/zh
Application granted granted Critical
Publication of CN114480448B publication Critical patent/CN114480448B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13021Flavonoid 3'-monooxygenase (1.14.13.21)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种促进银杏黄酮醇苷合成的基因GbF3'H及其载体、蛋白和应用,所述基因GbF3'H的核苷酸序列如SEQ ID NO.1所示,基因GbF3'H表达的蛋白的氨基酸序列如SEQ ID NO.4所示。本发明首次从银杏中克隆到全新的基因GbF3'H,通过将GbF3'H基因转入银杏体内,过量表达GbF3'H基因的转基因银杏的黄酮醇苷含量都明显增加,说明GbF3'H是促进银杏黄酮醇苷合成的关键基因,GbF3'H能够促进黄酮醇苷的合成,因此调控GbF3'H的表达在提高银杏叶片药用品质等方面具有重要的应用价值。

Description

一种促进银杏黄酮醇苷合成的基因GbF3′H及其载体、蛋白、和 应用
技术领域
本发明属于分子生物学技术领域,具体涉及一种促进银杏黄酮醇苷合成的基因GbF3′H及其载体、蛋白和应用。
背景技术
银杏(Ginkgo biloba L.)是一种古老而独特经济树种,其叶中含有多种具有独特化学结构的化合物,如萜类、黄酮类、烷基酚酸、银杏内酯等。由于其广泛的药理价值,银杏叶一直受到广泛的研究。银杏叶提取物(GBE)中主要的成分是黄酮类化合物,黄酮类化合物是通过苯丙素途径合成的,可细分为黄酮类、黄酮醇类、黄烷醇类、花青素类、异黄酮类和黄酮类。其中槲皮素,山奈酚和异鼠李素三种黄酮醇苷是GBE最重要的黄酮成分,这三种成分含量的高低决定着银杏药物和食品补剂的质量。但是银杏叶中的黄酮醇苷化学结构复杂难以在体外合成,此外,高昂的合成成本也超过其商业可用性,这些都限制了黄酮醇苷的商业化生产。
类黄酮合成起始于苯丙氨酸途径,一些关键的合成基因与这些类黄酮的产生有关,如FLS、CHS、CHI、F3′H等合成基因。目前对于类黄酮合成途径的研究大部分集中在下游的花青苷,而对于黄酮醇苷合成基因的研究较少,尤其在银杏中鲜有报道。类黄酮-3′-羟化酶(F3′H)是黄酮醇苷合成途径中非常关键的酶,属于细胞色素P450家族,在类黄酮生物合成过程中,起到催化上游物质生成二氢槲皮素(Dihydroquercetin)的作用。二氢槲皮素是下游槲皮素合成的底物,而槲皮素是一种关键的黄酮醇苷。因此通过研究F3′H在合成黄酮醇苷中的功能将有助于通过分子生物学手段促进银杏中GBE的含量。此外,也将为进一步了解黄酮类化合物在植物体内积累的分子机制提供重要参考和科学依据。
由于银杏自身遗传特性和其生长条件的限制,银杏遗传转化体系的建立至今还是一个世界性难题。因此对银杏这一重要的药用经济物种的研究还停留在克隆相关基因,而其具体的生物学功能并不清楚。特别是对银杏中黄酮醇通路中的关键结构基因的研究还不够深入,所以进一步展开银杏黄酮醇合成机制研究具有重要意义。
发明内容
发明目的:针对现有技术中存在的不足,本发明提供一种促进银杏黄酮醇苷合成的关键基因GbF3′H,通过促进该基因的表达能够提高银杏中槲皮素,山奈酚和异鼠李素的含量,从而有效提高银杏中黄酮醇苷合成。
本发明还提供了所述的促进银杏类黄酮合成的关键基因GbF3′H表达的蛋白、载体及其应用。
技术方案:为了实现上述目的,本发明所述一种促进银杏黄酮醇苷合成的基因GbF3′H,所述基因GbF3′H的核苷酸序列如SEQ ID NO.1所示。
作为优选,用于扩增所述基因GbF3′H的引物对为SEQ ID NO.2:ATGTCTTCTCTGGAGTTCAAT和SEQ ID NO.3:AAGGCGGTTCATGTCTAA。
本发明所述的促进银杏黄酮醇苷合成的基因GbF3′H表达的蛋白,所述蛋白的氨基酸序列如SEQ ID NO.4所示。
本发明所述含有促进银杏黄酮醇苷合成的基因GbF3′H的表达载体。
作为优选,所述表达载体在基因GbF3′H的5’端组装了组成型启动子CaMV35S,在基因GbF3′H的3’端组装了NOS-terminator。其中,启动子CaMV35S它能使GbF3′H基因在银杏体内高效表达,NOS-terminator可有效终止GbF3′H基因的转录。
进一步地,所述表达载体组装有NPTⅡ基因表达盒,作为转基因银杏的筛选标记,用卡那霉素进行转基因银杏的筛选。
进一步地,所述表达载体上组装有LB(T-Border left)和RB(T-Border righ)序列,促使组装于其间的GbF3′H基因表达框架和筛选标记基因NPTⅡ整合至银杏染色体中。
本发明所述含有促进银杏黄酮醇苷合成的基因GbF3′H或者表达载体的宿主细胞,所述的宿主细胞一般采用农杆菌。
本发明所述的促进银杏黄酮醇苷合成的基因GbF3′H或者所述的表达蛋白在在促进银杏黄酮醇苷合成中的应用。
其中,所述促进银杏黄酮醇苷合成的过程为:以银杏叶片为材料,克隆基因GbF3’H,将该基因构建到过量表达载体PRI 101上,构建获得重组载体,将重组载体转化到农杆菌中,再将银杏愈伤组织浸泡在农杆菌重悬液中进行银杏的遗传转化,在启动子CaMV35S的驱动下,GbF3′H可在银杏体内高效表达,从而促进黄酮醇苷的合成。
有益效果:与现有技术相比,本发明具有以下优点:
本发明首次从银杏中克隆到全新的基因GbF3′H,通过将GbF3′H基因转入银杏体内,过量表达GbF3′H基因的转基因银杏的黄酮醇苷含量都明显增加,说明GbF3′H是促进银杏黄酮醇苷合成的关键基因,GbF3′H能够促进黄酮醇苷的合成,因此调控GbF3′H的表达在提高银杏叶片药用品质等方面具有重要的应用价值。
通过对GbF3′H基因进行克隆和功能研究为采用基因调控技术改良提高银杏黄酮类物质合成与积累提供理论依据,为银杏GbF3′H对黄酮醇苷物质合成的调控机理奠定了基础。同时本发明采用基因调控技术改良提高银杏黄酮类物质合成与积累提供理论依据,以及为生物工程生产银杏次生代谢产物提供参考,同时也为其它裸子植物林木的黄酮醇苷调控研究提供借鉴,具有极为重要的参考价值和实践意义。
附图说明
图1是GbF3′H的克隆(a),菌液检测(b)和序列比对(c);
图2是构建好的植物表达载体35S::GbF3′H的结构示意图;
图3是GbF3′H载体构建阳性检测;
图4是GbF3′H与其他物种F3′H蛋白的系统发育树分析;
图5是GbF3′H转基因银杏愈伤组织的表达量检测;
图6是GbF3′H转基因银杏愈伤组织的总黄酮含量检测;
图7是GbF3′H转基因银杏愈伤组织的黄酮醇苷含量检测。
具体实施方式
以下结合附图和实施例对本发明作进一步说明。
实施例1
克隆GbF3′H基因
(1)基于银杏基因组和银杏的转录组数据,筛选得到了一个GbF3′H基因,使用Primer Premier 5.0软件进行人工设计GbF3′H的扩增引物SEQ ID NO.2和3如下所示。
Primer ID Forward Primer Reverse Primer
GbF3’H ATGTCTTCTCTGGAGTTCAAT AAGGCGGTTCATGTCTAA
(2)利用PrimeSTAR Max(Takara,日本)PCR扩增,PCR体系如下:
Figure BDA0003542299780000031
Figure BDA0003542299780000041
将上述混合液轻柔混匀,瞬时低速离心后放置于普通PCR反应仪中,设置如下程序:
Figure BDA0003542299780000042
跑胶:取出PCR仪中的基因扩增产物,利用电泳仪将适量产物点在1%的琼脂糖凝胶上进行检测,20min左右后拿出应用成像系统进行观察,获得目的片段(图1a)。
(4)纯化片段与克隆载体的连接反应
参照pEASY-Blunt Simple Cloning Kit(全式金,中国)操作说明书将胶回收产物连接到克隆载体上,具体体系如下:
pEASY-Blunt Simple Cloning Vector 1μL
PCR Product 2μL
ddH<sub>2</sub>O 2μL
Total volume 5μL
(4)大肠杆菌转化
参照TaKaRa E.coli DH5αCompetent Cells产品说明书,将已连接的产物与感受态细胞混合,经过冰浴、热激、复苏后,取适量涂布于LB平板上,倒置平板,37℃过夜培养。
(5)阳性克隆筛选及测序分析
从筛选培养板上挑选单菌落接种于LB液体培养基中,37℃、200rmp摇菌过夜;直接以培养过夜的菌液为模板进行重组转化子的PCR检测。
反应体系:
2×Taq master mix 10μl
Primer F 1μl
Primer R 1μl
菌液 1μl
ddH<sub>2</sub>O 7μl
Total volume 20μl
反应程序:
Figure BDA0003542299780000051
菌液PCR检测为阳性的克隆(图1b)送生工生物技术公司(上海)测序鉴定,序列如SEQ ID NO.1所示,用于后续实验,其表达的蛋白的氨基酸序列如SEQ ID NO.4所示。
SEQ ID NO.1
ATGTCTTCTCTGGAGTTCAATATGCCTCAGGCTTTTCATAGAGTACAAGGAAGTATGGTTTGGGCGGGATTAGCCTCTATCTTTATCTTGTATTGGGTATTCTCGAAGTTGAATGAAAAAGGGAAGAGAAATAGAGGTAAATTGCCTCCCGGACCATCTCCATGGCCCATCATTGGAAATCTTCATTTGTTGGGGGAGCTCCCTCATCGATCTCTTGGAGATCTTGCGAAGAAATATGGATCTATTATGTTTTTACGCTTGGGCTTCGTCCCCACTGTCGTAGTCTCTTCTCCTCAAATGGCAGAATTGTTTCTGAAAACTCACGATGCAGTCTTTGCAAGCCGACCATTAACAGCAGCCGGGAAACATGTATCTTACAATAACCAGGATGTGGTATTTGCTCCGTATGGGGCATACTGGAGGCACATGAGAAAGGTTTGCACACTCGAATTACTGACCGTTAAACGTCTCGAGTCGTTTAAATCCGTGCGGGAGGAAGAGGTGTCTCTGATGATCGATTCCATTTGGAAGGAGAGCGGTCATGGTGTAAAGCCTGTTGATCTCTCTAAGAGAATTTCATCTCTTACTCTCAATATTATGTGTAGAATGCTTACCGGCAAAACATATTCGAATTACGACTCAGAAGGGAGAGAGTTCAACAATATGTTTCACGAGATAGCTGCTGTGGACGGTGCTTTCAATATTGGAGATTTCATTCCTTTTCTGAACTGGTTGGATTTGCAAGGGCTTATACGCCGCATGAAGAAGGTGTTCAATATATACGATGCATTTGCGGAGAAAGTCATCGACGAACATATTGAACGTCGGAAGGAAAAGGGGCTTACCAGTAACGACTTTGTAGACGCGCTCTTAGATATTTCCGAAACGCGTACGATGGAAATCACTCGTGAGAACATCAAGGCGATCATTCTGGACATGATGGCTGCTGGATCGGATACATCGTCTACAACGTTGGGATGGGCAATGTCTGAGCTGCTGAAAAATCCGCATGTGATGAAGAAAGCGCAGGAAGAGCTTGAATCAGTGGTGGGCAAGAGTCGCAGAGTGAATGAAAGCGATCTGCCAAGGCTTGAATACTTGCCATGTGTGGTGAAAGAAATATTGCGATTGTATCCAGCGGCGCCCTTGATGCTTCCCCACGAGGCCATGGAGGCCTGCAACGTCGGTGGATATGATATACCCGCCAAGGCAAGGTTGATAGTGAATGTGTGGGCAATAGGGAGAGATCCATCGGCATGGGAAGATCCATTGACATTCAAGCCGGAGAGATTTATTGGCAGAAATATTGATCCTTCAAGAGGTCAATACTTTGAACTGCTTCCCTTTGGAGCAGGACGGAGGGGATGCCCGGGGGGGCCTTTGGCCATTGGAGTATTAGAGATGGCATTGGCTCAATTGCTGCACTGTTTTGATTGGAGTCTTGAATTTGATCCGTCTACGTTGGATATGAGCGAAGGTTTTGGAATAACAATTCCCAGAAAAGTTCATCTCTATGCTCTTCCAAAACCAAGGTTAGACATGAACCGCCTTTAA
SEQ ID NO.4
MSSLEFNMPQAFHRVQGSMVWAGLASIFILYWVFSKLNEKGKRNRGKLPPGPSPWPIIGNLHLLGELPHRSLGDLAKKYGSIMFLRLGFVPTVVVSSPQMAELFLKTHDAVFASRPLTAAGKHVSYNNQDVVFAPYGAYWRHMRKVCTLELLTVKRLESFKSVREEEVSLMIDSIWKESGHGVKPVDLSKRISSLTLNIMCRMLTGKTYSNYDSEGREFNNMFHEIAAVDGAFNIGDFIPFLNWLDLQGLIRRMKKVFNIYDAFAEKVIDEHIERRKEKGLTSNDFVDALLDISETRTMEITRENIKAIILDMMAAGSDTSSTTLGWAMSELLKNPHVMKKAQEELESVVGKSRRVNESDLPRLEYLPCVVKEILRLYPAAPLMLPHEAMEACNVGGYDIPAKARLIVNVWAIGRDPSAWEDPLTFKPERFIGRNIDPSRGQYFELLPFGAGRRGCPGGPLAIGVLEMALAQLLHCFDWSLEFDPSTLDMSEGFGITIPRKVHLYALPKPRLDMNRL
实施例2
GbF3′H基因表达载体构建
(1)本实验采用TaKaRa QuickCut限制酶(TaKaRa,日本)对pRI 101-AN载体(TaKaRa,日本)和GbF3′H基因进行酶切反应实验,具体反应体系如下:
QuickCut Buffer 5μL
pRI 101plasmid/GbF3′H基因 32μL
QuickCut BamHⅠ 1μL
ddH<sub>2</sub>O 12μL
Total volume 50μL
体系中各溶液混合后进行瞬时离心,在37℃水浴锅中保温30min后结束酶切反应,琼脂糖凝胶电泳观察酶切条带,随后分别将目的基因和载体片段切胶回收,用于后续的载体连接反应。
(2)参照TaKaRa T4 DNA Ligase(TaKaRa,日本)操作说明书,将双酶切反应后回收的表达载体与目的DNA片段产物相互连接,体系如下:
T4 DNA Ligase 0.5μL
T4 DNA Ligase Buffer(10×) 1μL
目的DNA片段 6.5μL
表达载体 2μL
Total volume 10μL
在微型管中将体系中的溶液混合,在金属浴中16℃反应5-6h。
通过PCR检测,确认GbF3’H的过量表达载体构建成功。命名为35S::GbF3′H,如图2所示,所构建的表达载体在GbF3′H的5’端组装了组成型强表达启动子CaMV35S,3’端组装了终止子NOS-terminator,表达载体上装NPTⅡ基因表达盒,作为转基因银杏的筛选标记,同时表达载体上组装LB和RB序列,促使组装于其间的基因表达框架和筛选标记基因NPTⅡ整合至银杏受体细胞染色体中。
(3)转化农杆菌
参照上海唯地GV3101(农杆菌)转化说明书操作,将构建好的35S::GbF3′H表达载体质粒与感受态细胞混合,依次经过冰中静置5min、液氮速冻1min、37℃水浴3min、迅速冰浴2min后,加入700μL液体LB培养液振荡培养2h。5000rpm离心1min后留取100μL上清轻轻吹打混匀,涂布于含有卡那霉素和利福平抗生素的LB平板上,28℃培养箱倒置培养2至3天。挑取平板上的单克隆,加入适量的LB液体培养基,28℃,220rpm,培养48h,PCR检测阳性克隆(图3),获得含有35S::GbF3’H载体的农杆菌。
实施例3
GbF3′H蛋白的进化分析
从NCBI(National Center for Biotechnology Information)网站下载其他11个物种的F3′H蛋白序列(Triadica sebifera[QOU08777.1],Oryza sativa[Q7G602.1],Arabidopsis thaliana[Q9SD85.1],Vitis vinifera[NP001267916.1],Juglanssigillata[AYK27187.1],Prunus persica[AFC62055.1],Narcissus tazetta[AFP95893.1],Prunus cerasifera[AKV89245.1],Morus alba[AOV62762.1],Taxuschinensis[ATG29933.1],and Pinus taeda[Q50EK4.1])。采用邻接法,利用MEGA7对GbF3′H蛋白序列进行系统发育分析。利用MEME对显示的保守motif进行预测。蛋白质序列分析表明,裸子植物和被子植物之间的F3′H基因具有许多共同的保守基序。系统发育分析表明,银杏F3′H基因蛋白与裸子植物中国红豆杉和火炬的F3′H基因亲缘关系密切。被子植物中其他F3′H基因与银杏GbF3′H基因的亲缘关系较远(图4)。表明银杏GbF3′H基因在功能上与其他被子植物可能存在差异。
实施例4
GbF3′H基因的遗传转化
1、银杏愈伤组织转化
(1)将实施例3获得含有35S::GbF3′H载体的农杆菌涂在LB平板。经过培养后挑取LB平板上的农杆菌单克隆,将其接种到100ml LB液体培养基中,28℃培养24h至OD600为0.5-0.6;
(2)菌液放入离心管中,25℃,4000rpm,10min离心后去掉上清液;
(3)向离心管加入重悬液(100mL MS液体培养基含100μM乙酰丁香酮)重悬底部菌体,并在室温放置2h;
(4)将大小一致的银杏叶片愈伤组织小块放入农杆菌重悬液中,室温静置浸泡15-20min,然后用镊子轻轻夹出,用无菌滤纸吸掉表面的重悬液液体;
(5)将侵染过的愈伤组织放置在愈伤培养基(MS+4.0mg/L NAA+2.0mg/LKT+100μM乙酰丁香酮)上,25℃黑暗培养3d,取出放入液氮中速冻,保存在超低温冰箱中,应用于后续的类黄酮含量测定。
2、转基因材料的检测与黄酮醇苷含量的测定
(1)利用实时定量PCR技术,检测外源基因在RNA水平的表达情况,使用PrimerPremier 5.0软件进行人工设计GbF3′H的荧光定量引物。其中,正向引物为SEQ ID NO.5:5’-GCTGGATCGGATACATCGTCTACAAC-3’,反向引物为SEQ ID NO.6:5’-CGACTCTTGCCCACCACTGATTC’。内参(Actin)正向引物为SEQ ID NO.7:5’-CTGCCAAGGCTGTAGGTAAGG-3’,反向引物为SEQ ID NO.8:5’-TCAGATTCCTCCTTGATGGCG’。步骤1得到的转基因银杏愈伤组织中GbF3’H的表达量显著升高(图5)。
(2)总黄酮含量检测
利用植物类黄酮提取试剂盒(苏州柯铭生物技术有限公司,中国)对control(未转基因,其他培养条件相同)和转基因银杏愈伤组织的总黄酮含量进行测定,发现转基因愈伤组织中的类黄酮含量显著增高(图6)。
(3)黄酮醇苷含量检测
进一步对愈伤组织中的黄酮醇苷含量进行检测。称取0.1克烘干的愈伤组织,加入2ml 70%的乙醇溶液,超声提取30分钟。12000rpm离心10分钟,取上清液。旋转蒸发仪旋干后加入200微升25%盐酸甲醇溶液超声溶解15分钟,离心30秒,将溶液全部转移到10毫升具有四氟乙烯衬垫的COD管中,85℃加热30分钟,4℃冷却10分钟,再加入200微升甲醇,震荡混匀,离心收集溶液,用0.22微米有机滤膜过滤,上机检测。黄酮醇苷的分析采用安捷伦6460高效液相色谱系统(安捷伦公司,美国)。UPLC色谱条件如下:C18柱(1.8μm,2.1mm×100mm);流速0.3mL/min;柱温40℃;进样量10μl;流动相A为乙腈,B为0.1%甲酸水溶液,梯度洗脱按0-12min:20%A +80%B,12-13min:60%A +40%B,13-16min:100%A,16-20min:20%A +80%B。结果显示转基因愈伤组织中的槲皮素,山奈酚和异鼠李素三种黄酮醇苷含量显著增高(图7)。这些结果表明,GbF3′H基因是黄酮醇苷合成的关键基因。
序列表
<110> 扬州大学
<120> 一种促进银杏黄酮醇苷合成的基因GbF3'H及其载体、蛋白、和应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1554
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atgtcttctc tggagttcaa tatgcctcag gcttttcata gagtacaagg aagtatggtt 60
tgggcgggat tagcctctat ctttatcttg tattgggtat tctcgaagtt gaatgaaaaa 120
gggaagagaa atagaggtaa attgcctccc ggaccatctc catggcccat cattggaaat 180
cttcatttgt tgggggagct ccctcatcga tctcttggag atcttgcgaa gaaatatgga 240
tctattatgt ttttacgctt gggcttcgtc cccactgtcg tagtctcttc tcctcaaatg 300
gcagaattgt ttctgaaaac tcacgatgca gtctttgcaa gccgaccatt aacagcagcc 360
gggaaacatg tatcttacaa taaccaggat gtggtatttg ctccgtatgg ggcatactgg 420
aggcacatga gaaaggtttg cacactcgaa ttactgaccg ttaaacgtct cgagtcgttt 480
aaatccgtgc gggaggaaga ggtgtctctg atgatcgatt ccatttggaa ggagagcggt 540
catggtgtaa agcctgttga tctctctaag agaatttcat ctcttactct caatattatg 600
tgtagaatgc ttaccggcaa aacatattcg aattacgact cagaagggag agagttcaac 660
aatatgtttc acgagatagc tgctgtggac ggtgctttca atattggaga tttcattcct 720
tttctgaact ggttggattt gcaagggctt atacgccgca tgaagaaggt gttcaatata 780
tacgatgcat ttgcggagaa agtcatcgac gaacatattg aacgtcggaa ggaaaagggg 840
cttaccagta acgactttgt agacgcgctc ttagatattt ccgaaacgcg tacgatggaa 900
atcactcgtg agaacatcaa ggcgatcatt ctggacatga tggctgctgg atcggataca 960
tcgtctacaa cgttgggatg ggcaatgtct gagctgctga aaaatccgca tgtgatgaag 1020
aaagcgcagg aagagcttga atcagtggtg ggcaagagtc gcagagtgaa tgaaagcgat 1080
ctgccaaggc ttgaatactt gccatgtgtg gtgaaagaaa tattgcgatt gtatccagcg 1140
gcgcccttga tgcttcccca cgaggccatg gaggcctgca acgtcggtgg atatgatata 1200
cccgccaagg caaggttgat agtgaatgtg tgggcaatag ggagagatcc atcggcatgg 1260
gaagatccat tgacattcaa gccggagaga tttattggca gaaatattga tccttcaaga 1320
ggtcaatact ttgaactgct tccctttgga gcaggacgga ggggatgccc gggggggcct 1380
ttggccattg gagtattaga gatggcattg gctcaattgc tgcactgttt tgattggagt 1440
cttgaatttg atccgtctac gttggatatg agcgaaggtt ttggaataac aattcccaga 1500
aaagttcatc tctatgctct tccaaaacca aggttagaca tgaaccgcct ttaa 1554
<210> 2
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
atgtcttctc tggagttcaa t 21
<210> 3
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
aaggcggttc atgtctaa 18
<210> 4
<211> 517
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 4
Met Ser Ser Leu Glu Phe Asn Met Pro Gln Ala Phe His Arg Val Gln
1 5 10 15
Gly Ser Met Val Trp Ala Gly Leu Ala Ser Ile Phe Ile Leu Tyr Trp
20 25 30
Val Phe Ser Lys Leu Asn Glu Lys Gly Lys Arg Asn Arg Gly Lys Leu
35 40 45
Pro Pro Gly Pro Ser Pro Trp Pro Ile Ile Gly Asn Leu His Leu Leu
50 55 60
Gly Glu Leu Pro His Arg Ser Leu Gly Asp Leu Ala Lys Lys Tyr Gly
65 70 75 80
Ser Ile Met Phe Leu Arg Leu Gly Phe Val Pro Thr Val Val Val Ser
85 90 95
Ser Pro Gln Met Ala Glu Leu Phe Leu Lys Thr His Asp Ala Val Phe
100 105 110
Ala Ser Arg Pro Leu Thr Ala Ala Gly Lys His Val Ser Tyr Asn Asn
115 120 125
Gln Asp Val Val Phe Ala Pro Tyr Gly Ala Tyr Trp Arg His Met Arg
130 135 140
Lys Val Cys Thr Leu Glu Leu Leu Thr Val Lys Arg Leu Glu Ser Phe
145 150 155 160
Lys Ser Val Arg Glu Glu Glu Val Ser Leu Met Ile Asp Ser Ile Trp
165 170 175
Lys Glu Ser Gly His Gly Val Lys Pro Val Asp Leu Ser Lys Arg Ile
180 185 190
Ser Ser Leu Thr Leu Asn Ile Met Cys Arg Met Leu Thr Gly Lys Thr
195 200 205
Tyr Ser Asn Tyr Asp Ser Glu Gly Arg Glu Phe Asn Asn Met Phe His
210 215 220
Glu Ile Ala Ala Val Asp Gly Ala Phe Asn Ile Gly Asp Phe Ile Pro
225 230 235 240
Phe Leu Asn Trp Leu Asp Leu Gln Gly Leu Ile Arg Arg Met Lys Lys
245 250 255
Val Phe Asn Ile Tyr Asp Ala Phe Ala Glu Lys Val Ile Asp Glu His
260 265 270
Ile Glu Arg Arg Lys Glu Lys Gly Leu Thr Ser Asn Asp Phe Val Asp
275 280 285
Ala Leu Leu Asp Ile Ser Glu Thr Arg Thr Met Glu Ile Thr Arg Glu
290 295 300
Asn Ile Lys Ala Ile Ile Leu Asp Met Met Ala Ala Gly Ser Asp Thr
305 310 315 320
Ser Ser Thr Thr Leu Gly Trp Ala Met Ser Glu Leu Leu Lys Asn Pro
325 330 335
His Val Met Lys Lys Ala Gln Glu Glu Leu Glu Ser Val Val Gly Lys
340 345 350
Ser Arg Arg Val Asn Glu Ser Asp Leu Pro Arg Leu Glu Tyr Leu Pro
355 360 365
Cys Val Val Lys Glu Ile Leu Arg Leu Tyr Pro Ala Ala Pro Leu Met
370 375 380
Leu Pro His Glu Ala Met Glu Ala Cys Asn Val Gly Gly Tyr Asp Ile
385 390 395 400
Pro Ala Lys Ala Arg Leu Ile Val Asn Val Trp Ala Ile Gly Arg Asp
405 410 415
Pro Ser Ala Trp Glu Asp Pro Leu Thr Phe Lys Pro Glu Arg Phe Ile
420 425 430
Gly Arg Asn Ile Asp Pro Ser Arg Gly Gln Tyr Phe Glu Leu Leu Pro
435 440 445
Phe Gly Ala Gly Arg Arg Gly Cys Pro Gly Gly Pro Leu Ala Ile Gly
450 455 460
Val Leu Glu Met Ala Leu Ala Gln Leu Leu His Cys Phe Asp Trp Ser
465 470 475 480
Leu Glu Phe Asp Pro Ser Thr Leu Asp Met Ser Glu Gly Phe Gly Ile
485 490 495
Thr Ile Pro Arg Lys Val His Leu Tyr Ala Leu Pro Lys Pro Arg Leu
500 505 510
Asp Met Asn Arg Leu
515

Claims (10)

1.一种促进银杏黄酮醇苷合成的基因GbF3'H,其特征在于,所述基因GbF3'H的核苷酸序列如SEQ ID NO.1所示。
2.根据权利要求1所述的促进银杏黄酮醇苷合成的基因GbF3'H,其特征在于,用于扩增所述基因GbF3'H的引物对为SEQ ID NO.2:ATGTCTTCTCTGGAGTTCAAT和SEQ ID NO.3:AAGGCGGTTCATGTCTAA。
3.一种权利要求1所述的促进银杏黄酮醇苷合成的基因GbF3'H表达的蛋白,其特征在于,所述蛋白的氨基酸序列如SEQ ID NO.4所示。
4.一种含有权利要求1所述的促进银杏黄酮醇苷合成的基因GbF3'H的表达载体。
5.根据权利要求4所述的表达载体,其特征在于,所述表达载体在基因GbF3'H的5’端组装了组成型启动子CaMV35S,在基因GbF3'H的3’端组装了NOS-terminator。
6.根据权利要求4所述的表达载体,其特征在于,所述表达载体组装有NPTⅡ基因表达盒,作为转基因银杏的筛选标记,用卡那霉素进行转基因银杏的筛选。
7.根据权利要求4所述的表达载体,其特征在于,所述表达载体上组装有LB和RB序列,促使组装于其间的基因GbF3'H表达框架和筛选标记基因NPTⅡ整合至银杏染色体中。
8.一种含有权利要求1所述的促进银杏黄酮醇苷合成的基因GbF3'H或者权利要求2所述表达载体的宿主细胞。
9.一种权利要求1所述的促进银杏黄酮醇苷合成的基因GbF3'H或者权利要求2所述的表达蛋白优选在促进银杏黄酮醇苷合成中的应用。
10.根据权利要求9的应用,其特征在于,所述促进银杏黄酮醇苷合成的过程为:以银杏叶片为材料,克隆基因GbF3'H,将该基因构建到过量表达载体PRI101上,构建获得重组载体,将重组载体转化到农杆菌中,再将银杏愈伤组织浸泡在农杆菌重悬液中进行银杏的遗传转化,在启动子CaMV35S的驱动下,GbF3'H可在银杏体内高效表达,从而促进黄酮醇苷的合成。
CN202210244250.4A 2022-03-11 2022-03-11 一种促进银杏黄酮醇苷合成的基因GbF3′H及其载体、蛋白、和应用 Active CN114480448B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210244250.4A CN114480448B (zh) 2022-03-11 2022-03-11 一种促进银杏黄酮醇苷合成的基因GbF3′H及其载体、蛋白、和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210244250.4A CN114480448B (zh) 2022-03-11 2022-03-11 一种促进银杏黄酮醇苷合成的基因GbF3′H及其载体、蛋白、和应用

Publications (2)

Publication Number Publication Date
CN114480448A true CN114480448A (zh) 2022-05-13
CN114480448B CN114480448B (zh) 2023-06-20

Family

ID=81486894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210244250.4A Active CN114480448B (zh) 2022-03-11 2022-03-11 一种促进银杏黄酮醇苷合成的基因GbF3′H及其载体、蛋白、和应用

Country Status (1)

Country Link
CN (1) CN114480448B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080254155A1 (en) * 2005-10-26 2008-10-16 Shanghai Biochip Co., Ltd Use of Ginkgo Biloba Extract in Preparation of a Composition for Lowering Cholesterol
CN112080507A (zh) * 2020-09-04 2020-12-15 扬州大学 一种调控银杏类黄酮合成的关键基因GbMYB4及其表达的蛋白、载体和应用
CN112079911A (zh) * 2020-09-04 2020-12-15 扬州大学 一种促进银杏类黄酮合成的关键基因GbMYB6及其表达的蛋白、载体和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080254155A1 (en) * 2005-10-26 2008-10-16 Shanghai Biochip Co., Ltd Use of Ginkgo Biloba Extract in Preparation of a Composition for Lowering Cholesterol
CN112080507A (zh) * 2020-09-04 2020-12-15 扬州大学 一种调控银杏类黄酮合成的关键基因GbMYB4及其表达的蛋白、载体和应用
CN112079911A (zh) * 2020-09-04 2020-12-15 扬州大学 一种促进银杏类黄酮合成的关键基因GbMYB6及其表达的蛋白、载体和应用

Also Published As

Publication number Publication date
CN114480448B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
US9567600B2 (en) Modification of flavonoid biosynthesis in plants
CN106497939B (zh) 一种三七转录因子基因PnMYB1及其应用
CN105087599B (zh) 一种珠子参转录因子基因PjERF1的应用
CN108048415B (zh) 两个杨梅黄酮醇合成酶MrFLSs蛋白及其编码基因的应用
CN114807082B (zh) 地钱类黄酮葡萄糖醛酸糖基转移酶及其编码基因与应用
CN105087600B (zh) 一种珠子参转录因子基因PjbHLH1的应用
CN112079911B (zh) 一种促进银杏类黄酮合成的关键基因GbMYB6及其表达的蛋白、载体和应用
CN110272905B (zh) 一种提高植物类黄酮含量的基因及应用
CN114854703B (zh) 一种黄酮合酶i/黄烷酮-3-羟化酶及在黄酮类化合物合成领域的应用
CN114480448B (zh) 一种促进银杏黄酮醇苷合成的基因GbF3′H及其载体、蛋白、和应用
CN113774038B (zh) 菘蓝咖啡酸-o-甲基转移酶蛋白及其编码基因和应用
CN112359045A (zh) 一种类胡萝卜素代谢途径相关基因及应用
CN114480429B (zh) 一种抑制银杏黄酮醇苷合成的关键基因GbDAL1及其应用
CN115976068B (zh) 提高雪莲绿原酸含量的SiHQT基因及其编码产物和应用
CN114457053B (zh) 一种地钱联苄和二氢查尔酮糖基转移酶编码基因及其应用
CN111073868B (zh) 一种植物黄酮甲基转移酶蛋白及其编码基因与应用
US8008543B2 (en) Modification of flavonoid biosynthesis in plants by PAP1
AU2006308510B2 (en) Modification of flavonoid biosynthesis in plants
CN116239661A (zh) 烟草黄酮醇、黄酮物质表达调控因子NtMYB184及其应用
AU2006272455A1 (en) Modification of flavonoid biosynthesis in plants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant