CN114457223A - 一种奥氏体不锈钢的热变形加工工艺 - Google Patents

一种奥氏体不锈钢的热变形加工工艺 Download PDF

Info

Publication number
CN114457223A
CN114457223A CN202011237516.XA CN202011237516A CN114457223A CN 114457223 A CN114457223 A CN 114457223A CN 202011237516 A CN202011237516 A CN 202011237516A CN 114457223 A CN114457223 A CN 114457223A
Authority
CN
China
Prior art keywords
hot
stainless steel
austenitic stainless
ingot
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011237516.XA
Other languages
English (en)
Other versions
CN114457223B (zh
Inventor
王旻
易昊钰
马颖澈
石林
查向东
陈敏筣
陈波
陈刘涛
刘奎
邓勇军
聂立红
陈建新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
China Nuclear Power Technology Research Institute Co Ltd
Original Assignee
Institute of Metal Research of CAS
China Nuclear Power Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS, China Nuclear Power Technology Research Institute Co Ltd filed Critical Institute of Metal Research of CAS
Priority to CN202011237516.XA priority Critical patent/CN114457223B/zh
Priority claimed from CN202011237516.XA external-priority patent/CN114457223B/zh
Publication of CN114457223A publication Critical patent/CN114457223A/zh
Application granted granted Critical
Publication of CN114457223B publication Critical patent/CN114457223B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Abstract

本发明公开了一种奥氏体不锈钢的热变形加工工艺,属于合金制造技术领域。该加工工艺包括以下步骤:步骤一,锻造,将合金铸锭进行锻造变形以准备轧制板坯;步骤二,热轧,采用热轧工艺将板坯制备成热轧板;步骤三,真空热处理退火,通过退火温度的选择对板材晶粒度进行控制。本发明的制备方法确保这种新型奥氏体不锈钢板材在热加工过程中不出现坯料明显开裂、组织不均等问题,并且板材晶粒组织良好、可控,可用于进一步加工制造铅基快堆堆芯燃料组件。

Description

一种奥氏体不锈钢的热变形加工工艺
技术领域
本发明涉及合金制造技术领域,具体涉及一种奥氏体不锈钢的热变形加工工艺。
背景技术
铅基反应堆具有安全性高、中子特性优良、易小型化等特点,是我国主要发展的快中子反应堆堆型之一。燃料组件是快中子反应堆最为关键的核心部件,在铅基快堆中,燃料组件不但长期承受高温与快中子辐照,还与强腐蚀性的液态铅铋共晶合金直接接触。奥氏体不锈钢是快中子反应堆堆芯燃料组件主要候选结构材料之一,已经在钠冷快堆中成功应用。现有一种奥氏体不锈钢,其具有良好的耐液态铅铋腐蚀性能、抗辐照肿胀性能和力学性能。但这种新型奥氏体不锈钢具有较高的Cr、Si元素含量,加工难度较大,在热变形过程中易发生坯料开裂,必须对变形量和变形道次进行合理设计。此外,为满足不同级别的性能需求,这种奥氏体不锈钢的C、Ti含量具有一定的变化范围(C 0.04-0.08%,Ti 0.20-0.60%),这对材料加工变形过程的组织控制带来困难,特别固溶和退火处理过程中处理温度和处理时间的确定。
综上可知,亟须针对这种新型奥氏体不锈钢的成分特点对现有奥氏体不锈钢板材的热加工工艺进行优化,以便能够高效地制备出满足铅基快堆使用要求的奥氏体不锈钢构件。
发明内容
本发明的目的在于提供一种奥氏体不锈钢的热变形加工工艺,通过合理控制变形工艺保证热加工变形效果,优化热处理工艺以合理调控合金的热变形组织状态。
为实现上述目的,本发明所采用的技术方案如下:
一种奥氏体不锈钢的热变形加工工艺,包括以下步骤:
(1)锻造:将合金铸锭(重熔锭)进行锻造变形,获得轧制板坯;
(2)热轧:采用热轧工艺将轧制板坯制备成热轧板;
(3)真空热处理退火:对热轧板进行真空退火处理,通过退火温度的控制对最终板材晶粒度进行控制。
步骤(1)中,采用真空感应熔炼加真空自耗重熔工艺制备锻造所需的合金铸锭(重熔锭)。铸锭化学成分(质量百分比)为:C 0.04-0.08%、Cr 16.5-20.0%、Ni 14.5-16.5%、Si 1.2-3.0%、Mn 1.5-3.0%、Ti 0.2-0.5%、Mo 1.3-2.5%、B 0.003-0.004%,余量为Fe。
步骤(1)中,锻造前应对重熔铸锭进行表面扒皮、头尾定切和必要的铸锭切分,进行锻造变形的重熔锭的高径比不大于2.5。
步骤(1)中,为消除或减轻元素偏析,重熔锭在锻造前进行高温固溶处理,固溶温度为1190-1210℃,保温时间为10-12h。
步骤(1)锻造变形中,锻造温度为1160-1180℃,终锻温度不低于900℃,板坯成形后厚度为40-60mm。
步骤(1)锻造变形中,为提高组织均匀性,对重熔锭进行多次反复墩拔,墩拔次数为2-4次。为避免铸锭表面开裂,重熔锭开坯采用镦粗方式,镦粗变形量不大于30%,镦粗完成后拔回原长。重熔锭开坯后的每次墩拔过程镦粗变形量为30%-50%,随后拔回原长,每一次墩拔变形完成后回炉加热。
步骤(1)锻造完成后对板坯表面进行打磨或机加工,去除板坯表面缺陷,提高热轧成形性。板坯表面处理完成后确认不存在肉眼可见裂纹,并进行着色探伤抽检。
步骤(2)中,为提高组织均匀性,板坯在热轧前进行高温固溶处理,固溶温度为1190-1210℃,保温时间为3-5h。
步骤(2)中,始轧温度为1160-1180℃,终轧温度不低于900℃,热轧板材成型后厚度为5-15mm。
步骤(2)中,每道次的轧制变形量为10-50%,首道轧制变形量不大于20%。
步骤(2)中,轧制完成后进行喷水冷却。
步骤(3)中,热轧板进行真空热处理退火,对于Ti/C为3-6(合金中Ti与C的重量百分含量的比值为3-6)的热轧板材,退火处理温度为1070-1100℃,保温时间为20-40min。对于Ti/C为5-8(合金中Ti与C的重量百分含量的比值为5-8)的热轧板材,退火处理温度为1090-1120℃,保温时间为20-40min。
步骤(3)中,热轧板退火处理使用真空气淬热处理炉,淬火气体为氩气。板材炉内摆放保持间隔,不允许堆叠摆放。
步骤(3)中,热轧板退火处理前进行酸洗或表面打磨处理,去除板材表面氧化皮。
步骤(3)中,热轧板完成真空热处理退火后进行矫直处理。
步骤(3)真空热处理退火中,通过改变热处理温度控制所述热轧板材的平均晶粒度为7-9级。
本发明具有如下有益效果:
本发明的加工方法确保这种新型奥氏体不锈钢板材在热加工过程中不出现坯料明显开裂、组织不均等问题,并且板材晶粒组织良好、可控,可用于进一步加工制造铅基快堆堆芯燃料组件。
附图说明:
图1为实施例1中9.5mm厚度新型奥氏体不锈钢热轧板材的金相组织形貌。
图2为实施例2中7.5mm厚度新型奥氏体不锈钢热轧板材的金相组织形貌。
图3为对比例1中7.5mm厚度新型奥氏体不锈钢热轧板材的金相组织形貌。
具体实施方式
以下结合具体实施例对本发明作进一步详细说明。
实施例1:
采用真空感应熔炼加真空自耗重熔准备母合金铸锭。重熔锭冶炼完成后进行表面扒皮、首尾定切和铸锭切分,处理完成后铸锭直径为114mm,长度为200mm,高径比为1.75。铸锭化学成分为(wt.%):C 0.061%、Ni 14.98%、Cr 16.87%、Si 2.02%、Mn 1.48%、Ti0.26%、Mo 1.50%、Al 0.035%、N 0.0051%、O 0.0009%、S<0.001%、Fe余量,Ti/C质量比为4.3。
重熔锭在1200℃保温10h进行高温固溶处理。经固溶处理后的重熔铸锭在1180℃使用空气锻锤进行锻造变形。铸锭开坯过程中,首先将铸锭镦粗至150mm,镦粗变形量为25%,随后拔长至200mm,并回炉加热0.5h。加热完成后又进行了两次变形量为40%的墩拔变形与一次回炉加热,最终成形为110×50mm截面尺寸的板坯。目视检查表明板坯表面不存在明显裂纹。板坯锻造成形后进行表面铣加工充分去除表面缺陷,并经着色探伤合格。
经表面处理的板坯在1200℃进行高温固溶处理,保温3h。高温固溶处理完成后板坯在连续热轧机上进行热轧,轧制温度为1180℃,经过五个道次的轧制,获得厚度为9.5mm的热轧板,采用冷水喷淋冷却。五个道次的单次压下量分别为:12.0%、13.6%、31.6%、46.2%、32.1%。热轧板成形后对其进行酸洗和表面打磨,并使用真空气淬热处理炉对其进行1090℃、30min的退火处理。热轧板经退火处理后因应力释放存在一定的变形,对其进行矫直处理。对所得到的热轧板材不同位置取样进行显微组织分析,结果表明热轧板材经真空退火处理后平均晶粒度为8.0级,图1给出了本实施例制备的厚度为9.5mm热轧板材的金相组织形貌。
实施例2:
采用真空感应熔炼加真空自耗重熔准备母合金铸锭。重熔锭冶炼完成后进行表面扒皮、首尾定切和铸锭切分,处理完成后铸锭直径为112mm,长度为195mm,高径比为1.74。铸锭化学成分为(wt.%):C 0.060%、Ni 15.03%、Cr 16.88%、Si 2.02%、Mn 1.48%、Ti0.51%、Mo 1.50%、Al 0.035%、N 0.0047%、O 0.0008%、S<0.001%、Fe余量,Ti/C质量比为8.5。
重熔锭在1200℃保温10h进行高温固溶处理。经固溶处理后的重熔铸锭在1180℃使用空气锻锤进行锻造变形。铸锭开坯过程中,首先将铸锭镦粗至150mm,镦粗变形量为23%,随后拔长至200mm,并回炉加热0.5h。加热完成后又进行了两次变形量为40%的墩拔变形与一次回炉加热,最终成形为100×40mm截面尺寸的板坯。目视检查表明板坯表面不存在明显裂纹。板坯锻造成形后进行表面铣加工充分去除表面缺陷,并经着色探伤合格。
经表面处理的板坯在1200℃进行高温固溶处理,保温3h。高温固溶处理完成后板坯在连续热轧机上进行热轧,轧制温度为1180℃,经过五个道次的轧制,获得厚度为7.5mm的热轧板,采用冷水喷淋冷却。五个道次的单次压下量分别为:12.5%、14.3%、33.3%、45.0%、31.8%。热轧板成形后对其进行酸洗和表面打磨,并使用真空气淬热处理炉对其进行1100℃×30min的退火处理。热轧板经退火处理后因应力释放存在一定的变形,对其进行矫直处理。对所得到的热轧板材不同位置取样进行显微组织分析,结果表明热轧板材经真空退火处理后平均晶粒度为9.0级,图2给出了上述方法制备的厚度为7.5mm热轧板材的金相组织形貌。
对比例1
采用真空感应熔炼加真空自耗重熔准备母合金铸锭。重熔锭冶炼完成后进行表面扒皮、首尾定切和铸锭切分,处理完成后铸锭直径为112mm,长度为205mm,高径比为1.83。铸锭化学成分为(wt.%):C 0.060%、Ni 15.03%、Cr 16.88%、Si 2.02%、Mn 1.48%、Ti0.51%、Mo 1.50%、Al 0.035%、N 0.0047%、O 0.0008%、S<0.001%、Fe余量,Ti/C质量比为8.5。
重熔锭在1200℃保温10h进行高温固溶处理。经固溶处理后的重熔铸锭在1180℃使用空气锻锤进行锻造变形。铸锭开坯过程中,首先将铸锭镦粗至120mm,镦粗变形量为41%,随后拔长至100×40mm截面尺寸板坯成形。经目视检查发现板坯表面产生明显裂纹。锻造板坯进行表面铣加工充分去除表面缺陷,并经着色探伤合格。
经表面处理的板坯在1200℃进行高温固溶处理,保温3h。高温固溶处理完成后板坯在连续热轧机上进行热轧,轧制温度为1180℃,经过五个道次的轧制,获得厚度为7.5mm的热轧板,采用冷水喷淋冷却。五个道次的单次压下量分别为:12.5%、14.3%、33.3%、45.0%、31.8%。热轧板成形后对其进行酸洗和表面打磨,并使用真空气淬热处理炉对其进行1100℃×30min的退火处理。热轧板经退火处理后因应力释放存在一定的变形,对其进行矫直处理。对所得到的热轧板材不同位置取样进行显微组织分析,结果表明热轧板材经真空退火处理后出现明显混晶,图3给出了本例制备的厚度为7.5mm热轧板材的金相组织形貌。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (10)

1.一种奥氏体不锈钢的热变形加工工艺,其特征在于:该热变形加工工艺包括以下步骤:
(1)锻造:将合金铸锭(重熔锭)进行锻造变形,获得轧制板坯;
(2)热轧:采用热轧工艺将轧制板坯制备成热轧板;
(3)真空热处理退火:对热轧板进行真空退火处理,通过退火温度的控制对最终板材晶粒度进行控制。
2.根据权利要求1所述的奥氏体不锈钢的热变形加工工艺,其特征在于:步骤(1)中,锻造前进行高温固溶处理,固溶温度为1190-1210℃,保温时间为10-12h。
3.根据权利要求1所述的奥氏体不锈钢的热变形加工工艺,其特征在于:步骤(1)锻造变形过程中,锻造温度为1160-1180℃,终锻温度不低于900℃,轧制板坯成形后厚度为40-60mm。
4.根据权利要求1所述的奥氏体不锈钢的热变形加工工艺,其特征在于:步骤(1)中,所述锻造变形是指对重熔锭进行多次反复墩拔,墩拔次数为2-4次。
5.根据权利要求4所述的奥氏体不锈钢的热变形加工工艺,其特征在于:步骤(1)锻造变形过程中,重熔锭开坯采用镦粗方式,镦粗变形量不大于30%,镦粗完成后拔回原长。
6.根据权利要求5所述的奥氏体不锈钢的热变形加工工艺,其特征在于:步骤(1)锻造变形过程中,重熔锭开坯后的每次墩拔过程镦粗变形量为30%-50%,随后拔回原长,每一次墩拔变形完成后回炉加热。
7.根据权利要求1所述的奥氏体不锈钢的热变形加工工艺,其特征在于:步骤(2)中,板坯在热轧前进行高温固溶处理,固溶温度为1190-1210℃,保温时间为3-5h。
8.根据权利要求1所述的奥氏体不锈钢的热变形加工工艺,其特征在于:步骤(2)中,始轧温度为1160-1180℃,终轧温度不低于900℃,热轧板材成型后厚度为5-15mm;每道次的轧制变形量为10-50%,首道轧制变形量不大于20%,轧制完成后进行喷水冷却。
9.根据权利要求1所述的奥氏体不锈钢的热变形加工工艺,其特征在于:步骤(3)中,热轧板进行真空热处理退火,对于Ti/C为3-6的热轧板材,退火处理温度为1070-1100℃,保温时间为20-40min;对于Ti/C为5-8的热轧板材,退火处理温度为1090-1120℃,保温时间为20-40min。
10.根据权利要求1所述的一种新型奥氏体不锈钢的热变形加工工艺,其特征在于:步骤(3)通过改变热处理温度控制所述热轧板材的平均晶粒度为7-9级。
CN202011237516.XA 2020-11-09 一种奥氏体不锈钢的热变形加工工艺 Active CN114457223B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011237516.XA CN114457223B (zh) 2020-11-09 一种奥氏体不锈钢的热变形加工工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011237516.XA CN114457223B (zh) 2020-11-09 一种奥氏体不锈钢的热变形加工工艺

Publications (2)

Publication Number Publication Date
CN114457223A true CN114457223A (zh) 2022-05-10
CN114457223B CN114457223B (zh) 2024-05-17

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102808138A (zh) * 2011-05-31 2012-12-05 中国核动力研究设计院 超临界水冷堆中燃料包壳的奥氏体不锈钢新材料及制造工艺
CN105112811A (zh) * 2015-09-07 2015-12-02 中国科学院合肥物质科学研究院 一种铅铋快堆用奥氏体不锈钢包壳管及其制备方法
CN109355558A (zh) * 2018-11-01 2019-02-19 中广核研究院有限公司 奥氏体不锈钢及其制备方法、应用
CN110520549A (zh) * 2017-03-31 2019-11-29 日铁不锈钢株式会社 奥氏体系不锈钢厚钢板及其制造方法
CN110819908A (zh) * 2019-11-18 2020-02-21 燕山大学 一种高强低密度奥氏体钢及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102808138A (zh) * 2011-05-31 2012-12-05 中国核动力研究设计院 超临界水冷堆中燃料包壳的奥氏体不锈钢新材料及制造工艺
CN105112811A (zh) * 2015-09-07 2015-12-02 中国科学院合肥物质科学研究院 一种铅铋快堆用奥氏体不锈钢包壳管及其制备方法
CN110520549A (zh) * 2017-03-31 2019-11-29 日铁不锈钢株式会社 奥氏体系不锈钢厚钢板及其制造方法
CN109355558A (zh) * 2018-11-01 2019-02-19 中广核研究院有限公司 奥氏体不锈钢及其制备方法、应用
CN110819908A (zh) * 2019-11-18 2020-02-21 燕山大学 一种高强低密度奥氏体钢及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
易吴钰等: "铅基快堆用CLRASS 奥氏体不锈钢热变形组织的均匀性", 《材料处理学报》, pages 1 *

Similar Documents

Publication Publication Date Title
CN110449541B (zh) 一种gh4169高温合金自由锻棒坯及其制备方法
CN110438416B (zh) 一种消除超宽幅高氮奥氏体不锈钢中厚板表面裂纹的方法
CN107699831B (zh) 基于复合结构设计的包套轧制铸态TiAl合金板材方法
CN107557616B (zh) 一种镍基耐蚀合金管材及其制造方法
CN110241364A (zh) 一种高强塑纳米/亚微米晶冷轧304不锈钢带及其制备方法
CN109161780B (zh) 一种提高FeCrNiAl基高熵合金加工性能的方法
CN110102570B (zh) 高温合金盘条及其高线轧制方法
CN109504877B (zh) 一种高冲击韧性和高塑性的ta23合金板材及制备与应用
CN106181131A (zh) 用于抗熔盐腐蚀镍基高温合金焊接的实芯焊丝制备方法
CN110629083B (zh) 一种船用5083铝合金板材及其制备工艺
CN112775202B (zh) 一种锆或锆合金轧制型材的制备方法
CN104694832A (zh) 一种核反应堆用马氏体不锈钢及制备方法
CN106914508A (zh) 一种Ti2AlNb合金丝材的制备方法
CN113042565A (zh) 一种紧固件用优质gh2132合金棒材及其生产方法
CN111411266B (zh) 一种镍基高钨多晶高温合金的制备工艺
CN111304566B (zh) 一种硬态gh5605高温合金冷轧带材的热处理方法
CN109825675B (zh) 用于快堆蒸汽发生器的换热管及其制备方法
CN112692204B (zh) 一种大尺寸耐蚀Ti35合金锻件的制备方法
CN110205572B (zh) 一种两相Ti-Al-Zr-Mo-V钛合金锻棒的制备方法
CN114150184A (zh) 一种低应力腐蚀敏感性的高强耐蚀Zr702L合金
CN111151695A (zh) 材料为30Cr2Ni4MoV的汽轮机用阀杆的锻造热处理工艺
CN110923522A (zh) 高性能宽幅铝合金板材板型成型方法
CN104264087A (zh) 一种Zr-Nb-Cu系合金的制备方法
CN104726754A (zh) 一种门窗用高强度铝合金材料的制备方法
CN114457223A (zh) 一种奥氏体不锈钢的热变形加工工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant