CN114452956A - 一种环保型功能化铜网材料及其制备方法和应用 - Google Patents

一种环保型功能化铜网材料及其制备方法和应用 Download PDF

Info

Publication number
CN114452956A
CN114452956A CN202210201518.6A CN202210201518A CN114452956A CN 114452956 A CN114452956 A CN 114452956A CN 202210201518 A CN202210201518 A CN 202210201518A CN 114452956 A CN114452956 A CN 114452956A
Authority
CN
China
Prior art keywords
copper mesh
environment
friendly
zif
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210201518.6A
Other languages
English (en)
Other versions
CN114452956B (zh
Inventor
许旭
李响
刘桂彬
高佳欣
魏茜茜
刘峻菲
张蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202210201518.6A priority Critical patent/CN114452956B/zh
Publication of CN114452956A publication Critical patent/CN114452956A/zh
Application granted granted Critical
Publication of CN114452956B publication Critical patent/CN114452956B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0292Phosphates of compounds other than those provided for in B01J20/048
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种环保型功能化铜网材料及其制备方法和应用。本发明以金属铜网作基底材料,使用氧化法在其表面原位生长Cu3(PO4)2晶体微米级片状结构,之后在材料表面利用聚乙烯吡咯烷酮吸附Zn2+进而原位生长ZIF‑7晶体纳米级片状结构,使得材料表面呈现微纳米结构,进一步在材料表面修饰聚二甲基硅氧烷(PDMS)涂层,降低材料表面能,从而制得环保型功能化材料PDMS/ZIF‑7@Cu3(PO4)2铜网。本发明的制备方法简单,合成原料不含对环境有害物质,无需复杂的设备和过多能耗,合成的材料具有超疏水‑超亲油性、优异的油水分离能力和乳液处理能力、极好的物理稳定性和化学耐久性以及自洁能力,在含油废水净化中具有广阔的应用前景。

Description

一种环保型功能化铜网材料及其制备方法和应用
技术领域
本发明属于材料技术领域,具体涉及一种环保型功能化铜网材料及其制备方法和应用。
背景技术
现如今,海洋石油泄漏对水生生物构成严重危害,也对人类发展造成了巨大的威胁,已成为最紧迫的环境问题之一。因此,开发一种高效且环保的方法来处理含油废水具有重要意义。与其他传统分离技术相比,膜分离技术具有节能、操作简单、设备环保等优点,近年来被广泛应用于油水分离领域。常用膜分离材料如金属网、聚合物膜、泡沫、滤纸和纤维织物等,其中,金属网因其机械稳定性强、耐用性好、孔径可控、通量高、易修饰等优点而被选择制成大规模油水分离材料。
事实上,油水混合物并不总是分层的,与分层型油水混合物相比,油水乳液更容易在家庭和工业过程中形成。特别是由微/纳米级分散液滴组成的乳化液滴在连续相中,在现实生活中很常见,但却很难分离。因为乳化液滴在液体介质中存在坚固的油水界面膜和表面活性成分,通常非常稳定。尽管过往人们的研究通常可以处理分层型油水混合物,但乳液处理仍然是一个巨大的挑战。然而,大多数膜材料在长期分离过程中,表面不可避免地受到有机污染物的污染或孔堵塞,影响其润湿性,进而影响分离性能。因此,开发一种可高效处理乳液且具备自清洁能力的油水分离材料十分紧迫。
发明内容
本发明为克服现有技术的不足,提供一种环保型功能化铜网材料及其制备方法和应用。
本发明采用的技术方案为:
一种环保型功能化铜网材料,利用氧化法在铜网上原位生长Cu3(PO4)2晶体,并进一步在Cu3(PO4)2铜网上原位生长ZIF-7晶体,最后在材料表面修饰聚二甲基硅氧烷(PDMS)涂层,制得环保型功能化铜网材料PDMS/ZIF-7@Cu3(PO4)2铜网。
上述一种环保型功能化铜网材料的制备方法,包括如下步骤:
1)将原始铜网依次经稀盐酸、去离子水、乙醇超声处理洗净,去除表面氧化层及其它杂质,80℃真空烘干后,将得到的铜网浸入含有磷酸二氢钠和过氧化氢混合溶液中,室温下浸泡6h,反应结束后,取出铜网并用去离子水洗涤三次,80℃真空烘干,铜网表面被氧化生成Cu3(PO4)2晶体,得到Cu3(PO4)2铜网;
2)将步骤1)得到的Cu3(PO4)2铜网浸入聚乙烯吡咯烷酮甲醇溶液中浸泡30min,使Cu3(PO4)2铜网表面充满聚乙烯吡咯烷酮分子,随后向体系中加入硝酸锌,常温下搅拌30min,使Zn2+附着于Cu3(PO4)2铜网表面,之后向体系中加入苯并咪唑甲醇溶液,加热搅拌生成ZIF-7晶体,反应结束后,静置陈化1h,取出铜网用甲醇洗涤三次,80℃真空烘干,Cu3(PO4)2铜网上原位生长出ZIF-7晶体,得到ZIF-7@Cu3(PO4)2铜网;
3)将聚二甲基硅氧烷预聚物及其固化剂溶于正己烷中,搅拌混匀,得到修饰液,将步骤2)得到的ZIF-7@Cu3(PO4)2铜网浸入修饰液中,室温下浸泡20min后取出,真空固化,得到目标产物PDMS/ZIF-7@Cu3(PO4)2铜网。
进一步的,上述的制备方法,步骤1)中,所述原始铜网选用400目铜网,纯度为99%,尺寸为3cm×3cm的矩形薄片。
进一步的,上述的制备方法,步骤1)中,所述含有磷酸二氢钠和过氧化氢混合溶液中,按摩尔比,磷酸二氢钠:过氧化氢=1:1。
进一步的,上述的制备方法,步骤2)中,按体积比,聚乙烯吡咯烷酮甲醇溶液:苯并咪唑甲醇溶液=1:1。
进一步的,上述的制备方法,步骤2)中,按摩尔比,硝酸锌:苯并咪唑=1:3。
进一步的,上述的制备方法,步骤2)中,所述加热搅拌条件为在60℃下搅拌1.5h。
进一步的,上述的制备方法,步骤3)中,按质量比,聚二甲基硅氧烷预聚物:固化剂=10:1。
进一步的,上述的制备方法,步骤3)中,所述真空固化条件为在120℃下真空加热2h。
本发明提供的一种环保型功能化铜网材料在吸附油类中的应用,方法如下:在油水混合物中,加入权利要求1所述的环保型功能化铜网材料,进行吸附;
本发明提供的一种环保型功能化铜网材料在油水分离中的应用,方法如下:将油水混合物经权利要求1所述的环保型功能化铜网材料过滤,进行重力分离;
本发明提供的一种环保型功能化铜网材料在乳液处理中的应用,方法如下:将油包水乳液经权利要求1所述的环保型功能化铜网材料过滤,进行重力分离;
本发明提供的一种环保型功能化铜网材料在自清洁方面的应用,方法如下:在权利要求1所述的环保型功能化铜网材料表面洒落亚甲基蓝粉末,用水淋洗其表面,进行自清洁。
本发明的有益效果为:
1、本发明以铜网作为基底材料,利用氧化法在其表面生成Cu3(PO4)2晶体,构建出微米级结构,之后在此基础上原位生长ZIF-7晶体,构建出纳米级结构,使材料整体表面粗糙度增加,经聚二甲基硅氧烷修饰后材料整体表面能降低,增强疏水性并使材料机械稳定性增强,构建出了环保型功能化铜网材料。
2、本发明合成方法简捷,经济环保,生产成本低,不使用氟化物等对环境有害物质,无需复杂的仪器设备或苛刻的实验条件,合成的材料具有超疏水-超亲油性,可用于油水分离和处理乳液,且渗透通量和分离效率极高,可大规模处理油类废水。
3、本发明制备的环保型功能化铜网材料物理稳定性高,化学耐久性好,而且循环使用能力强,可应对多种极端情况。
4、本发明制备的环保型功能化铜网材料具有极好的自清洁能力,可有效防止材料被污染而影响实际使用性能。
附图说明
图1是PDMS/ZIF-7@Cu3(PO4)2铜网合成过程中每步铜网材料的照片(内嵌图为该材料对水的具体接触角数值),其中,(a)是原始铜网,(b)是Cu3(PO4)2铜网,(c)是ZIF-7@Cu3(PO4)2铜网,(d)是PDMS/ZIF-7@Cu3(PO4)2铜网。
图2是原始铜网、Cu3(PO4)2铜网、ZIF-7@Cu3(PO4)2铜网和PDMS/ZIF-7@Cu3(PO4)2铜网的扫描电镜(SEM)图,其中,(a1~a4)是原始铜网的SEM图,(b1~b4)是Cu3(PO4)2铜网的SEM图,(c1~c4)是ZIF-7@Cu3(PO4)2铜网的SEM图,(d1~d4)是PDMS/ZIF-7@Cu3(PO4)2铜网的SEM图。
图3是PDMS/ZIF-7@Cu3(PO4)2铜网超疏水性能图,其中,(a)是水滴在PDMS/ZIF-7@Cu3(PO4)2铜网上的照片(内嵌图为具体接触角数值),(b)是水滴动态接触PDMS/ZIF-7@Cu3(PO4)2铜网表面的图片,(c)是PDMS/ZIF-7@Cu3(PO4)2铜网漂浮在水上的照片,(d)是PDMS/ZIF-7@Cu3(PO4)2铜网插入水下的照片。
图4是PDMS/ZIF-7@Cu3(PO4)2铜网在油水混合物中对不同密度油类选择性吸附过程的照片,其中,(a1~a3)是对轻油选择性吸附过程,(b1~b3)是对重油的选择性吸附过程。
图5是PDMS/ZIF-7@Cu3(PO4)2铜网实现油水分离过程的照片及数据图,其中,(a1~a2)是分离油水混合物(重油/水),(b1~b2)是分离油水混合物(轻油/水),(c)是对不同油类和有机溶剂的通量及油水分离效率柱形图,(d)是对正戊烷循环实验的通量及油水分离效率柱形图。
图6是PDMS/ZIF-7@Cu3(PO4)2铜网处理乳液具体应用图,其中,(a)是处理水/二氯甲烷油包水乳液前后的照片以及相应的光学显微镜图像,(b,c)是分离水/二氯甲烷油包水乳液过程的照片。
图7是PDMS/ZIF-7@Cu3(PO4)2铜网自清洁实验图。
图8是环保型功能化铜网材料PDMS/ZIF-7@Cu3(PO4)2铜网的制备过程图,(a)是原始铜网,(b)是Cu3(PO4)2铜网,(c)是ZIF-7@Cu3(PO4)2铜网,(d)是PDMS/ZIF-7@Cu3(PO4)2铜网。
具体实施方式
实施例1
(一)制备方法如下:
1)将原始铜网(400目,3cm×3cm,纯度99%)经稀盐酸、去离子水、乙醇超声处理洗净,去除表面氧化层及其它杂质,之后用去离子水将其洗净,80℃真空烘干;随后,将得到的铜网浸入50mL混合溶液中常温下浸泡6h,该混合溶液中含有1mol·L-1磷酸二氢钠和1mol·L-1过氧化氢;反应结束后,取出铜网并用去离子水洗涤三次,80℃下真空烘干,铜网表面被氧化生成Cu3(PO4)2晶体,得到Cu3(PO4)2铜网。
2)将上述Cu3(PO4)2铜网浸入25mL 1g·L-1聚乙烯吡咯烷酮甲醇溶液中,浸泡30min,使材料表面充满聚乙烯吡咯烷酮分子;随后向体系中加入1.487g六水合硝酸锌,常温下搅拌30min,使Zn2+吸附于材料表面;之后向体系中加入25mL 0.6mol·L-1苯并咪唑甲醇溶液,60℃水浴加热搅拌1.5h,使得Cu3(PO4)2铜网表面原位生长ZIF-7晶体;反应结束后,材料在溶液中静置陈化1h,取出铜网用甲醇洗涤三次,80℃真空烘干,得到ZIF-7@Cu3(PO4)2铜网。
3)配制2.5wt%聚二甲基硅氧烷正己烷溶液,其中聚二甲基硅氧烷预聚物与其配套的固化剂的质量比为10:1,搅拌混匀,将上述ZIF-7@Cu3(PO4)2铜网浸入该溶液中20min,取出铜网后120℃真空固化2h,得到表面湿润性为超疏水-超亲油的PDMS/ZIF-7@Cu3(PO4)2铜网。
(二)检测
1、对PDMS/ZIF-7@Cu3(PO4)2铜网合成过程中每步得到的铜网材料进行拍照,同时使用光学接触角测量仪测量其接触角,表征其表面湿润性能。
图1中,(a)、(b)、(c)、(d)分别是原始铜网、Cu3(PO4)2铜网、ZIF-7@Cu3(PO4)2铜网和PDMS/ZIF-7@Cu3(PO4)2铜网。如图1中(a)所示,原始铜网表面光滑呈黄色,有金属光泽,有一定的疏水性,接触角为135°。如图1中(b)所示,铜网表面被氧化生成一层Cu3(PO4)2晶体,材料表面呈淡蓝色。由于氢键作用,Cu3(PO4)2可与水分子键合生成水合层,故而呈超亲水性,接触角为0°。如图1中(c)所示,Cu3(PO4)2铜网表面原位生长一层ZIF-7晶体,使得材料呈灰白色,而ZIF-7分子极性较小,具有一定的疏水性,因此材料的接触角达到119°。如图1中(d)所示,PDMS涂层无色透明,但表面能很低,使得PDMS/ZIF-7@Cu3(PO4)2铜网呈超疏水性,颜色与涂层前区别不大,但接触角高达155°。
2、使用扫描电子显微镜(SEM)对原始铜网、Cu3(PO4)2铜网、ZIF-7@Cu3(PO4)2铜网和PDMS/ZIF-7@Cu3(PO4)2铜网的微观形貌进行观察。
如图2所示,(a1~a4)、(b1~b4)、(c1~c4)、(d1~d4)分别是原始铜网、Cu3(PO4)2铜网、ZIF-7@Cu3(PO4)2铜网和PDMS/ZIF-7@Cu3(PO4)2铜网材料结构的微观形貌。如图2中(a1~a4)所示,原始铜网由铜丝结构交织而成,孔径较大,约29μm,且铜丝表面光滑。如图2中(b1~b4)所示,铜网表面被氧化,生成微米级片状Cu3(PO4)2晶体,材料表面明显变粗糙,铜丝变粗,铜网孔径减小至约23μm。如图2中(c1~c4)所示,Cu3(PO4)2微米片结构未遭受破坏,在高倍SEM下观察到Cu3(PO4)2铜网表面原位生长出纳米级ZIF-7圆片状晶体,构建出微纳米级结构,材料表面粗糙度进一步增大,孔径继续减小至约20μm。如图2中(d1~d4)所示,ZIF-7@Cu3(PO4)2铜网经PDMS涂层覆盖后,对材料形貌无明显影响,涂层薄而透明,材料表面晶体结构无明显变化。
3、利用液滴渗透情况及动态接触实验观察PDMS/ZIF-7@Cu3(PO4)2铜网材料的湿润性能,证明其超疏水性。
如图3所示,(a)是水滴在PDMS/ZIF-7@Cu3(PO4)2铜网上的照片(内嵌图为具体接触角数值),(b)是水滴动态接触PDMS/ZIF-7@Cu3(PO4)2铜网表面的图片,(c)是PDMS/ZIF-7@Cu3(PO4)2铜网漂浮在水上的照片,(d)是PDMS/ZIF-7@Cu3(PO4)2铜网插入水下的照片。如图3中(a)所示,经亚甲基蓝染色的水滴立于PDMS/ZIF-7@Cu3(PO4)2铜网表面,摆成“LNU”字样,水滴呈完整的球形,完全不会向下渗透或扩散。如图3中(b)所示,使用注射器悬挂一滴水珠,缓慢接触PDMS/ZIF-7@Cu3(PO4)2铜网表面,水滴被挤压而发生形变,之后抬高注射器缓慢离开材料表面,水滴被拉长后弹起,继而脱离表面,最终回到初始状态,材料表面对水滴丝毫不粘附。如图3中(c)所示,将PDMS/ZIF-7@Cu3(PO4)2铜网放入水中,无外力介入情况下铜网无法进入水相,继而漂浮在水上。如图3中(d)所示,当PDMS/ZIF-7@Cu3(PO4)2铜网插入水中时,在材料与水界面生成一层空气膜,呈现“银镜”现象,水相无法渗透材料内部。这些结果佐证了所制备的PDMS/ZIF-7@Cu3(PO4)2铜网具有超疏水性。
实施例2环保型功能化材料PDMS/ZIF-7@Cu3(PO4)2铜网在吸附油类中的应用
为了考察PDMS/ZIF-7@Cu3(PO4)2铜网吸附油类的实际应用效果,模拟了在自然条件下将油类从油水混合物中分离出来的情况。选择性吸附实验分别采用正己烷(轻油,苏丹Ⅳ染色)和氯仿(重油,苏丹III染色)与水混合,结果如图4。
如图4中(a1~a3),正己烷相对密度较小,漂浮于水相上方,当PDMS/ZIF-7@Cu3(PO4)2铜网与正己烷接触时,正己烷迅速向铜网渗透,从而使正己烷与水分离,达到收集油类的目的。同样的,应对重油/水混合情况,如图4中(b1~b3),氯仿相对密度较大,沉降于水相下方,当PDMS/ZIF-7@Cu3(PO4)2铜网与氯仿接触时,氯仿迅速向铜网渗透,与水相分离,实现了对油类的收集。收集油相之后,水中未观察到任何红色污染物,表明该物质对油吸附能力强,分离效率高,无二次污染。
实施例3环保型功能化材料PDMS/ZIF-7@Cu3(PO4)2铜网在分离油水混合物中的应用
1、为了考察PDMS/ZIF-7@Cu3(PO4)2铜网连续油水分离能力,分离过程如图5所示,将PDMS/ZIF-7@Cu3(PO4)2铜网夹在两个玻璃管之间,装置下方放置一个干净的烧杯用来收集有机相。将油水混合物从上方倒入玻璃管中,接触PDMS/ZIF-7@Cu3(PO4)2铜网,有机相穿过流下,被烧杯收集,而水相被截留在玻璃管中,从而实现油水分离。如图5中(a1~a2)所示,重油(二氯甲烷、三氯甲烷、四氯化碳)经苏丹III染色,与等体积的经亚甲基蓝染色的水相混合,组成油水混合物,倒入装置中,重油穿透水相沉降到玻璃管底部,之后透过PDMS/ZIF-7@Cu3(PO4)2铜网,流进烧杯中,而水相被截留在上管中。如图5中(b1~b2)所示,轻油(正己烷、正戊烷、甲苯、二甲苯)经苏丹Ⅳ染色,与等体积的经亚甲基蓝染色的水相混合,组成油水混合物,倒入装置中,轻油先接触PDMS/ZIF-7@Cu3(PO4)2铜网后直接穿过,水相后接触PDMS/ZIF-7@Cu3(PO4)2铜网而被截留在外(可能会有极少量的轻油由于密度太小而最终漂浮在水相上方无法接触到铜网,可通过实验中缓慢倾倒油水混合物来尽量减少轻油漂浮量)。
2、在实际应用中,渗透通量越高表明该材料处理大量油水混合物性能越好,可处理的样品规模越大。在油水分离过程中,可通过评估PDMS/ZIF-7@Cu3(PO4)2铜网对不同油类的渗透通量和分离效率来判断该材料对油水混合物的分离能力。渗透通量(F,L·m-2·h-1)和分离效率(SE,%)可通过下式计算:
F=V/St (1)
SE=Vt/V0×100% (2)
其中,V为液体通过铜网的体积,S为铜网的有效接触面积,t为过滤所消耗的时间,V0和Vt分别是分离前后有机相的体积。如图5中(c)所示,PDMS/ZIF-7@Cu3(PO4)2铜网对多种油类均有较高的渗透通量,最高可达10200L·m-2·h-1,油水分离效率均高于99%,证明PDMS/ZIF-7@Cu3(PO4)2铜网有优异的油水分离能力。
3、为了考察PDMS/ZIF-7@Cu3(PO4)2铜网的循环使用能力,选用正戊烷/水混合物进行多次油水分离实验,如图5中(d)所示,经过12次循环试验后,PDMS/ZIF-7@Cu3(PO4)2铜网性能基本保持稳定,材料对正戊烷的通量仍高达10100L·m-2·h-1以上,油水分离效率依旧高于98.8%,证明PDMS/ZIF-7@Cu3(PO4)2铜网有极好的循环使用能力。
实施例4环保型功能化材料PDMS/ZIF-7@Cu3(PO4)2铜网在处理乳液中的应用
为了考察PDMS/ZIF-7@Cu3(PO4)2铜网的乳液处理能力,如图6所示,(a)是PDMS/ZIF-7@Cu3(PO4)2铜网处理水/二氯甲烷油包水乳液前后的照片以及相应的光学显微镜图像,(b,c)是PDMS/ZIF-7@Cu3(PO4)2铜网分离水/二氯甲烷油包水乳液过程的照片。
预先将水和二氯甲烷按体积比1:99混合共50mL,并加入0.1g司班80作表面活性剂,剧烈搅拌24h制成乳白色油包水乳液。如图6中(a)所示,过滤前(Before)乳液中含有大量乳白色乳化小液滴,光学显微镜下观察到明显液滴,用PDMS/ZIF-7@Cu3(PO4)2铜网过滤后(After)滤液变为无色透明,光学显微镜下观察不到明显液滴。分离过程如图6中(b,c)所示,将PDMS/ZIF-7@Cu3(PO4)2铜网置于油水分离装置中,将油包水乳液从上方倒入玻璃管中,二氯甲烷穿过铜网流下,被烧杯收集,而水相被截留在玻璃管中,从而实现乳液分离。
实施例5环保型功能化材料PDMS/ZIF-7@Cu3(PO4)2铜网自清洁能力的考察
为了考查PDMS/ZIF-7@Cu3(PO4)2铜网的自清洁能力,如图7中(a)所示,将PDMS/ZIF-7@Cu3(PO4)2铜网置于坡度为10°玻璃片上,在PDMS/ZIF-7@Cu3(PO4)2铜网表面均匀洒落亚甲基蓝粉末(模拟水溶性污染物),使用滴管吸取清水后淋洗PDMS/ZIF-7@Cu3(PO4)2铜网,由于该材料具备超疏水性能,水滴不会粘附于材料表面,而是直接滚落离开材料表面。如图7中(b)所示,亚甲基蓝粉末迅速溶于水滴中并随水滴滚落。经过连续的水滴冲刷,结果如图7中(c)所示,水滴滚动经过的位置出现一条明显的痕迹,该处的亚甲蓝粉末被冲洗干净并随水滴流下,材料表面恢复清洁,从而证明PDMS/ZIF-7@Cu3(PO4)2铜网具有极好的自清洁能力。

Claims (10)

1.一种环保型功能化铜网材料,其特征在于,利用氧化法在铜网上原位生长Cu3(PO4)2晶体,并进一步在Cu3(PO4)2铜网上原位生长ZIF-7晶体,最后在材料表面修饰聚二甲基硅氧烷涂层,制得环保型功能化铜网材料PDMS/ZIF-7@Cu3(PO4)2铜网。
2.权利要求1所述的一种环保型功能化铜网材料的制备方法,其特征在于,包括如下步骤:
1)将原始铜网依次经稀盐酸、去离子水、乙醇超声处理洗净,去除表面氧化层及其它杂质,80℃真空烘干后,将得到的铜网浸入含有磷酸二氢钠和过氧化氢混合溶液中,室温下浸泡6h,反应结束后,取出铜网并用去离子水洗涤三次,80℃真空烘干,铜网表面被氧化生成Cu3(PO4)2晶体,得到Cu3(PO4)2铜网;
2)将步骤1)得到的Cu3(PO4)2铜网浸入聚乙烯吡咯烷酮甲醇溶液中浸泡30min,使Cu3(PO4)2铜网表面充满聚乙烯吡咯烷酮分子,随后向体系中加入硝酸锌,常温下搅拌30min,使Zn2+附着于Cu3(PO4)2铜网表面,之后向体系中加入苯并咪唑甲醇溶液,加热搅拌生成ZIF-7晶体,反应结束后,静置陈化1h,取出铜网用甲醇洗涤三次,80℃真空烘干,Cu3(PO4)2铜网上原位生长出ZIF-7晶体,得到ZIF-7@Cu3(PO4)2铜网;
3)将聚二甲基硅氧烷预聚物及其固化剂溶于正己烷中,搅拌混匀,得到修饰液,将步骤2)得到的ZIF-7@Cu3(PO4)2铜网浸入修饰液中,室温下浸泡20min后取出,真空固化,得到目标产物PDMS/ZIF-7@Cu3(PO4)2铜网。
3.根据权利要求2所述的制备方法,其特征在于,步骤1)中,所述原始铜网选用400目铜网,纯度为99%,尺寸为3cm×3cm的矩形薄片。
4.根据权利要求2所述的制备方法,其特征在于,步骤1)中,所述含有磷酸二氢钠和过氧化氢混合溶液中,按摩尔比,磷酸二氢钠:过氧化氢=1:1。
5.根据权利要求2所述的制备方法,其特征在于,步骤2)中,按体积比,聚乙烯吡咯烷酮甲醇溶液:苯并咪唑甲醇溶液=1:1。
6.根据权利要求2所述的制备方法,其特征在于,步骤2)中,按摩尔比,硝酸锌:苯并咪唑=1:3。
7.根据权利要求2所述的制备方法,其特征在于,步骤2)中,所述加热搅拌条件为在60℃下搅拌1.5h。
8.根据权利要求2所述的制备方法,其特征在于,步骤3)中,按质量比,聚二甲基硅氧烷预聚物:固化剂=10:1。
9.根据权利要求2所述的制备方法,其特征在于,步骤3)中,所述真空固化条件为在120℃下真空加热2h。
10.权利要求1所述的一种环保型功能化铜网材料的应用,其特征在于,
所述的一种环保型功能化铜网材料在吸附油类中的应用,方法如下:在油水混合物中,加入权利要求1所述的环保型功能化铜网材料,进行吸附;
所述的一种环保型功能化铜网材料在油水分离中的应用,方法如下:将油水混合物经权利要求1所述的环保型功能化铜网材料过滤,进行重力分离;
所述的一种环保型功能化铜网材料在乳液处理中的应用,方法如下:将油包水乳液经权利要求1所述的环保型功能化铜网材料过滤,进行重力分离;
所述的一种环保型功能化铜网材料在自清洁方面的应用,方法如下:在权利要求1所述的环保型功能化铜网材料表面洒落亚甲基蓝粉末,用水淋洗其表面,进行自清洁。
CN202210201518.6A 2022-03-02 2022-03-02 一种环保型功能化铜网材料及其制备方法和应用 Active CN114452956B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210201518.6A CN114452956B (zh) 2022-03-02 2022-03-02 一种环保型功能化铜网材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210201518.6A CN114452956B (zh) 2022-03-02 2022-03-02 一种环保型功能化铜网材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114452956A true CN114452956A (zh) 2022-05-10
CN114452956B CN114452956B (zh) 2023-12-08

Family

ID=81415672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210201518.6A Active CN114452956B (zh) 2022-03-02 2022-03-02 一种环保型功能化铜网材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114452956B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108611630A (zh) * 2018-04-11 2018-10-02 燕山大学 一种分级结构ZnO/Cu3(PO4)2可控浸润性复合材料及其制备方法
CN109912810A (zh) * 2019-03-14 2019-06-21 浙江工业大学 一种多孔zif-7球的制备方法
CN112851960A (zh) * 2021-01-20 2021-05-28 江苏理工学院 超疏水金属有机框架材料及其制备方法和应用
CN113388155A (zh) * 2021-06-15 2021-09-14 安徽大学 一种可用于高效油水分离的超疏水海绵的制备方法
CN113426430A (zh) * 2021-07-30 2021-09-24 辽宁大学 一种智能型油水分离材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108611630A (zh) * 2018-04-11 2018-10-02 燕山大学 一种分级结构ZnO/Cu3(PO4)2可控浸润性复合材料及其制备方法
CN109912810A (zh) * 2019-03-14 2019-06-21 浙江工业大学 一种多孔zif-7球的制备方法
CN112851960A (zh) * 2021-01-20 2021-05-28 江苏理工学院 超疏水金属有机框架材料及其制备方法和应用
CN113388155A (zh) * 2021-06-15 2021-09-14 安徽大学 一种可用于高效油水分离的超疏水海绵的制备方法
CN113426430A (zh) * 2021-07-30 2021-09-24 辽宁大学 一种智能型油水分离材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIAN RONG ET AL.: "Self-directed hierarchical Cu3(PO4)2/Cu-BDC nanosheets array based on copper foam as an efficient and durable electrocatalyst for overall water splitting", 《ELECTROCHIMICA ACTA》 *

Also Published As

Publication number Publication date
CN114452956B (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
Ao et al. Reusable, salt-tolerant and superhydrophilic cellulose hydrogel-coated mesh for efficient gravity-driven oil/water separation
Zhang et al. Photocatalytic GO/M88A “interceptor plate” assembled nanofibrous membrane with photo-Fenton self-cleaning performance for oil/water emulsion separation
Yin et al. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation
Ying et al. A pre-wetting induced superhydrophilic/superlipophilic micro-patterned electrospun membrane with self-cleaning property for on-demand emulsified oily wastewater separation
Bhushan Bioinspired oil–water separation approaches for oil spill clean-up and water purification
Wang et al. Highly-efficient separation of oil and water enabled by a silica nanoparticle coating with pH-triggered tunable surface wettability
Zhu et al. Durability evaluation of superhydrophobic copper foams for long-term oil-water separation
US20230078860A1 (en) Magnetic, superhydrophobic and superoleophilic medium, synthesizing methods and applications of same
Wang et al. Easily enlarged and coating-free underwater superoleophobic fabric for oil/water and emulsion separation via a facile NaClO2 treatment
Zhang et al. A durable and high-flux composite coating nylon membrane for oil-water separation
Li et al. Smart Nylon Membranes with pH‐Responsive Wettability: High‐Efficiency Separation on Demand for Various Oil/Water Mixtures and Surfactant‐Stabilized Emulsions
Zuo et al. Superwetting charged copper foams with long permeation channels for ultrafast emulsion separation and surfactant removal
CN113426430B (zh) 一种智能型油水分离材料及其制备方法和应用
CN102908903A (zh) 一种利用生物制剂进行中空纤维膜表面亲水改性的方法
Chen et al. Superhydrophobic sand grains structured with aligned Cu (OH) 2 nano-needles for efficient oily water treatment
CN108704490A (zh) 一种乳液分离超疏水皮胶原纤维膜的制备方法及其应用
He et al. Superhydrophilic fish-scale-like CuC2O4 nanosheets wrapped copper mesh with underwater super oil-repellent properties for effective separation of oil-in-water emulsions
CN105327526A (zh) 一种用于分离乳化油的金属纤维毡及其改性方法和应用
CN107081075A (zh) 一种选择性油水分离动态膜的制备方法及其应用
He et al. Facile fabrication of 2D MOF-Based membrane with hierarchical structures for ultrafast Oil-Water separation
Liu et al. L-lysine functionalized Ti3C2Tx coated polyurethane sponge for high-throughput oil–water separation
Yuan et al. Robust and switchable superwetting sponge-like membrane: Towards on-demand emulsion separation and aqueous pollutant degradation
WO2018026328A1 (en) Multifunctional superhydrophilic and underwater superoleophobic activated glass derived from waste glass
Lu et al. Nanostructured copper hydroxide-based interfaces for liquid/liquid and liquid/gas separations
CN114452956B (zh) 一种环保型功能化铜网材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant