CN114459203A - 一种基于闪蒸技术在lng生产过程中提取高纯氦气的方法 - Google Patents

一种基于闪蒸技术在lng生产过程中提取高纯氦气的方法 Download PDF

Info

Publication number
CN114459203A
CN114459203A CN202210048591.4A CN202210048591A CN114459203A CN 114459203 A CN114459203 A CN 114459203A CN 202210048591 A CN202210048591 A CN 202210048591A CN 114459203 A CN114459203 A CN 114459203A
Authority
CN
China
Prior art keywords
gas
helium
natural gas
lng
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210048591.4A
Other languages
English (en)
Inventor
丁卫国
曾国才
王灵萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingyang Ruihua Energy Co ltd
Original Assignee
Qingyang Ruihua Energy Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingyang Ruihua Energy Co ltd filed Critical Qingyang Ruihua Energy Co ltd
Priority to CN202210048591.4A priority Critical patent/CN114459203A/zh
Publication of CN114459203A publication Critical patent/CN114459203A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/061Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/028Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
    • F25J3/029Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0635Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/066Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0685Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of noble gases
    • F25J3/069Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of noble gases of helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/20Integration in an installation for liquefying or solidifying a fluid stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

本发明公开了一种基于闪蒸技术在LNG生产过程中提取高纯氦气的方法,属于氦气提取技术领域,解决了现有天然气生产过程中氦气提取难度大、成本高的问题,包括将除去杂质的原料天然气送入液化冷箱进行冷却液化,得到高压LNG,将得到的高压LNG送入闪蒸罐中进行闪蒸处理,得到气相气体BOG1和液相低压LNG,将得到的气相气体BOG1送入提氦装置中进行氦气提取,得到粗氦气,对粗氦气进行脱氢处理后通过活性炭进行纯化分离,即可得到高纯氦气。本发明通过在LNG管线上增加小容积的闪蒸罐,实现了将氦气在进入LNG储罐前分离提浓的目的,设备投资小,运行能耗低,显著降低了氦气分离提纯的成本,提高了氦气提取的效率,具有良好的经济效益和广阔的市场前景。

Description

一种基于闪蒸技术在LNG生产过程中提取高纯氦气的方法
技术领域
本发明属于氦气提取技术领域,具体涉及一种基于闪蒸技术在LNG生产过程中提取高纯氦气的方法。
背景技术
氦气是一种极轻的无色、无味、无毒且不燃烧的单原子惰性气体,主要存在于天然气当中,是人类发现最难液化的一种气体。氦气是一种稀有战略性资源,被广泛应用于国防军工、航空航天、医疗卫生、半导体工业、金属制造等多种领域。,由于空气中的氦含量极低(约0.005%),从空气中分离的难度和能耗都非常大,因此,天然气提氦是国内外工业化生产氦气的主要途径,而我国氦气需求约95%依靠进口。一般含氦天然气中甲烷、乙烷的总含量约占95%,氦气含量约占0.05%左右,剩余主要为氮气及二氧化碳,且由于氦气的沸点约-269℃,单纯为提氦而直接从天然气中提取高纯氦气(纯度99.999%)的成本极高,技术难度和投资成本极大,基本没有商业开发价值。
近年来随着天然气应急储备调峰项目的建设(将天然气液化到-162℃变成液态,600方气态天然气液化后变为1方液态,利于储存),液化天然气(LNG)工厂的数量和规模发展迅速壮大,国内天然气总量中,有相当一部分天然气被加工液化成LNG(主要成分为甲烷和乙烷,约占99%,温度-162℃)储存,在冬季天然气用量骤增时,再气化补充,起到调峰作用。在天然气中烷烃类物质被液化成LNG之前,二氧化碳已经被分离脱除。LNG主要储存在低温储罐中,由于外界热量传递受热蒸发,加之因没有液化而溶解在LNG当中的氮气、氦气进入储罐后闪蒸,储罐会产生蒸发气体,我们称之为BOG(Boil off Gas)。液化天然气主要流程如图1所示,BOG中主要成分为甲烷、氮气以及氦气,但此时由于甲烷、乙烷、二氧化碳等物质的脱除,储罐蒸发的BOG中氦气浓度上升到0.96%左右,较原料气中氦气浓度提升了近20倍。
当前,国内提氦技术主要通过BOG气体提取,这里以目前最先进的膜分离法提氦为例介绍,工作流程如图2所示。
由于进入储罐之后的LNG为常压储存,所以此时BOG气体压力仅为10-20KPa,因此需要将BOG气体增加到1.5MPa进入到脱氢系统将BOG中微量的氢气进行脱除,然后含氦BOG气体进入到一级膜分离系统,由于气体分子的选择性透过原理,加之压力推动,氦气分子可以穿过膜孔,而大量氮气、甲烷等气体则因不能穿过膜孔,这样氦气浓度在通过一级膜后浓度可达到30%左右(其中还会含有少量甲烷、氮气成分)。但透过膜的气体压力会降低到常压,再在此进入二级膜提浓之前,还需要再次增压。依照同样的原理,气体透过二级膜之后,渗透气体中氦气浓度可提高到90%左右,此时再进行增压后进入纯化系统,利用变压吸附原理将氦气纯度提高到99.999%。
但上述氦气提取方法效率较低、成本较高,难以在实际生产中得到切实应用,因此,对现有氦气提取方法进行改进对于提高氦气提取效率、降低设备成本方面具有重要意义。
发明内容
本发明的目的在于,针对以上现有技术中存在的问题,提供了一种基于闪蒸技术在LNG生产过程中提取高纯氦气的方法,通过在LNG管线上增加小容积的闪蒸罐,实现了将氦气在进入LNG储罐前分离提浓的目的,设备投资小,运行能耗低,结构简单,实用可靠。
为了实现上述目的,本发明具体采用以下技术方案:
一种基于闪蒸技术在LNG生产过程中提取高纯氦气的方法,包括以下步骤:
S1:选择原料气体,所述原料气体为原料天然气,将原料天然气输入缓冲罐中;
S2:将缓冲罐中输出的原料天然气进行加热复温、增压后通过分子筛,除去原料天然气中的杂质;
S3:将经过净化处理后的原料天然气送入液化冷箱进行冷却液化,得到高压LNG;
S4:将得到的高压LNG送入闪蒸罐中进行闪蒸处理,得到气相气体BOG1和液相低压LNG;
S5:将步骤S5中得到的气相气体BOG1送入提氦装置中,进行氦气提取,得到粗氦气;
S6:向步骤S5中得到的粗氦气中通入氧气,对粗氦气进行脱氢处理;
S7:将经过加氧脱氢处理的粗氦气通过活性炭进行纯化分离,得到高纯氦气。
所述步骤S2中从缓冲罐中输出的原料天然气送入到增压设备中,先将设备降温增压后进行气液分离,除去原料天然气中的二氧化碳,然后对天然气原料进行加热复温、增压后通过分子筛,除去天然气原料中的硫化氢、水和汞。
所述步骤S3中液化后的原料天然气温度为-160℃至-162℃。
所述步骤S4中得到的气相气体BOG1的气体压力为0.3Mpa。
所述步骤S5中气相气体BOG1需要经过冷量换热后再送入提氦装置中。
与现有技术相比,本发明具有如下有益效果:
本发明通过在LNG管线上增加小容积的闪蒸罐,实现了将氦气在进入LNG储罐前分离提浓的目的,设备投资小,运行能耗低,能够通过节省60%投资的方式可提取到80%的氦气,显著降低了氦气分离提纯的成本,提高了氦气提取的效率,具有良好的经济效益和广阔的市场前景。
附图说明
图1是本发明现有技术中从液化天然气中提氦的流程示意图。
图2是本发明现有技术中膜分离法提氦的流程示意图。
图3是本发明实施例的流程示意图。
具体实施方式
下面将结合附图以及具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明来解释本发明,但并不作为对本发明的限定。
实施例1
如图3所示,本发明所述的一种基于闪蒸技术在LNG生产过程中提取高纯氦气的方法,包括以下步骤:
S1:选择原料天然气作为原料气体,将原料天然气输入缓冲罐中,缓冲罐内压力为0.003MPa,温度为常温;
S2:将从缓冲罐中输出的原料天然气送入到增压设备中,对设备降温增压后进行气液分离,除去原料天然气中的二氧化碳,然后对天然气原料进行加热复温、增压后通过分子筛,除去天然气原料中的硫化氢、水和汞等杂质;
S3:将经过净化处理后的原料天然气送入液化冷箱并调节箱内温度为-162℃,让原料天然气进行冷却液化,得到高压LNG;
S4:将得到的高压LNG送入闪蒸罐中进行闪蒸处理,得到液相低压LNG和气体压力为0.3Mpa的气相气体BOG1;
S5:将步骤S5中得到的气相气体BOG1经过冷量换热后送入提氦装置中,进行氦气提取,得到粗氦气;
S6:向步骤S5中得到的粗氦气中通入氧气,通过催化脱氢反应将氢全部反应去除,产生的水蒸气通过分子筛吸附脱除,完成对粗氦气的脱氢处理,所述催化脱氢反应中的脱氢催化剂为Al2O3
S7:将经过加氧脱氢处理的粗氦气通过活性炭进行纯化分离,除去粗氦气中的氮、氢和甲烷等杂质,得到高纯氦气。
实施例2
在实施例1的技术基础上,所述步骤S4中得到的液相低压LNG经过常温复热、增压后送入LNG储罐中进行闪蒸处理,得到气相气体BOG2,将得到的气相气体BOG2送入提氦装置中,进行氦气提取,得到粗氦气,对粗氦气通过活性炭吸附纯化分离,得到高纯氦气。
在本发明中,经过闪蒸处理的高压LNG中有少量氦气溶解到LNG中进入储罐,随后闪蒸为BOG2,但BOG2中氦气浓度极低,仅为0.18%,且BOG2中蒸发气体较多,因而从气相气体BOG2中提取氦气需要消耗的成本较高。而从闪蒸罐出来的气体BOG1中氦气浓度达到44%,此处蒸发出的氦气约占全系统氦气总量的85%以上。
本发明以现有技术中从液化天然气中提氦的方法为对比,并对现有技术中得到的BOG和本发明中得到BOG1和BOG2中的组分含量进行检测,检测结果如下表。
表1现有技术中储罐BOG的组分含量
Figure BDA0003473554980000051
Figure BDA0003473554980000061
表2本发明中闪蒸罐BOG1的组分含量
摩尔分率 气相 液相
Methane 0.3039 0.3039 0.9457
Ethane 0.0000 0.0000 0.0267
Propane 0.0000 0.0000 0.0027
i-Butane 0.0000 0.0000 0.0000
n-Butane 0.0000 0.0000 0.0000
Nitrogen 0.2573 0.2573 0.0356
CO<sub>2</sub> 0.0000 0.0000 0.0000
H<sub>2</sub>O 0.0000 0.0000 0.0000
Ethylene 0.0000 0.0000 0.0000
Oxygen 0.0000 0.0000 0.0000
Helium 0.4424 0.4424 0.0018
Hydrogen 0.0000 0.0000 0.0000
表3本发明中储罐BOG2的组分含量
摩尔分率 气相 液相
Methane 0.7815 0.7815 0.9628
Ethane 0.0000 0.0000 0.0235
Propane 0.0000 0.0000 0.0027
i-Butane 0.0000 0.0000 0.0000
n-Butane 0.0000 0.0000 0.0000
Nitrogen 0.2167 0.2167 0.0035
CO<sub>2</sub> 0.0000 0.0000 0.0000
H<sub>2</sub>O 0.0000 0.0000 0.0000
Ethylene 0.0000 0.0000 0.0000
Oxygen 0.0000 0.0000 0.0000
Helium 0.0018 0.0018 0.0006
Hydrogen 0.0000 0.0000 0.0000
由表1-3所示,本发明相较于现有技术具有明显优势,具体如下:
1.由于BOG1中氦气浓度高达44%左右,原提氦装置中的两级膜分离系统仅需一级膜即可达到90%氦气浓度;可省掉一级膜分离装置和一级增压装置,能够显著降低设备成本。
2.本发明中BOG1气体压力约为0.3Mpa,且气体流量小,浓度高,利用本发明,能够显著实现BOG1中氦气的富集提浓。而图1所示提氦方法的BOG中不仅氦气含量低,压力仅为15-20KPa,且由于储罐自身蒸发,BOG气量要比本发明中BOG1的气量大约50倍。相比之下在BOG1处提取氦气需要的增压机功率的装机功率比现有技术中图1中所示提氦方法中的装机功率小数十倍,大大节省了增压系统的投资和运行能耗,据测算,投资要比现有技术中图1所示提氦方法中的增压系统节省60%,且能耗要比原增压系统缩小5倍。
3.传统的LNG工艺是依靠项目配套建设的大型储罐(目前多数日处理100万方天然气的LNG工厂的配套的罐容在1-3万方)对节流后的LNG进行闪蒸,从而闪蒸出氮气、氦气等溶解在LNG中的气相,但该阶段闪蒸气体量较多,氦气浓度低,且为常压,不利于氦气提取。而本发明在LNG未进入储罐前先通过增加闪蒸罐(相对于日处理100万方的LNG装置,闪蒸罐容积仅为10-25立方)的方式,将LNG中溶解的氦气通过闪蒸罐浓缩聚集小容积内,大幅提高了氦气浓度,同时大幅缩小了此处蒸发气总量。因此通过在LNG管线上增加小容积的闪蒸罐,实现了将氦气在进入LNG储罐前分离提浓的目的,而不再依靠LNG储罐闪蒸气提取氦气。
4.在本发明应用在新建LNG项目的工艺包设计阶段时,可以按照上述方式在高压LNG深冷后先初步节流到0.3MPa(该压力并非特定值,具体闪蒸压力要视LNG压力和组分调整决定),然后引入闪蒸罐(闪蒸罐的设计温度不应高于-196℃,罐体外层需做好保冷防护),闪蒸罐的液体再经减压节流后进入LNG储罐,富含氦气的气相则将冷量换热后即可接入提氦装备。对于已建成的LNG生产装置,同样仅需在LNG节流阀前增加一个一定容积的闪蒸罐,在不影响原有工艺和设备的情况下,轻松实现对LNG中溶解的氦气的获取。
综上,本发明采用LNG闪蒸技术从闪蒸气相中提取氦气要比从储罐BOG中提取氦气的设备具有投资小、运行能耗低等特点,是LNG提氦技术发展的一项重要革新。
以上对本发明实施例所提供的技术方案进行了详细介绍,本文中应用了具体个例对本发明实施例的原理以及实施方式进行了阐述,以上实施例的说明只适用于帮助理解本发明实施例的原理。

Claims (5)

1.一种基于闪蒸技术在LNG生产过程中提取高纯氦气的方法,其特征在于,包括以下步骤:
S1:选择原料气体,所述原料气体为原料天然气,将原料天然气输入缓冲罐中;
S2:将缓冲罐中输出的原料天然气进行加热复温、增压后通过分子筛,除去原料天然气中的杂质;
S3:将经过净化处理后的原料天然气送入液化冷箱进行冷却液化,得到高压LNG;
S4:将得到的高压LNG送入闪蒸罐中进行闪蒸处理,得到气相气体BOG1和液相低压LNG;
S5:将步骤S5中得到的气相气体BOG1送入提氦装置中,进行氦气提取,得到粗氦气;
S6:向步骤S5中得到的粗氦气中通入氧气,对粗氦气进行脱氢处理;
S7:将经过加氧脱氢处理的粗氦气通过活性炭进行纯化分离,得到高纯氦气。
2.根据权利要求1所述的一种基于闪蒸技术在LNG生产过程中提取高纯氦气的方法,其特征在于:所述步骤S2中从缓冲罐中输出的原料天然气送入到增压设备中,先将设备降温增压后进行气液分离,除去原料天然气中的二氧化碳,然后对天然气原料进行加热复温、增压后通过分子筛,除去天然气原料中的硫化氢、水和汞。
3.根据权利要求1所述的一种基于闪蒸技术在LNG生产过程中提取高纯氦气的方法,其特征在于:所述步骤S3中液化后的原料天然气温度为-160℃至-162℃。
4.根据权利要求1所述的一种基于闪蒸技术在LNG生产过程中提取高纯氦气的方法,其特征在于:所述步骤S4中得到的气相气体BOG1的气体压力为0.3Mpa。
5.根据权利要求1所述的一种基于闪蒸技术在LNG生产过程中提取高纯氦气的方法,其特征在于:所述步骤S5中气相气体BOG1需要经过冷量换热后再送入提氦装置中。
CN202210048591.4A 2022-01-17 2022-01-17 一种基于闪蒸技术在lng生产过程中提取高纯氦气的方法 Pending CN114459203A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210048591.4A CN114459203A (zh) 2022-01-17 2022-01-17 一种基于闪蒸技术在lng生产过程中提取高纯氦气的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210048591.4A CN114459203A (zh) 2022-01-17 2022-01-17 一种基于闪蒸技术在lng生产过程中提取高纯氦气的方法

Publications (1)

Publication Number Publication Date
CN114459203A true CN114459203A (zh) 2022-05-10

Family

ID=81410064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210048591.4A Pending CN114459203A (zh) 2022-01-17 2022-01-17 一种基于闪蒸技术在lng生产过程中提取高纯氦气的方法

Country Status (1)

Country Link
CN (1) CN114459203A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117516063A (zh) * 2023-11-16 2024-02-06 成都赛普能源股份有限公司 一种bog浓缩提氦方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113686098A (zh) * 2021-09-27 2021-11-23 西南石油大学 一种天然气液化及氦气回收方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113686098A (zh) * 2021-09-27 2021-11-23 西南石油大学 一种天然气液化及氦气回收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中国石油天然气总公司: "石油地面工程设计手册 第2册 油田地面工程设计", 石油大学出版社, pages: 464 - 465 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117516063A (zh) * 2023-11-16 2024-02-06 成都赛普能源股份有限公司 一种bog浓缩提氦方法及装置

Similar Documents

Publication Publication Date Title
CN113108551A (zh) 在液化天然气生产过程中提取高纯氦气的工艺及装置
CN104528647A (zh) 一种合成气分离制取氢气及高纯一氧化碳的方法和装置
CN210014211U (zh) 一种液化天然气的闪蒸气回收装置
CN109631494B (zh) 一种氦气生产系统和生产方法
CN112880302A (zh) 一种天然气液化联产高纯氦气的方法和设备
CN110686464A (zh) 一种液化天然气的闪蒸汽中氦气的回收方法及装置
CN111692837A (zh) 一种利用lng生产装置联产氦气的系统
CN212538459U (zh) 一种利用lng生产装置联产氦气的系统
CN113144821A (zh) 一种富氦天然气液化尾气生产高纯氦气的多技术集成分离工艺
CN115888386A (zh) 一种高含氮bog气体提氦工艺
CN112023618A (zh) 一种粗氦精制系统及方法
CN110455038B (zh) 一种氦提取单元、氦提取装置和联产氦气的系统
CN114459203A (zh) 一种基于闪蒸技术在lng生产过程中提取高纯氦气的方法
CN113862051B (zh) 双制冷循环甲烷洗合成气深冷分离装置及分离方法
CN111547691A (zh) 一种氢含量高的bog气体提氦气的设备及其工艺
CN111483987A (zh) 一种基于膜分离的氦气生产工艺以及设备
CN113501508B (zh) 一种从天然气或bog中提取氦气的系统和方法
CN112408342A (zh) 一种常温天然气氦气提取提纯系统
CN204702504U (zh) 一种合成气分离制取氢气及高纯一氧化碳装置
US20210364228A1 (en) Installation and method for producing liquefied methane
CN115540499A (zh) 一种闪蒸废气低温增压循环生产高纯氮气和超纯氧气的装置及方法
CN214087729U (zh) 一种常温天然气氦气提取提纯系统
CN108821290B (zh) 一种二氧化碳的生产装置及方法
CN113566493A (zh) 氦气回收的深冷分离系统
CN114669164B (zh) 一种天然气bog制取高纯氦气的系统和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination