CN114450272A - 用于β-C-H官能化的配体激活β-C(sp3)-H内酯化 - Google Patents

用于β-C-H官能化的配体激活β-C(sp3)-H内酯化 Download PDF

Info

Publication number
CN114450272A
CN114450272A CN202080047762.0A CN202080047762A CN114450272A CN 114450272 A CN114450272 A CN 114450272A CN 202080047762 A CN202080047762 A CN 202080047762A CN 114450272 A CN114450272 A CN 114450272A
Authority
CN
China
Prior art keywords
nmr
cdcl
general procedure
beta
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080047762.0A
Other languages
English (en)
Inventor
余金权
庄哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scripps Research Institute
Original Assignee
Scripps Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scripps Research Institute filed Critical Scripps Research Institute
Publication of CN114450272A publication Critical patent/CN114450272A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/02Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D305/10Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having one or more double bonds between ring members or between ring members and non-ring members
    • C07D305/12Beta-lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/06Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/6551Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a four-membered ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本文提供了由具有其上设置有氢原子的β‑碳的羧酸形成β‑内酯的方法。所述方法包括在约60℃下在包含六氟异丙醇(HFIP)的溶剂中使如本文中所述的式(1)的羧酸与有效量的钯(II)催化剂、有效量的N‑保护的氨基酸配体和叔丁基过氧化氢接触,以提供如本文中所述的式(2)的β‑内酯。

Description

用于β-C-H官能化的配体激活β-C(sp3)-H内酯化
优先权要求
本申请要求于2019年5月30日提交的美国临时申请第62/854,807号的优先权权益,该申请如同完整阐述一样并入本文。
政府支持声明
本发明是在国立卫生研究院(National Institutes of Health)授予的基金号GM084019的政府支持下完成的。政府对本发明具有一定的权利。
背景技术
过去二十年见证了基于C(sp3)-H键的钯化(palladation)的碳-碳(C-C)和碳-杂原子(C-Y)键形成反应的快速发展(1-3)。烷基羧酸是有机化学中普遍存在的廉价试剂,可用于各种取代模式中:因此,其是用于C-H活化反应的高度期望的底物(4-5)。为了获得广泛范围的β-取代的脂族酸,必须开发多样化转变来安装不同的碳片段或官能团。开发C-H活化反应的挑战包括广泛的催化剂设计和用于各种转变的导向基团优化以及因某些反应搭档的不相容性而导致的通常有限的转变范围。例如,对于C-C键形成,烷基化反应受限于伯烷基碘或烷基硼偶联搭档(6-8),烯化反应受限于缺电子烯烃(9,10),并且尽管设计了各种导向基团,但杂芳基化反应的范围仍高度受限(11-14)。此外,在没有外源导向基团的情况下,这些反应中的大多数与游离脂族酸不相容。
发明内容
在一个实施方案中,本公开提供了由具有其上布置有氢原子的β-碳的羧酸形成式(2)的β-内酯的方法:
Figure BDA0003439878890000011
所述方法包括使式(1)的羧酸接触:
Figure BDA0003439878890000021
R1和R2各自独立地为H或烷基,条件是R1和R2中的至少一者为烷基。在一些实施方案中,烷基为未经取代的,或者在另一些实施方案中,烷基为经以下取代的:卤素、氧基、二烷基膦酰基、环烷基、烷氧基、芳氧基、苄氧基、杂环基、芳基、或杂芳基。
所述接触在约60℃下在包含六氟异丙醇(hexafluoroisopropanol,HFIP)的溶剂中在有效量的钯(II)催化剂、有效量的N-保护的氨基酸配体和叔丁基过氧化氢的存在下发生,以提供式(2)的β-内酯。
在另一个实施方案中,所述方法还包括使式(2)的β-内酯:
Figure BDA0003439878890000022
与亲核物质(Nu-)接触,以提供式(3)的β-官能化羧酸:
Figure BDA0003439878890000023
Nu选自C(sp3)、C(sp2)、CN、N3、2-硝基苯磺酰氨基、OH、F、Br和SPh。
在多个实施方案中,任选地与本文中所述的任何其他实施方案组合,钯(II)催化剂包含至少一个钯-氯键。在另一些实施方案中,钯(II)催化剂为Pd(CH3CN)2Cl2或Pd(OAc)2
本公开还在另一些实施方案中提供了本文中所述的方法,其中N-保护的氨基酸配体选自L1至L6:
Figure BDA0003439878890000031
在一个实施方案中,N-保护的氨基酸配体为L5:
Figure BDA0003439878890000032
在多个实施方案中,任选地与本文中所述的任何其他实施方案组合,式(2)的β-内酯选自下表中的一者:
Figure BDA0003439878890000033
Figure BDA0003439878890000041
Figure BDA0003439878890000051
附图说明
图1A至图1C.β-C(sp3)–H官能化的挑战(1A);一种垫脚石策略(1B);配体激活β-C-H内酯化(1C)。
图2.用于β-C(sp3)-H内酯化的脂族酸范围。
图3A和图3B.吉非贝齐(3A)的克量级(gram-scale)β-内酯化,以及亲核物质(Nu)在代表性β-内酯2v上的单选择性安装(3B)。
图4:N-单保护的β-丙氨酸类的配体的结构。
具体实施方式
定义
“烷基”是指包含1个至约20个碳原子的直链或支链烃基。例如,烷基可以具有1至10个碳原子或1至6个碳原子。示例性烷基包括直链烷基,例如甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基等,并且还包括直链烷基的支链异构体,例如但不限于-CH(CH3)2、-CH(CH3)(CH2CH3)、-CH(CH2CH3)2、-C(CH3)3、-C(CH2CH3)3、-CH2CH(CH3)2、-CH2CH(CH3)(CH2CH3)、-CH2CH(CH2CH3)2、-CH2C(CH3)3、-CH2C(CH2CH3)3、-CH(CH3)CH(CH3)(CH2CH3)、-CH2CH2CH(CH3)2、-CH2CH2CH(CH3)(CH2CH3)、-CH2CH2CH(CH2CH3)2、-CH2CH2C(CH3)3、-CH2CH2C(CH2CH3)3、-CH(CH3)CH2CH(CH3)2、-CH(CH3)CH(CH3)CH(CH3)2等。因此,烷基包括伯烷基、仲烷基和叔烷基。烷基可以为未经取代或任选地经如本文中所述的一个或更多个取代基取代的。
术语“烷氧基”是指具有指定的碳原子数的-O-烷基。例如,(C1-C6)-烷氧基包括-O-甲基、-O-乙基、-O-丙基、-O-异丙基、-O-丁基、-O-仲丁基、-O-叔丁基、-O-戊基、-O-异戊基、-O-新戊基、-O-己基、-O-异己基、和-O-新己基。
术语“环烷基”是指饱和的单环、双环、三环或多环的3元至14元环体系,例如C3-C8-环烷基。环烷基可以通过任何原子连接。环烷基的代表性实例包括但不限于环丙基、环丁基、环戊基和环己基。
当单独使用或作为另外的术语的一部分使用时,“芳基”意指无论是否稠合,都具有指定的碳原子数或者如果未指定数目,则具有多至14个碳原子的碳环芳族基团,例如C6-C10芳基或C6-C14芳基。芳基的实例包括苯基、萘基、联苯基、菲基、并四苯基等(参见例如Lang’s Handbook of Chemistry(Dean,J.A.编辑)第13版.表7-2[1985])。示例性芳基为苯基。芳基可以为未经取代或任选地经如本文中所述的一个或更多个取代基取代的。
术语“杂原子”是指N、O和S。本公开的包含N或S原子的化合物可以任选地被氧化成相应的N-氧化物、亚砜或砜化合物。
单独或与本文中所述的任何其他部分组合的“杂芳基”是包含独立地选自O、S和N中的一个或更多个(例如1至4个、1至3个或1至2个)杂原子的包含5至10个,例如5个或6个环原子的单环芳族环结构或者具有8至10个原子的双环芳族基团。杂芳基还旨在包含氧化的S或N,例如亚磺酰基、磺酰基和叔环氮的N-氧化物。碳或杂原子是杂芳基环结构的连接点,使得产生稳定的化合物。杂芳基的实例包括但不限于吡啶基、哒嗪基、吡嗪基、喹喔啉基、吲哚嗪基、苯并[b]噻吩基、喹唑啉基、嘌呤基、吲哚基、喹啉基、嘧啶基、吡咯基、吡唑基、
Figure BDA0003439878890000071
唑基、噻唑基、噻吩基、异
Figure BDA0003439878890000072
唑基、
Figure BDA0003439878890000073
噻二唑基、异噻唑基、四唑基、咪唑基、三唑基、呋喃基、苯并呋喃基、和吲哚基。
“杂环烷基”是其中环中的1至3个碳原子被O、S或N中的杂原子替代的具有3至14个(例如3至6个)原子的饱和或部分不饱和的非芳族单环、双环、三环或多环的环体系。杂环烷基任选地与5至6个环成员的芳基或杂芳基稠合,并且包含氧化的S或N,例如亚磺酰基、磺酰基和叔环氮的N-氧化物。杂环烷基环的连接点在碳或杂原子处,使得稳定的环得以保持。杂环烷基的实例包括但不限于吗啉基、四氢呋喃基、二氢吡啶基、哌啶基、吡咯烷基、哌嗪基、二氢苯并呋喃基和二氢吲哚基。
本文中所述的化合物可以以包括构型异构体、几何异构体和构象异构体(包括例如顺式构象或反式构象)的各种异构形式存在。化合物也可以以一种或更多种互变异构形式(包括单一互变异构体和互变异构体的混合物二者)存在。术语“异构体”旨在涵盖本公开的化合物的所有异构形式(包括化合物的互变异构形式)。本公开的化合物也可以以开链或环化形式存在。在一些情况下,环化形式中的一者或更多者可以由失水产生。开链和环化形式的具体组成可以取决于如何分离、储存或施用化合物。例如,化合物在酸性条件下可能主要以开链形式存在,而在中性条件下可能环化。所有形式都包括在本公开中。
本文中所述的一些化合物可以具有不对称中心,并因此以不同的对映体和非对映体形式存在。如本文中所述的化合物可以呈光学异构体或非对映异构体的形式。因此,本公开涵盖了如本文中所述的呈其光学异构体、非对映异构体及其混合物(包括外消旋混合物)形式的化合物及其用途。本公开的化合物的光学异构体可以通过已知技术例如不对称合成、手性色谱、模拟移动床技术获得,或者经由通过采用光学活性拆分剂对立体异构体进行的化学分离获得。
除非另有说明,否则术语“立体异构体”意指基本上不含该化合物的其他立体异构体的化合物的一种立体异构体。因此,具有一个手性中心的立体异构纯的化合物基本上不含该化合物的相反对映体。具有两个手性中心的立体异构纯的化合物基本上不含该化合物的其他非对映异构体。典型的立体异构纯的化合物包含大于约80重量%的该化合物的一种立体异构体和小于约20重量%的该化合物的其他立体异构体,例如大于约90重量%的该化合物的一种立体异构体和小于约10重量%的该化合物的其他立体异构体,或大于约95重量%的该化合物的一种立体异构体和小于约5重量%的该化合物的其他立体异构体,或大于约97重量%的该化合物的一种立体异构体和小于约3重量%的该化合物的其他立体异构体,或大于约99重量%的该化合物的一种立体异构体和小于约1重量%的该化合物的其他立体异构体。如上所述的立体异构体可以被视为包含以本文中所述的其各自的重量百分比存在的两种立体异构体的组合物。
如果所示结构与对该结构给定的名称之间存在差异,则以所示结构为准。此外,如果结构或结构的一部分的立体化学未用例如粗线或虚线表示,则结构或结构的一部分应被解释为涵盖其所有立体异构体。然而,在一些情况下,在存在多于一个手性中心的情况下,结构和名称可以表示为单一对映体,以帮助描述相对立体化学。有机合成领域的技术人员将知道化合物是否由用于制备其的方法制备为单一对映体。
本公开解决了在此之前未满足对基于游离脂族酸的β-C–H活化的碳-杂原子键形成反应(氟化、羟基化、胺化等)的方法的需求(图1A)。本文公开了由具有单保护的β-氨基酸配体的Pd(II)催化剂激活的普遍存在的脂族酸的β-内酯化的方法。所述方法的高度实用优势包括使用价廉的TBHP作为唯一的氧化剂,并通过简单的水性处理进行纯化而无需进行色谱法。此外,所得的β-内酯的多样化反应性为以排他的单选择性和无与伦比的范围进行的多样的式β-C–H官能化开辟了新途径。
在本上下文中,β-内酯为作为天然和非天然产品合成中有价值的合成中间体受到了显著关注的应变杂环(15)。由于其固有的环应变,β-内酯容易通过酰基C-O或烷基C-O键断裂与广泛范围的亲核物质反应,从而实现各种转变。因此,根据本公开的多个实施方案,游离羧酸的β-内酯化是用于获得这些多样化转变的有用方法。此外,由脂族酸形成β-内酯确保了排他的单选择性,并因此为β-C–H官能化中长期存在的问题提供了有效的解决方案。
在Sen报道的一个开创性实例中,K2PtCl4(17mol%)、K2PtCl6(33mol%)的混合物可以促进由脂族酸以16%的产率形成γ-内酯,伴随着5%的β-内酯(16,17)。还报道了使用Pd和Pt催化剂的苄基C-H键的γ-内酯化(18,19)。根据先前的使用辅助氧化剂来促进C-H活化/环化反应的工作(20,21),我们发现了用于实现前所未有的β-C–H内酯化反应的催化剂和条件。与其中可以使用亲核导向基团来形成强C-N键的β-内酰胺形成(22)相比,β-C–H内酯化由于羧酸的低亲核性和由四元环产生的应变而极具挑战性。
在本公开的一个实施方案中,选择2,2-二甲基丁酸(1a)作为与广泛范围的氧化剂和催化剂组合使用的示例性底物。通过大量的实验,我们发现了使用Pd(CH3CN)2Cl2、CsHCO3和六氟异丙醇(HFIP)溶剂的组合以15%的NMR产率形成了期望的β-内酯2a。根据由该实施方案例示的方法,在反应期间均未观察到γ-内酯或β-羟基化产物、γ-羟基化产物。测试与其他Pd(II)催化剂的反应强调了作为有利于选择性的C-O还原消除以形成内酯的Pd-Cl键。在多个实施方案中,容易获得、价廉且有效的氧化剂为叔丁基过氧化氢(t-butylhydroperoxide,TBHP)(4)。
根据多个实施方案,式(1)的内酯化通过Pd(II)催化剂催化。许多简单的Pd(II)盐适用于用作催化剂,或者为原位形成催化剂的前体。实例包括氯化物盐,例如Pd(CH3CN)2Cl2。另一个实例为Pd(OAc)2。催化剂以作为最小催化剂负载量的有效量(以底物式(1)的摩尔百分比表示)存在,以实现式(1)化合物向式(2)化合物的转变。示例性催化剂负载量在约0.1mol%至约15mol%、约0.5mol%至约10mol%和约0.8mol%至约3mol%的范围内。在多个实施方案中,催化剂以约1mol%、2mol%、3mol%、4mol%、5mol%、6mol%、7mol%、8mol%、9mol%或约10mol%存在。
在多个实施方案中,本文中所述的方法适用于与氨基酸配体例如N-保护的氨基酸配体(参见例如图4)一起使用。根据配体促进的Pd(II)催化的C–H活化的最新进展(23),我们确定了在实施方案中显著改善该反应的配体。使用单-N-保护的α-氨基酸(mono-N-protected α-amino acid,MPAA)配体N-乙酰基甘氨酸L1作为一个示例性实施方案,产率得以改善至36%。然而,α-氨基酸配体的主链的广泛修饰给予了微小的改善(在L2的情况下,产率为40%)。在相同条件下例如用市售的N-乙酰基β-丙氨酸L3将配体结合模式从五元螯合改为六元螯合,产率得以改善至48%。基于这一有前景的发现,然后我们研究了取代基对配体侧链的影响。β-位置处的一些取代基略微降低了反应性(L4),而α-位置处的取代证明是有益的(L5至L6),在甲基取代的L5的情况下产生了65%的产率。当使用在癸烷中的TBHP时,期望的β-内酯的分离产率可以进一步得以改善至73%。
N-保护的氨基酸配体的量可以改变,并且通常被调节以提供合适的转化率、产率和观察到的反应速率。在多个实施方案中,以底物式(1)的摩尔百分比表示的配体的量在约0.5mol%至约30mol%、约1mol%至约25mol%或约2mol%至约20mol%的范围内。配体的示例性量包括约1mol%、约2mol%、约5mol%、约10mol%、约15mol%、约20mol%、约25mol%和约30mol%。
在多个实施方案中,本文中所述的方法适用于与如本文中限定的式(1)的脂族羧酸一起使用。式(1)的示例性羧酸在图2中表示为式(2)的β-内酯产物。例如,包含α-偕二甲基(α-gem-dimethyl)的脂族酸与包含环丁烷的各种脂族链(2f)全部是相容的,从而得到高产率的β-内酯(2a至2f)。许多官能性例如氟(2g)、氯(2h)、三氟甲基(2i)、酮(2j)和磷酸酯(2k)是可接受的,其中卤素(2h)、酮(2j)和磷酸酯(2k)部分用作对于后续衍生化有用的合成柄。包含哌啶(2l)或四氢吡喃(2m)基元的内酯产物是有用的实施方案。羟基上的不同保护基团包括简单的甲基(Me)(2n)、苄基(Bn)(2o)和甲氧基甲基(MOM)(2p)都是易于接受的。
芳基例如苯基(2q至2r)和苯基醚(2s至2v)基团也可用于本文中所述的方法中,并且尽管是潜在反应性芳基或苄基C–H键,它们仍保持完整。在多个实施方案中,芳基任选地经1至3个均被很好地接受的供电子基团(Me和O-烷基)至缺电子基团(氯、溴和硝基)取代。用于降低脂质水平的经口药物吉非贝齐(1v)(24)以高产率转化为相应的β-内酯2v。这种内酯可用作用于药物化学中的文库构建的通用中间体。在这些和另一些实施方案中,剩余的α-甲基可以经历进一步C–H官能化以提供更大的结构多样性。除了包含α-氢的那些底物(2ac至2ag)之外,包含单个α-甲基(2w至2ab)的叔脂族酸也一致地提供有用的产率。
在证明本文中所述的方法的可扩展性和实用性的实施方案中,我们进行了吉非贝齐(1v)的克量级β-内酯化(图3A)。通过简单的水性洗涤而无需进行色谱法获得纯产物(2v)。因此,在该实施方案中,将在HFIP中1.0g吉非贝齐(1v)、Pd(OAc)2(1.0mmol%)、市售MPAA配体L3(2.0mmol%)和NaOAc(1.0当量)添加至反应管中,然后添加TBHP(在水中70%)(2.0当量)。在60℃下搅拌24小时之后,通过蒸发除去HFIP溶剂,然后用乙酸乙酯溶解,将其用饱和NaHCO3溶液洗涤以除去未反应的酸、配体和金属配合物。乙酸乙酯的蒸发以92%的产率释放内酯产物(2v)。从实用的角度来看,该反应相对于其他C-H活化方案具有数个关键优势:(1)使用价廉的氧化剂TBHP;(2)反应耐受空气和水分;(3)反应可以可靠地扩展;(4)简单的水性洗涤在不进行色谱法的情况下释放最终产物。
如图3B中所示,β-内酯产物2v是用于单选择性安装许多烷基、烯基、芳基、卤素、氨基、羟基和噻吩基的垫脚石(25-27)。各种烷基(3a至3e)、烯基(3f至3g)和芳基(3h至3i)格氏试剂在催化性铜的存在下能够成功地打开β-内酯以在母体脂族酸的β-位置处构建新的C-C键(25,26)。在多个实施方案中,有效地安装了仲烷基结构基元,例如异丙基(3c)、环丙基(3d)和环戊基(3e),相比之下,类似的仲烷基碘在Pd催化的C-H烷基化反应中通常是不相容的。
在另外的实施方案中,β-乙烯基脂族酸(3f至3g)可通过与其相应的乙烯基(3f)和异丙烯基(3g)格氏试剂反应直接获得。这些实施方案例如提供了与其中仅缺电子烯烃有效的游离酸及其衍生物的Pd催化的β-C–H烯化互补的策略。
在另一个实施方案中,β-内酯2v转化为相应的β-芳基化脂族酸(3h至3i)。例如,这种方法在3i的情况下是有用的,因为
Figure BDA0003439878890000111
基碘由于其空间位阻而通常不是可行的偶联搭档。
在另一个实施方案中,亲核物质氰化物打开内酯以构建新的C-C键,从而得到相应的β-氰基脂族酸(3j)。在另一些实施方案中,通过添加弱氟化物亲核物质(3k)以引入在药物化学中备受追捧的生物电子等排体CH2F片段进一步示出了β-内酯羰基的亲电性。通过类似的β-内酯开环,MgBr2以高产率释放形式上的β-溴化脂族酸(3l);产物3l为用于进一步加工的通用化合物。
在另一些实施方案中,在硬亲核物质NaN3和2-硝基苯磺酰胺钠(sodium 2-nitrophenylsulfonamide,NaNHNs)的存在下对β-内酯的操作以一致的高产率相应地得到有价值的β-氨基酸支架3m和3n。通过使用β-内酯作为掩蔽的醛醇加合物,温和水解得到了高产率的β-羟基酸3o。此外,作为亲核物质的苯硫酚钠盐可用于获得接近定量产率的式β-硫属元素化产物3p。
本公开上文中引用的列举参考文献如下:
1 O.Daugulis,J.Roane,L.D.Tran,Bidentate,Monoanionic auxiliary-directed functionalization of carbon-hydrogen bonds.Acc.Chem.Res.48,1053-1064(2015).
2 T.W.Lyons,M.S.Sanford,Palladium-catalyzed ligand-directed C-Hfunctionalization reactions.Chem.Rev.110,1147-1169(2010).
3 J.He,M.Wasa,K.S.L.Chan,Q.Shao,J.-Q.Yu,Palladium-catalyzedtransformations of alkvl C-H Bonds.Chem.Rev.117,8754-8786(2017).
4 R.Giri,J.Liang,J.-G.Lei,J.-J.Li,D.-H.Wang,X.Chen,I.C.Naggar,C.Guo,B.M.Foxman,J.-Q.Yu,Pd-catalyzed stereoselective oxidation of methyl groups byinexpensive oxidants under mild conditions;a dual role for carboxylicanhydrides in catalytic C-H bond oxidation.Angew.Chem.Int.Ed.44,7420-7424(2005).
5 R.Giri,N.Maugel,J.-J.Li,D.-H.Wang,S.P.Breazzano,L.B.Saunders,J.-QYu,Palladium-catalyzed methylation and arylation of sp2 and sp3 C-H bonds insimple carboxylic acids.J.Am.Chem.Soc.129,3510-3511(2007).
6 D.-H.Wang,M.Wasa,R.Giri,J.-Q.Yu,Pd(II)-catalyzed cross-coupling ofsp3 C-H bonds with sp2 and sp3 boronic acids using air as theoxidant.J.Am.Chem.Soc.130,7190-7191(2008).
7 D.Shabashov,O.Daugulis,Auxiliary-assisted palladium-catalyzedarylation and alkylation of sp2 and sp3 carbon-hydrogen bondsJ.Am.Chem.Soc.132,3965-3972(2010).
8 S.-Y.Zhang,Q.Li,G.He,W.A.Nack,G.Chen,Stereoselective synthesis ofβ-alkylated α-amino acids via palladium-catalyzed alkylation of unactivatedmethylene C(sp3)-H bonds with primary alkyl halides.J.Am.Chem.Soc.135,12135-12141(2013).
9 Z.Zhuang,C.-B.Yu,G.Chen, Q.-F.Wu,Y.Hsiao,C.L.Joe,J.X.Qiao,M.A.Poss,J.-Q.Yu,Ligand-enabled β-C(sp3)-H olefination of free carboxylicacids.J.Am.Chem.Soc.140,10363-10367(2018).
10 M.Wasa,K.M.Engle,J.-Q.Yu,Pd(II)-catalyzed olefination of sp3 C-Hbonds.J.Am.Chem.Soc.132,3680-3681(2010).
11 V.G.Zaitsev,D.Shabashov,O.Daugulis,Highly regioselective arylationof sp3 C-H bonds catalyzed by palladium acetate.J.Am.Chem.Soc.127,13154-13155(2005).
12 G.Chen,Z.Zhuang,G.-C.Li,T.G.Saint-Denis,Y.Hsiao,C.L.Joe,J.-Q.Yu,Ligand-enabled β-C-H arylation of α-amino acids without installing exogenousdirecting groups.Angew.Chem.Int.Ed.56,1506-1509(2017).
13 Y.Zhu,X.Chen,C.Yuan,G.Li,J.Zhang,Y.Zhao,Pd-catalysed ligand-enabled carboxylate-directed highly regioselective arylation of aliphaticacids.Nat.Commun.8,14904-14911(2017).
14 P.-X.Shen,L.Hu,Q.Shao,K.Hong,J.-Q.Yu,Pd(II)-catalyzedenantioselective C(sp3)-H arylation of free carboxylicacids.J.Am.Chem.Soc.140,6545-6549(2018).
15 Y.Wang,R.L.Tennyson,D.Romo,β-Lactones as intermediates for naturalproduct total synthesis and new transformations.Heterocycles 64,605-658(2004).
16 L.-C.Kao,A.Sen,Platinum(II)catalysed selective remote oxidation ofunactivated C-H bonds in aliphatic carboxylic acids.J.Chem.Soc.,Chem.Commun.1242-1243(1991).
17 B.D.Dangel,J.A.Johnson,D.Sames, Selective functionalization ofamino acids in water:a synthetic method via catalytic C-H bondactivation.J.Am.Chem.Soc.123,8149-8150(2001).
18 J.M.Lee,S.Chang,Pt-Catalyzed sp3 C-H bond activation of o-alkylsubstituted aromatic carboxylic acid derivatives for the formation of aryllactones.Tetrahedron Lett.47,1375-1379(2006).
19 P.Novák,A.Correa,J.Gallardo-Donaire,R.Martin,Synergisticpalladium-catalyzed C(sp3)-H activation/C(sp3)---O bond formation:a direct,step-economical route to benzolactones.Angew.Chem.Int.Ed.50,12236-12239(2011).
20 T.-S.Mei,X.Wang,J.-Q.Yu,Pd(II)-catalyzed amination of C-H Bondsusing single-electron or two-electron oxidants.J.Am.Chem.Soc.131,10806-10807(2009).
21 K.M.Engle,T.-S.Mei,X.Wang,J.-Q.Yu,Bystanding F+oxidants enableselective reductive elimination from high-valent metal centers incatalysis.Angew.Chem.Int.Ed.50,1478-1491(2011).
22 Q.Zhang,K.Chen,W.Rao,Y.Zhang,F.-J.Chen,B.-F.Shi,Stereoselectivesynthesis of chiral α-amino-β-lactams through palladium(II)-catalyzedsequential monoarvlation/amidation of C(sp3)-H Bonds.Angew.Chem.Int.Ed.52,13588-13592(2013).
23 D.-H.Wang,K.M.Engle,B.-F.Shi,J.-Q.Yu,Ligand-enabled reactivity andselectivity in a synthetically versatile aryl C-H olefination.Science 327,315-319(2010).
24 P.A.Todd,A.Ward,Gemfibrozil-a review of its pharmacodynamic andpharmacokinetic properties,and therapeutic use in dyslipidaemia.Drugs 36,314-339(1988).
25 M.Kawashima,T.Sato,T.Fujisawa,A facile method for synthesis ofthree carbon-homologated carboxylic acid by regioselective ring-opening of β-propiolactones with organocopper reagents.Tetrahedron 45,403-412(1989).
26 N.D.Smith,A.M.Wohlrab,M.Goodman,Enantiocontrolled synthesis of α-methyl amino acids via Bn2N-α-methylserine-β-laetone.Org.Lett.7,255-258(2005).
27 L.D.Arnold,T.H.Kalantar,J.C.Vederas,Conversion of serine tostereochemically pure β-substituted α-amino acids via β-Lactones.J.Am.Chem.Soc.107,7105-7109(1985).
实施例
本公开的另一些实施方案包括以下实施例。
一般信息:HFIP由Oakwood获得,以及其他溶剂由Sigma-Aldrich、Alfa-Aesar和Acros获得,并且没有进一步纯化而直接使用。Pd(CH3CN)2Cl2和Pd(OAc)2由Strem获得。Ag2CO3购自Sigma-Aldrich。羧酸由商业来源获得或按照文献方法合成。除非另有说明,否则其他试剂均以最高商业品质购买,并且没有进一步纯化而使用。在0.25mm硅胶60-F254上进行分析型薄层色谱法。用短波UV光或KMnO4以及热作为显影剂进行可视化。在Bruker DRX-600、DRX-500和AMX-400仪器上记录1H NMR谱。参考对于TMS的0.0ppm,化学位移以百万分率(parts per million,ppm)为单位引用。以下缩写(或其组合)用于说明多重性:s=单峰、d=双峰、t=三重峰、q=四重峰、m=多重峰、br=宽峰。以赫兹单位(Hz)报告耦合常数J。在Bruker DRX-600和DRX-500上记录13C NMR谱,并通过宽带质子去耦来充分去耦。参考CDCl3在77.0ppm处的三重峰的中心线,以ppm报告化学位移。使用E.Merck二氧化硅(60,颗粒尺寸为0.043mm至0.063mm)来进行柱色谱法,并在Merck二氧化硅板(60F-254)上进行pTLC。使用ESI-TOF(电喷雾电离-飞行时间)在Agilent质谱仪上记录高分辨率质谱(high-resolutionmass spectra,HRMS)。
用于β-C(sp3)–H内酯化的通用方法
Figure BDA0003439878890000151
通用方法A:在培养管中,在空气中依次称重Pd(CH3CN)2Cl2(10mol%,2.6mg)、配体L5(20mol%,2.9mg)、CsHCO3(0.5当量,9.7mg)和羧酸1(0.1mmol)并放入磁力搅拌棒。然后添加HFIP(1.0mL)和TBHP(在癸烷中约5.5M)(2.0当量,36uL)。将反应混合物在室温下搅拌3分钟,然后加热至60℃持续12小时(600rpm)。在使其冷却至室温之后,将混合物在真空中浓缩,并将所得混合物通过pTLC作为洗脱液来纯化或者用EA溶解和饱和NaHCO3水溶液洗涤来纯化。
Figure BDA0003439878890000152
通用方法B:在培养管中,在空气中依次称重Pd(OAc)2(10mol%,2.2mg)、配体L5(20mol%,2.9mg)、NaOAc(1.0当量,8.2mg)和羧酸1(0.1mmol)并放入磁力搅拌棒。然后添加HFIP(1.0mL)和TBHP(在癸烷中约5.5M)(2.0当量,36μL)。将反应混合物在室温下搅拌3分钟,然后加热至60℃持续12小时(600rpm)。在使其冷却至室温之后,将混合物在真空中浓缩,并将所得混合物通过pTLC作为洗脱液来纯化或者用EA溶解和饱和NaHCO3水溶液洗涤来纯化。
用于β-C(sp3)-H内酯化的底物范围
Figure BDA0003439878890000161
在按照0.1mmol规模上按照通用方法A。由于产物的挥发性,使用CH2Br2(0.1mmol,7uL)作为内标物通过粗产物的1H NMR分析来确定产率(50%产率)。
Figure BDA0003439878890000162
在0.1mmol规模上按照通用方法A。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,8.3mg,73%产率)。
1H NMR(600MHz,CDCl3)δ4.16(d,J=5.0Hz,1H),4.03(d,J=5.0Hz,1H),1.81-1.68(m,2H),1.42(s,3H),1.03(t,J=7.5Hz,3H);13C NMR(150MHz,CDCl3)δ175.04,71.02;58.00,27.38,18.97,8.98.
Figure BDA0003439878890000163
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,9.1mg,71%产率)。
1H NMR(600MHz,CDCl3)δ4.16(d,J=5.0Hz,1H),4.02(d,J=5.0Hz,1H),1.71-1.65(m,2H),1.59-1.48(m,2H),1.42(s,3H),0.97(t,J=7.3Hz,4H);13C NMR(150MHz,CDCl3)δ175.15,71.55,57.48,36.57,19.33,18.05,14.31.
Figure BDA0003439878890000164
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,10.5mg,74%产率)。
1H NMR(600MHz,CDCl3)δ4.16(d,J=5.0Hz,1H),4.02(d,J=5.0Hz,1H),1.76-1.64(m,2H),1.51-1.44(m,1H),1.42(s,3H),1.39-1.27(m,3H),0.93(t,J=7.2Hz,3H);13C NMR(150MHz,CDCl3)δ175.20,71.53,57.44,34.16,26.80,22.94,19.35,13.99.
Figure BDA0003439878890000171
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,10.4mg,73%产率)。
1H NMR(600MHz.CDCl3)δ4.21(d,J=5.0Hz,1H),4.06(dd,J=5.0,0.8Hz,1H),1.87-1.78(m,1H),1.78-1.71(m,1H),1.61---1.55(m,1H),1.42(s,3H),0.99(d,J=6.6Hz,3H),0.88(d,J=6.6Hz,3H);13C NMR(150MHz,CDCl3)δ175.54,72.80,56.75,42.64,24.80,23.97,22.35,18.92.
Figure BDA0003439878890000172
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,7.0mg,45%产率)。
1H NMR(600MHz,CDCl3)δ4.16(d,J=5.0Hz,1H),3.98(d,J=5.0Hz,1H),2.52-2.41(M,1H),2.16-2.01(m,2H),1.95-1.87(m,1H),1.87-1.75(m,3H),1.75-1.66(m,2H),1.38(s,3H);13C NMR(150MHz,CDCl3)δ175.14,71.48,57.19,41.37,32.64,30.00,29.41,19.72,19.15.
Figure BDA0003439878890000173
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,11.5mg,72%产率)。
1H NMR(600MHz,CDCl3)δ4.48(dt,J=47.2,5.9Hz,2H),4.18(d,J=5.1Hz,1H),4.06(d,J=5.1Hz,1H),1.82-1.70(m,4H),1.70-1.60(m,1H),1.55-1.47(m,1H),1.45(s,3H);13C NMR(150MHz,CDCl3)δ174.91,83.67(d,J=165.0Hz),71.45,57.31,34.04,30.50(d,J=19.9Hz),20.69(d,J=4.9Hz),19.25;
C8H14FO3[M+H]+的HRMS(ESI-TOF)计算值:161.0978;实测值:161.0975。
Figure BDA0003439878890000181
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,9.0mg,47%产率)。
1H NMR(600MHz,CDCl3)δ4.15(d,J=5.0Hz,1H),4.04(d,J=5.0Hz,1H),3.54(t,J=6.6Hz,2H),1.86-1.75(m,2H),1.75-1.66(m,2H),1.55-1.46(m,2H),1.43(s,3H),1.40-1.29(m,2H);13C NMR(150MHz,CDCl3)δ174.90,71.48,57.36,44.93,34.34,32.39,27.05,24.04,19.38;
C9H16ClO2[M+H]+的HRMS(ESI-TOF)计算值:191.0839;实测值:191.0827。
Figure BDA0003439878890000182
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,14.0mg,67%产率)。
1H NMR(600MHz,CDCl3)δ4.15(d,J=5.1Hz,1H),4.05(d,J=5.1Hz,1H),2.18-2.00(m,2H),1.77-1.68(m,2H),1.67-1.50(m,4H),1.43(s,3H);13C NMR(150MHz,CDCl3)δ174.70,127.10(q,J=276.4Hz),71.45,57.20,34.14,33.60(q,J=28.6Hz),23.84,22.18(q,J=2.9Hz),19.31;
C9H14F3O2[M+H]+的HRMS(ESI-TOF)计算值:211.0946;实测值:211.0949。
Figure BDA0003439878890000191
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,11.6mg,74%产率)。
1H NMR(600MHz,CDCl3)δ3.84(d,J=8.7Hz,1H),3.80(dd,J=8.7,2.9Hz,1H),2.19-2.08(m,1H),2.08-1.99(m,1H),1.88-1.79(m,2H),1.56(s,3H),1.16(s,3H);13C NMR(150MHz,CDCl3)δ208.49,175.48,72.09,38.26,31.38,28.95,24.30,16.40;C8H13O3[M+H]+的HRMS(ESI-TOF)计算值:157.0865;实测值:157.0863。
Figure BDA0003439878890000192
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,10.0mg,38%产率)。
1H NMR(600MHz,CDCl3)δ4.17(d,J=5.2Hz,1H),4.15-4.05(m,4H),4.04(d,J=5.2Hz,1H),1.87-1.68(m,6H),1.44(s,3H),1.33(t,J=7.1Hz,6H);13C NMR(150MHz,CDCl3)δ174.53,71.37,61.94(d,J=6.7Hz),61.93(d,J=6.8Hz),57.17(d,J=1.7Hz),35.09(d,J=16.0Hz),25.70(d,J=142.3Hz),19.16,18.03(d,J=4.9Hz),16.57(d,J=5.9Hz);
C11H22O5P[M+H]+的HRMS(ESI-TOF)计算值:265.1205;实测值:265.1208。
Figure BDA0003439878890000201
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,14.5mg,51%产率)。
1H NMR(600MHz,CDCl3)δ4.16(d,J=5.1Hz,1H),4.11(br s,2H),4.06(d,J=5.0Hz,1H),2.68(br s,2H),1.79-1.57(m,7H),1.45(s,9H),1.21(s,3H);13C NMR(150MHz,CDCl3)δ175.00,154.90,79.69,56.31,40.73,33.24,33.06,32.66,28.59,28.57.
Figure BDA0003439878890000202
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,13.0mg,71%产率)。
1H NMR(600MHz,CDCl3)δ4.18(d,J=5.1Hz,1H),4.06(d,J=5.1Hz,1H),4.00-3.91(m,2H),3.45-3.33(m,2H),1.79-1.70(m,2H),1.70-1.62(m,2H),1.54-1.47(m,1H),1.44(s,3H),1.42-1.34(m,2H);13C NMR(150MHz,CDCl3)δ175.03,72.48,67.96,67.72,56.28,41.11,33.86,33.21,31.68,19.32;
C10H17O3[M+H]+的HRMS(ESI-TOF)计算值:185.1178;实测值:185.1172。
Figure BDA0003439878890000211
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,12.8mg,81%产率)。
1H NMR(600MHz,CDCl3)δ4.17(d,J=5.0Hz,1H),4.04(d,J=5.0Hz,1H),3.41(t,J=5.8Hz,2H),3.33(s,3H),1.83-1.70(m,3H),1.67-1.57(m,1H),1.43(s,3H);13C NMR(150MHz,CDCl3)δ175.08,72.21,71.62,58.70,57.08,31.16,24.82,19.20;
C8H15O3[M+H]+的HRMS(ESI-TOF)计算值:159.1021;实测值:159.1022。
Figure BDA0003439878890000212
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,11.5mg,46%产率)。
1H NMR(600MHz,CDCl3)δ7.41-7.31(m,3H),7.31-7.26(m,2H),4.50(s,2H),4.15(d,J=5.0Hz,1H),4.01(d,J=5.0Hz,1H),3.48(t,J=6.2Hz,2H),1.78-1.56(m,6H),1.41(s,3H);13C NMR(150MHz,CDCl3)δ175.02,138.56,128.55,127.84,127.76,73.17,71.49,69.87,57.42,34.23,29.92,21.52,19.30.
Figure BDA0003439878890000213
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,9.0mg,56%产率)。
1H NMR(600MHz,CDCl3)δ5.42-5.33(m,2H),4.16(d,J=11.3Hz,1H),3.77-3.72(m,2H),3.35(s,3H),3.23(d,J=9.2Hz,1H),1.31(s,3H);13C NMR(150MHz,CDCl3)δ171.68,95.10,75.53,72.35,59.53,45.96,20.89;
C7H13O4[M+H]+的HRMS(ESI-TOF)计算值:161.0814;实测值:161.0821。
Figure BDA0003439878890000221
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,12.3mg,60%产率)。
1H NMR(400MHz,CDCl3)δ7.35-7.23(m,2H),7.23-7.14(m,3H),4.12(d,J=5.0Hz,1H),4.01(d,J=5.0Hz,1H),2.66(t,J=7.2Hz,2H),1.88-1.77(m,1H),1.77-1.61(m,3H),1.41(s,3H);13C NMR(150MHz,CDCl3)δ174.92,141.46,128.60,128.50,126.21,71.45,57.33,35.89,33.93,26.41,19.36.
Figure BDA0003439878890000222
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,11.0mg,46%产率)。
1H NMR(600MHz,CDCl3)δ7.25(d,J=8.4Hz,2H),7.10(d,J=8.4Hz,2H),4.11(d,J=5.0Hz,1H),4.01(d,J=5.0Hz,1H),2.67-2.58(m,2H),1.84---1.75(m,1H),1.75-1.66(m,2H),1.68-1.59(m,1H),1.41(s,3H);13C NMR(150MHz,CDCl3)δ174.77,139.86,131.97,129.84.128.71,71.42,57.27,35.21,33.85,26.30,19.38.
Figure BDA0003439878890000223
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,9.7mg,41%产率)。
1H NMR(600MHz,CDCl3)δ7.90(dd,J=8.1,1.7Hz,1H),7.56(ddd,J=8.6,7.5,1.7Hz,1H),7.17-7.07(m,2H),4.69(d,J=5.1Hz,1H),4.36(d,J=9.5Hz,1H),4.19(d,J=5.1Hz,1H),4.11(d,J=9.5Hz,1H),1.58(s,3H);13C NMR(150MHz,CDCl3)δ185.74,172.18,151.43,134.50,126.11,122.01.115.63,69.93,69.49,57.76,16.45;
C11H12NO5[M+H]+的HRMS(ESI-TOF)计算值:238.0715;实测值:238.0716。
Figure BDA0003439878890000231
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,17.8mg,86%产率)。
1H NMR(600MHz,CDCl3)δ7.33-7.27(m,2H),7.01-6.94(m,1H),6.90-6.85(m,2H),4.47(d,J=5.1Hz,1H),4.20-4.13(m,1H),4.14-4.08(m,2H),2.39-2.30(m,1H),2.16-2.08(m,1H),1.50(s,3H);13C NMR(150MHz,CDCl3)δ174.77,158.38,129.73,121.40,114.49,72.45,63.66,55.63,33.25,19.03;
C12H15O3[M+H]+的HRMS(ESI-TOF)计算值:207.1021;实测值:207.1029。
Figure BDA0003439878890000232
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,20.7mg,94%产率)。
1H NMR(600MHz,CDCl3)δ7.31-7.26(m,2H),6.98-6.92(m,1H),6.90-6.86(m,2H),4.18(d,J=5.1Hz,1H),4.06(d,J=5.1Hz,1H),3.99(t,J=5.8Hz,2H),2.04---1.94(m,1H),1.94-1.89(m,2H),1.88-1.77(m,1H),1.47(s,3H);13C NMR(150MHz,CDCl3)δ174.81,158.80,129.63,120.99,114.52,71.65,67.24,57.08,31.23,24.65,19.23;
C13H17O3[M+H]+的HRMS(ESI-TOF)计算值:221.1178;实测值:221.1181。
Figure BDA0003439878890000241
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,23.0mg,93%产率)。
1H NMR(600MHz,CDCl3)δ7.01(d,J=7.5Hz,1H),6.68(d,J=7.5Hz,1H),6.61(s,1H),4.19(d,J=5.1Hz,1H),4.07(d,J=5.1Hz,1H),4.03-3.92(m,2H),2.31(s,3H),2.17(s,3H),2.04-1.98(m,1H),1.98-1.90(m,2H),1.90-1.78(m,1H),1.48(s,3H);13C NMR(150MHz,CDCl3)δ174.82,156.78,136.72,130.55,123.62,121.13,112.03,71.66,67.24,57.14,31.33,24.86,21.54,19.26,15.94;
C15H21O3[M+H]+的HRMS(ESI-TOF)计算值:249.1491;实测值:249.1492。
Figure BDA0003439878890000242
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,9.7mg,62%产率)。
1H NMR(600MHz,CDCl3)δ4.16(d,J=5.2Hz,1H),4.11(d,J=5.2Hz,1H),1.84-1.74(m,4H),1.62-1.55(m,1H),1.04(t,J=7.5Hz,3H),0.99(d,J=6.4Hz,3H),0.88(d,J=6.5Hz,3H);13C NMR(150MHz,CDCl3)δ174.86,70.11,61.45,40.97,25.20,24.68,24.13,22.54,8.88;
C9H17O2[M+H]+的HRMS(ESI-TOF)计算值:157.1229;实测值:157.1226。
Figure BDA0003439878890000251
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,9.0mg,52%产率)。
1H NMR(600MHz,CDCl3)δ4.47(dt,J=46.9,5.6Hz,2H),4.12(d,J=5.7Hz,1H),4.11(d,J=5.7Hz,1H),1.85-1.67(m,5H),1.67-1.59(m,1H),1.53-1.39(m,2H),1.03(t,J=7.5Hz,3H);13C NMR(151MHz,CDCl3)δ174.28,83.69(d,J=165.1Hz),68.72,62.13,31.93,30.61(d,J=19.9Hz),25.43,20.55(d,J=4.8Hz),8.85;
C9H16FO2[M+H]+的HRMS(ESI-TOF)计算值:175.1134;实测值:175.1135。
Figure BDA0003439878890000252
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,10.7mg,62%产率)。
1H NMR(600MHz,CDCl3)δ4.11(s,2H),3.44-3.39(m,2H),3.33(s,3H),1.86-1.71(m,5H),1.66-1.54(m,1H),1.03(t,J=7.5Hz,3H);13C NMR(150MHz,CDCl3)δ173.85,71.68,68.28,61.29,58.13,28.44,24.81,24.09,8.23;
C9H17O3[M+H]+的HRMS(ESI-TOF)计算值:173.1178;实测值:173.1189。
Figure BDA0003439878890000261
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,12.8mg,59%产率)。
1H NMR(600MHz,CDCl3)δ7.33-7.27(m,2H),7.23-7.18(m,1H),7.18-7.13(m,2H),4.08(d,J=5.2Hz,1H),4.06(d,J=5.2Hz,1H),2.72-2.62(m,2H),1.86-1.69(m,5H),1.69-1.61(m,1H),0.99(t,J=7.5Hz,3H);13C NMR(150MHz,CDCl3)δ174.37,141.49,128.59,128.49,126.20,68.76,62.11,35.97,31.80,26.24,25.47,8.84;
C14H19O2[M+H]+的HRMS(ESI-TOF)计算值:219.1385;实测值:219.1387。
Figure BDA0003439878890000262
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,15.0mg,68%产率)。
1H NMR(500MHz,CDCl3)δ7.36-7.29(m,2H),7.03-6.96(m,1H),6.93-6.85(m,2H),4.45(d,J=5.3Hz,1H),4.20(d,J=5.3Hz,1H),4.19-4.16(m,1H),4.16-4.08(m,1H),2.42-2.32(m,1H),2.26-2.16(m,1H),1.91-1.82(m,2H),1.11(t,J=7.5Hz,3H);13C NMR(125MHz,CDCl3)δ174.10,158.39,129.71,121.36,114.49,69.72,63.74,60.35,31.49.25.37,8.87.
Figure BDA0003439878890000263
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,21.0mg,90%产率)。
1H NMR(500MHz,CDCl3)δ7.32-7.24(m,2H),6.98-6.91(m,1H),6.91-6.84(m,2H),4.13(s,2H),4.02-3.96(m,2H),2.05-1.89(m,3H),1.89-1.75(m,3H),1.05(t,J=7.5Hz,3H);13C NMR(125MHz,CDCl3)δ174.25,158.82,129.63,120.98,114.54,68.92,67.31,61.86,29.08,25.38,24.50,8.83;
C14H19O3[M+H]+的HRMS(ESI-TOF)计算值:235.1334;实测值:235.1336。
Figure BDA0003439878890000271
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,8.0mg,51%)。
1H NMR(600MHz,CDCl3)δ4.33(dd,J=6.4,5.4Hz,1H),4.11(dd,J=5.4,4.6Hz,1H),4.04-3.98(m,2H),3.62(ddd,J=8.5,6.4,4.6Hz,1H),3.46-3.38(m,2H),2.12-2.00(m,1H),1.93-1.85(m,1H),1.55-1.46(m,2H);13C NMR(150MHz,CDCl3)δ170.40,67.47,67.42,62.77,57.36,34.55,30.29,30.22;
C8H13O3[M+H]+的HRMS(ESI-TOF)计算值:157.0865;实测值:157.0852。
Figure BDA0003439878890000272
在0.1mmol规模上按照通用方法。通过用EA溶解和饱和NaHCO3水溶液洗涤来纯化,得到标题化合物(无色油状物,13.0mg,82%)。
1H NMR(600MHz,CDCl3)δ4.37(dd,J=6.3,5.2Hz,1H),4.05-4.00(m,1H),3.75-3,68(m,1H),3.39(t,J=6.1Hz,2H),3.33(s,3H),1.95-1.85(m,1H),1.83-1.76(m,1H),1.65---1.52(m,3H),1.51-1.43(m,1H);13C NMR(150MHz,CDCl3)δ171.85,72.36,65.11,58.75,52.17,29.36,28.09,23.76.
Figure BDA0003439878890000281
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,14.5mg,69%)。
1H NMR(600MHz,CDCl3)δ7.32-7.27(m,2H),6.99-6.92(m,1H),6.91-6.85(m,2H),4.40(dd,J=6.3,5.3Hz,1H),4.05(dd,J=5.3,4.5Hz,1H),4.03-3.98(m,2H),3.84-3.77(m,1H),2.35(t,J=7.5Hz,1H),2.14-1.95(m,4H),1.95-1.85(m,1H),1.68-1.60(m,1H);13CNMR(150MHz,CDCl3)δ171.64,158.78,129.68,121.06,114.52,66.92,65.28,51.96,26.77,25.38;
C12H15O3[M+H]+的HRMS(ESI-TOF)计算值:207.1021;实测值:207.1023。
Figure BDA0003439878890000282
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,7.0mg,32%)。
1H NMR(600MHz,CDCl3)δ7,30-7.26(m,2H),6.97-6.91(m,1H),6.91-6.86(m,2H),4.38(dd,J=6.3,5.2Hz,1H),4.06-4.01(m,1H),3.98(t,J=6.2Hz,2H),3.78---3.70(m,1H),1.99---1.89(m,1H),1.89-1.80(m,2H),1.74---1.65(m,1H),1.65-1.55(m,2H);13CNMR(150MHz,CDCl3)δ171.69,158.99,129.62,120.87,114.58,67.32,65.07,52.18,29.06,28.06,23.76;
C13H17O3[M+H]+的HRMS(ESI-TOF)计算值:221.1178;实测值:221.1183。
Figure BDA0003439878890000291
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,12.0mg,40%)。
1H NMR(600MHz,CDCl3)δ7.40-7.34(m,2H),6.80-6.73(m,2H),4.38(dd,J=6.3,5.2Hz,1H),4.03(dd,J=5.2,4.5Hz,1H),3.94(t,J=6.2Hz,2H),3.78-3.70(m,1H),2.00-1.90(m,1H),1.90-1.76(M,3H),1.73-1.63(m,1H),1.63-1.57(m,1H);13C NMR(150MHz,CDCl3)δ171.63,158.12,132.42,116.38,113.01,67.71,65.02,52.14、28.96,28.04,23.67;
C13H16BrO3[M+H]+的HRMS(ESI-TOF)计算值:299.0283;实测值:299.0284。
Figure BDA0003439878890000292
在密封管中,在空气中依次称重Pd(OAc)2(1.0mol%,2.6mg)、配体L3(2.0mol%,2.9mg)、NaOAc(1.0当量,mg)和羧酸1(4.0mmol,1.0g)并放入磁力搅拌棒。然后添加HFIP(40.0mL)和TBHP(在水中70%)(2.0当量,36uL)。将反应混合物在室温下搅拌3分钟,然后加热至60℃持续24小时(600rpm)。在使其冷却至室温之后,将混合物在真空中浓缩,并将所得混合物通过pTLC作为洗脱液来纯化或者用EA溶解和饱和NaHCO3水溶液洗涤来纯化。
用于式β-C(sp3)-H官能化的通用方法
Figure BDA0003439878890000301
通用方法A:在培养管中,在空气中依次添加CuBr2·Me2S(20mol%,4.1mg)、β-内酯2v(0.1mmol,24.8mg)和Me2S(1.0当量,7uL)并放入磁力搅拌棒。然后添加THF(1.0mL)。将反应混合物在室温下搅拌3分钟,然后在0℃下滴加格氏试剂(3.0当量)。在将其在0℃下搅拌1小时之后,将混合物用饱和NH4Cl淬灭。将所得混合物用EA稀释,用饱和NH4Cl洗涤,并用MgSO4干燥。在将其在真空中浓缩之后,将所得混合物通过pTLC使用己烷/EA和AcOH(1%)(如有必要)作为洗脱液来纯化。
Figure BDA0003439878890000302
在0.1mmol规模上按照通用方法A。通过pTLC纯化,得到标题化合物(无色油状物,26.0mg,93%)。
1H NMR(600MHz,CDCl3)δ6.99(d,J=7.5Hz,1H),6.65(dd,J=7.5,1.5Hz,1H),6.60(d,J=1.5Hz,1H),3.97-3.86(m,2H),2.30(s,3H),2.17(s,3H),1.87-1.78(m,2H),1.78-1.69(m,1H),1.69-1.61(m,2H),1.49(ddd,J=13.4,12.3,4.6Hz,1H),1.40-1.26(m,2H),1.20(s,3H),0.92(t,J=7.3Hz,3H);13C NMR(150MHz,CDCl3)δ184.00,157.07,136.59,130.43,123.72,120.82,112.06,68.06,45.72,41.45,35.39,24.88,21.55,21.38,17.88,15.90,14.71;
C17H26NaO3[M+Na]+的HRMS(ESI-TOF)计算值:301.1780;实测值:301.1771。
Figure BDA0003439878890000311
在0.1mmol规模上按照通用方法A。通过pTLC纯化,得到标题化合物(无色油状物,28.0mg,82%)。
1H NMR(600MHz,CDCl3)δ7.32-7.21(m,2H),7.22-7.14(m,3H),6.99(d,J=7.5Hz,1H),6.65(d,J=7.5Hz,1H),6.61(s,1H),4.00-3.87(m,2H),2.71-2.54(m,2H),2.30(s,3H),2.17(s,3H),2.07-1.97(m,1H),1.95-1.70(m,5H);13C NMR(150MHz,CDCl3)δ183.85,157.02,142.15,136.59,130.46,128.54,128.49,126.04,123.71,120.87,112.04,67.92,45.74,40.99,35.42,31.19,24.85,21.55,15.94
(1个碳信号由于重叠而未被分配);
Figure BDA0003439878890000312
在0.1mmol规模上按照通用方法A。通过pTLC纯化,得到标题化合物(无色油状物,23.0mg,79%)。
1H NMR(600MHz,CDCl3)δ6.99(d,J=7.5Hz,1H),6.65(dd,J=7.5,1.5Hz,1H),6.60(d,J=1.5Hz,1H),4.00-3.85(m,2H),2.30(s,3H),2.17(s,3H),1.90-1.79(m,2H),1.79-1.58(m,4H),1.46(dd,J=13.9,5.4Hz,1H),1.20(s,3H),0.91(d,J=6.6Hz,3H),0.88(d,J=6.6Hz,3H);13C NMR(150MHz,CDCl3)δ184.66,157.08,136.58,130.43,123.73,120.82,112.05,68.04,48.29,45.25,36.65,24.98,24.72,24.55,23.34,21.54,21.15,15.90;
C18H29O3[M+H]+的HRMS(ESI-TOF)计算值:293.2117;实测值:293.2115。
Figure BDA0003439878890000321
在0.1mmol规模上按照通用方法A。通过pTLC纯化,得到标题化合物(无色油状物,22.0mg,76%)。
1H NMR(600MHz,CDCl3)δ6.99(d,J=7.5Hz,1H),6.70-6.64(m,1H)6.61(d,J=1.5Hz,1H),4.00-3.87(m,2H),2.30(s,3H),2.17(s,3H),1.96-1.87(m,1H),1.88-1.79(m,1H),1.79-1.70(m,1H),1.72-1.64(m,1H),1.62(dd,J=14.0,6.9Hz,1H),1.53-1.45(m,1H),1.28(s,3H),0.75-0.67(m,1H),0.53-0.39(m,2H),0.14-0.04(m,2H);13C NMR(150MHz,CDCl3)δ184.13,157.08,136.58,130.42,123.73,120.82,112.08,68.09,46.52,44.22,35.51,24.97,21.55,21.42,15.90,6.77,4.78,4.36;
C18H27O3[M+H]+的HRMS(ESI-TOF)计算值:291.1960;实测值:291.1953。
Figure BDA0003439878890000322
在0.1mmol规模上按照通用方法A。通过pTLC纯化,得到标题化合物(无色油状物,21.0mg,66%)。
1H NMR(600MHz,CDCl3)δ6.99(d,J=7.5Hz,1H),6.65(d,J=7.5Hz,1H),6.60(s,1H),3.99-3.86(m,2H),2.30(s,3H),2.17(s,3H),1.91-1.68(m,7H),1.68-1.53(m,4H),1.52-1.40(m,2H),1.22(s,3H),1.14-1.02(m,2H);13C NMR(150MHz,CDCl3)δ184.53,157.08,136.58,130.42,123.72,120.81,112.05,68.07,45.86,45.76,36.99,36.23,34.37,33.65,25.19,24.98,24.87,21.55,21.47,15.91.
Figure BDA0003439878890000331
在0.1mmol规模上按照通用方法A。通过pTLC纯化,得到标题化合物(无色油状物,25.0mg,91%)。
1H NMR(600MHz,CDCl3)δ7.00(d,J=7.4Hz,1H),6.65(d,J=7.4Hz,1H),6.60(s,1H),5.83-5.72(m,1H),5.15-5.10(m,1H),5.09(s,1H),3.96-3.88(m,2H),2.44(dd,J=13.8,7.1Hz,1H),2.34-2.25(m,4H),2.17(s,3H),1.88-1.71(m,3H),1.71-1.63(m,1H),1.21(s,3H);13C NMR(150MHz,CDCl3)δ183.29,157.05,136.59,133.65,130.44,123.73,120.85,118.59,112.04,67.94,43.03,35.05,24.88,21.55,21.49,15.91
(1个碳信号由于重叠而未被分配);C17H24NaO3[M+Na]+的HRMS(ESI-TOF)计算值:299.1623;实测值:299.1613。
Figure BDA0003439878890000332
在0.1mmol规模上按照通用方法A。通过pTLC纯化,得到标题化合物(无色油状物,23.5mg,81%)。
1H NMR(600MHz,CDCl3)δ7.00(d,J=7.4Hz,1H),6.65(d,J=7.4Hz,1H),6.60(s,1H),4.85(s,1H),4.72(s,1H),3.98-3.87(m,2H),2.54(d,J=13.7Hz,1H),2.30(s,3H),2.23(d,J=13.7Hz,1H),2.17(s,3H),1.96---1.81(m,2H),1.77---1.74(m,1H),1.72(s,3H),1.67-1.58(m,1H),1.20(s,3H);13C NMR(150MHz,CDCl3)δ183.81,157.05,141.99,136.59,130.44,123.73,120.85,114.97,112.05,67.96,47.58,45.58,36.40,24.90,23.83,21.55,21.01,15.91;
C18H27O3[M+H]+的HRMS(ESI-TOF)计算值:291.1960;实测值:291.1961。
Figure BDA0003439878890000341
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,25.5mg,70%)。
1H NMR(600MHz,CDCl3)δ7.41-7.35(m,2H),7.30-7.25(m,3H),6.99(d,J=7.4Hz,1H),6.67(d,J=7.4Hz,1H),6.65-6.61(m,1H),4.04(d,J=8.7Hz,1H),3.95(d,J=8.7Hz,1H),3.70(s,3H),2.42(t,J=7.0Hz,2H),2.31(s,3H),2.13(s,3H),1.95(td,J=12.8,4.9Hz,1H),1.80(td,J=12.8,4.6Hz,1H),1.67-1.55(m,2H),1.37(s,3H);13C NMR(150MHz,CDCl3)δ176.04,156.79,136.71,131.69,130.44,128.33,127.73,124.01,123.84,121.12,112.03,89.67,81.18,72.60.52.09,47.13,35.25,24.04,21.51,20.40,20.01,15.82.
Figure BDA0003439878890000342
在0.1mmol规模上按照通用方法A。通过pTLC纯化,得到标题化合物(无色油状物,20.0mg,61%)。
1H NMR(600MHz,CDCl3)δ7.31-7.26(m,2H),7.26-7.19(m,2H),7.20-7.14(m,1H),7.00(d,J=7.5Hz,1H),6.66(d,J=7.5Hz,1H),6.61(s,1H),4.03-3.83(m,2H),3.06(d,J=13.4Hz,1H),2.82(d,J=13.4Hz,1H),2.31(s,3H),2.17(s,3H),1.99-1.76(m,3H),1.65(td,J=12.3,4.1Hz,1H),1.17(s,3H);13C NMR(150MHz,CDCl3)δ182.32,157.04,137.31,136.62,130.46,130.40,128.25,126.78,123.75,120.88,112.06,67.94,45.18,35.49,25.13,21.56,21.01,15.94
(1个碳信号由于重叠而未被分配);
Figure BDA0003439878890000351
在0.1mmol规模上按照通用方法A。通过pTLC纯化,得到标题化合物(无色油状物,25.0mg,68%)。
1H NMR(600MHz,CDCl3)δ7.00(d,J=7.5Hz,1H),6.82(s,2H),6.66(d,J=7.5Hz,1H),6.61(s,1H),4.02-3.85(m,2H),3.20(d,J=14.8Hz,1H),2.99(d,J=14.8Hz,1H),2.30(s,3H),2.28(s,6H),2.23(s,3H),2.17(s,3H),2.15-2.06(m,1H),1.91-1.81(m,1H),1.78-1.61(m,2H),1.11(s,3H);13C NMR(150MHz,CDCl3)δ183.67,157.07,137.86,136.62,135.75,131.87,130.46,129.37,123.75,120.87,112.10,68.02,47.32,38.50,37.07,25.49,21.55,21.38,20.90,20.26,15.91;
C24H32NaO3[M+Na]+的HRMS(ESI-TOF)计算值:391.2249;实测值:391.2247。
Figure BDA0003439878890000361
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,27.0mg,98%)。
1H NMR(600MHz,CDCl3)δ7.04-6.97(m,1H),6.67(dd,J=7.5,1.5Hz,1H),6.59(d,J=1.5Hz,1H),3.95(t,J=6.0Hz,2H),2.72(d,J=16.8Hz,1H),2.64(d,J=16.8Hz,1H),2.30(s,3H),2.17(s,3H),2.04-1.86(m,2H),1.86---1.72(m,2H),1.45(s,3H);13C NMR(150MHz,CDCl3)δ180.16,156.75,136.66,130.54,123.69,121.12,117.31,112.01,67.18,34.90,25.86,24.91,23.17,21.53,15.89
(1个碳信号由于重叠而未被分配);C16H22NO3[M+H]+的HRMS(ESI-TOF)计算值:276.1600;实测值:276.1603。
Figure BDA0003439878890000362
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,13.5mg,50%)。
1H NMR(600MHz,CDCl3)δ7.00(d,J=7.3Hz,1H),6.66(d,J=7.3Hz,1H),6.60(s,1H),4.55(dd,J=47.1,9.0Hz,1H),4.44(dd,J=47.1,9.0Hz,1H),3.93(t,J=5.5Hz,2H),2.30(s,3H),2.17(s,3H),1.91-1.71(m,4H),1.32(s,3H);13C NMR(150MHz,CDCl3)δ180.72,156.93,136.63,130.49,123.73,120.99,112.07,87.11(d,J=175.0Hz),67.66,47.04(d,J=18.3Hz),31.42(d,J=4.8Hz),24.54,21.53,21.52,19.11(d,J=4.8Hz),15.87;
C15H21FNaO3[M+Na]+的HRMS(ESI-TOF)计算值:291.1372;实测值:291.1363。
Figure BDA0003439878890000371
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,30.0mg,92%)。
1H NMR(600MHz,CDCl3)δ7.00(d,J=7.4Hz,1H),6.72---6.64(m,1H),6.60(d,J=1.6Hz,1H),3.94(t,J=5.8Hz,2H),3.65(d,J=10.2Hz,1H),3.53(d,J=10.2Hz,1H),2.30(s,3H),2.17(s,3H),2.02-1.90(m,1H),1.90-1.72(m,3H),1.39(s,3H);13C NMR(150MHz,CDCl3)δ179.34,156.31,136.03,129.89,123.11,120.38,111.43,66.91,38.82,33.46,24.27,20.96,20.94,15.30
(1个碳信号由于重叠而未被分配);C15H21BrNaO3[M+Na]+的HRMS(ESI-TOF)计算值:351.0572;实测值:351.0565。
Figure BDA0003439878890000372
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,25.0mg,86%)。
1H NMR(600MHz,CDCl3)δ7.00(d,J=7.5Hz,1H),6.66(d,J=7.5Hz,1H),6.63-6.53(m,1H),3.93(t,J=5.5Hz,2H),3.60(d,J=12.1Hz,1H),3.43(d,J=12.1Hz,1H),2.30(s,3H),2.17(s,3H),1.88-1.72(m,4H),1.29(s,3H);13C NMR(150MHz,CDCl3)δ181.17,156.90,136.63,130.49,129.68,123.72,121.00,112.06,67.59,57.85,46.89,33.16,24.63,21.54,20.50,15.88;
C15H21N3NaO3[M+Na]+的HRMS(ESI-TOF)计算值:314.1481;实测值:314.1477。
Figure BDA0003439878890000381
1H NMR(600MHz,CDCl3)δ8.16-8.04(m,1H),7.90-7.79(m,1H),7.79-7.66(m,2H),6.99(d,J=7.5Hz,1H),6.66(d,J=7.5Hz,1H),6.57(s,1H),5.98(t,J=6.7Hz,1H),3.95---3.82(m,2H),3.70(s,3H),3.27(dd,J=12.6,6.5Hz,1H),3.10(dd,J=12.6,7.1Hz,1H),2.30(s,3H),2.15(s,3H),1.85-1.69(m,4H),1.28(s,3H);13C NMR(150MHz,CDCl3)δ176.34,156.82,148.26136.61,133.70,132.89,131.02,130.43,125.53,123.58,120.94,111.99,67.47,52.44,49.66,46.34,33.45,24.40,21.50,20.99,15.86
(1个碳信号由于重叠而未被分配);C22H29N2O7S[M+H]+的HRMS(ESI-TOF)计算值:465.1695;实测值:465.1695。
Figure BDA0003439878890000382
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,25.5mg,95%)。
1H NMR(600MHz,CDCl3)δ7.00(d,J=7.5Hz,1H),6.66(dd,J=7.5,1.4Hz,1H),6.60(d,J=1.4Hz,1H),3.99-3.87(m,2H),3.78(d,J=11.3Hz,1H),3.61(d,J=11.3Hz,1H),2.30(s,3H),2.17(s,3H),1.89-1.71(m,4H),1.26(s,3H);13C NMR(150MHz,CDCl3)δ182.50,156.96,136.63,130.48,123.72,120.98,112.14,68.04,67.89,32.30,24.55,21.54,19.60,15.90
(1个碳信号由于重叠而未被分配);C15H23O4[M+H]+的HRMS(ESI-TOF)计算值:267.1596;实测值:267.1596。
Figure BDA0003439878890000383
在0.1mmol规模上按照通用方法。通过pTLC纯化,得到标题化合物(无色油状物,33.0mg,92%)。
1H NMR(600MHz,CDCl3)δ7.42-7.37(m,2H),7.26-7.22(m,2H),7.17(t,J=7.3Hz,1H),6.99(d,J=7.4Hz,1H),6.65(d,J=7.4Hz,1H),6.58(s,1H),3.94-3.84(m,2H),3.30(d,J=12.7Hz,1H),3.19(d,J=12.7Hz,1H),2.29(s,3H),2.17(s,3H),1.93(dt,J=11.4,6.6Hz,1H),1.88-1.70(m,3H),1.33(s,3H);13C NMR(150MHz,CDCl3)δ182.00,156.97,136.89,136.58,130.45,130.36,129.05,126.57,123.72,120.90,112.05,67.71,47.21,43.06,34.75,24.88,21.82,21.54,15.93;
C21H26NaO3S[M+Na]+的HRMS(ESI-TOF)计算值:381.1500;实测值:381.1494。
以上实施例部分中引用的列举参考文献如下:
1.Katritzky,A.R.;Xu,Y.J.;He,H.Y.;Mehta,S.J.Org.Chem.2001,66,5590.
2.Adams,H.;Anderson,J.C.;Cubbon,R.;James,D.S.;Mathias,J.P.J.Org.Chem.1999,64,8256.
3.M.Kawashima,T.Sato,T.Fujisawa,A facile method for synthesis ofthree carbon-homologated carboxylic acid by regioselective ring-opching of β-propiolactones with organocopper reagents.Tetrahedron 45,403-412(1989).
4.N.D.Smith,A.M.Wohlrab,M.Goodman,Enantiocontrolled synthesis of α-methyl amino acids via Bn2N-α-methylserine-β-lactone.Org.Lett.7,255-258(2005).
5.L.D.Arnold,T.H.Kalantar,J.C.Vederas,Conversion of serine tostereochemically pure β-substituted α-amino acids via β-Lactones.J.Am.Chem.Soc.107,7105-7109(1985).
6.M.Shinoda,K.Iseki,T.Oguri,Y.Hayasi,S.Yamada,M.Shibasaki,Aconvenient synthesis of β-alkynylpropionic acids from β-propiolactones.Synthesis of 4,4,5,5-tetradehydro-9(O)-methano-Δ6(9α)-PGI1.Tetrahedron Lett.27,87-90(1986).
本公开中引用的所有专利文献和出版物均如同完整阐述一样通过引用并入本文。

Claims (7)

1.一种由具有其上设置有氢原子的β-碳的羧酸形成式(2)的β-内酯的方法:
Figure FDA0003439878880000011
包括在约60℃下在包含六氟异丙醇(HFIP)的溶剂中在有效量的N-保护的氨基酸配体和叔丁基过氧化氢的存在下使式(1)的羧酸与有效量的钯(II)催化剂接触,以提供所述式(2)的β-内酯:
Figure FDA0003439878880000012
其中
R1和R2各自独立地为H或烷基,条件是R1和R2中的至少一者为烷基,其中所述烷基为未经取代或经以下取代的:卤素、氧基、二烷基膦酰基、环烷基、烷氧基、芳氧基、苄氧基、杂环基、芳基、或杂芳基。
2.根据权利要求1所述的方法,还包括使所述式(2)的β-内酯:
Figure FDA0003439878880000013
与亲核物质(Nu-)接触,以提供式(3)的β-官能化羧酸:
Figure FDA0003439878880000014
其中Nu选自C(sp3)、C(sp2)、CN、N3、2-硝基苯磺酰氨基、OH、F、Br和SPh。
3.根据权利要求1或2所述的方法,其中所述钯(II)催化剂包含至少一个钯-氯键。
4.根据权利要求1或2所述的方法,其中所述钯(II)催化剂为Pd(CH3CN)2Cl2或Pd(OAc)2
5.根据权利要求1至4中任一项所述的方法,其中所述N-保护的氨基酸配体为选自L1至L6中的一者:
Figure FDA0003439878880000021
6.根据权利要求1至5中任一项所述的方法,其中所述N-保护的氨基酸配体为L5:
Figure FDA0003439878880000022
7.根据权利要求1至6中任一项所述的方法,其中所述式(2)的β-内酯为选自下表中的一者:
Figure FDA0003439878880000023
Figure FDA0003439878880000031
Figure FDA0003439878880000041
CN202080047762.0A 2019-05-30 2020-05-29 用于β-C-H官能化的配体激活β-C(sp3)-H内酯化 Pending CN114450272A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962854807P 2019-05-30 2019-05-30
US62/854,807 2019-05-30
PCT/US2020/070100 WO2020243754A1 (en) 2019-05-30 2020-05-29 LIGAND-ENABLED ß-C(sp3)–H LACTONIZATION FOR ß-C–H FUNCTIONALIZATIONS

Publications (1)

Publication Number Publication Date
CN114450272A true CN114450272A (zh) 2022-05-06

Family

ID=71996075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080047762.0A Pending CN114450272A (zh) 2019-05-30 2020-05-29 用于β-C-H官能化的配体激活β-C(sp3)-H内酯化

Country Status (3)

Country Link
US (1) US11866415B2 (zh)
CN (1) CN114450272A (zh)
WO (1) WO2020243754A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023220559A2 (en) * 2022-05-09 2023-11-16 The Scripps Research Institute Catalyst-controlled site-selective methylene c-h lactonization of dicarboxylic acids
WO2024091806A1 (en) * 2022-10-27 2024-05-02 The Scripps Research Institute Intermolecular beta-methylene c-h arylation of free aliphatic acids

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417290B1 (en) * 2001-01-29 2002-07-09 Department Of National Defence Synthesis of energetic polyester thermoplastic homopolymers and energetic thermoplastic elastomers formed therefrom
JP2013163779A (ja) * 2012-02-13 2013-08-22 Toray Ind Inc ポリピバロラクトンおよびその製造方法
JP2013203969A (ja) * 2012-03-29 2013-10-07 Toray Ind Inc ポリ乳酸共重合体
CN109467638A (zh) * 2018-10-25 2019-03-15 无锡洪汇新材料科技股份有限公司 零voc、聚酯改性的羟基丙烯酸分散体及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221809A (en) * 1978-10-23 1980-09-09 Roussel Uclaf β-Lactones of 2-hydroxy-cyclopentanecarboxylic acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417290B1 (en) * 2001-01-29 2002-07-09 Department Of National Defence Synthesis of energetic polyester thermoplastic homopolymers and energetic thermoplastic elastomers formed therefrom
US20020103307A1 (en) * 2001-01-29 2002-08-01 Guy Ampleman Synthesis of energetic polyester thermoplastic homopolymers and energetic thermoplastic elastomers formed therefrom
JP2013163779A (ja) * 2012-02-13 2013-08-22 Toray Ind Inc ポリピバロラクトンおよびその製造方法
JP2013203969A (ja) * 2012-03-29 2013-10-07 Toray Ind Inc ポリ乳酸共重合体
CN109467638A (zh) * 2018-10-25 2019-03-15 无锡洪汇新材料科技股份有限公司 零voc、聚酯改性的羟基丙烯酸分散体及其制备方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
A. OLMA ET AL.: "A convenient route to optically pure α-alkyl-β-(sec-amino)alanines", 《AMINO ACIDS》, vol. 42, pages 2525 - 2528, XP035055884, DOI: 10.1007/s00726-011-1055-3 *
ADAM KUDAJ ET AL.: "A convenient transformation of a-alkylserines into a-halogenomethyl-a-alkylglycines", 《TETRAHEDRON LETTERS》, vol. 49, pages 6445 *
ALEKSANDRA OLMA ET AL.: "An efficient synthesis of optically active 3-amino-3-alkyl-2-oxetanones", 《TETRAHEDRON LETTERS》, vol. 46, pages 6239 *
AMANDINE NOEL ET AL.: "Comparison of the reactivity of β-thiolactones and β-lactones toward ring-opening by thiols and amines", 《ORG. BIOMOL. CHEM.》, vol. 10, 14 June 2012 (2012-06-14), pages 6480 - 6483 *
BO WANG ET AL.: "Total Syntheses of the Histone Deacetylase Inhibitors Largazole and 2- epi -Largazole: Application of N -Heterocyclic Carbene Mediated Acylations in Complex Molecule Synthesis", 《 J. ORG. CHEM.》, vol. 76, pages 1140 *
JIANTAO HU ET AL.: "Unactivated C(sp3)–H hydroxylation through palladium catalysis with H2O as the oxygen source", 《CHEM. COMMUN.》, vol. 51, pages 14929 - 14932, XP055725668, DOI: 10.1039/C5CC04952K *
NICOLE D. SMITH ET AL.: "Enantioselective Synthesis of α-Methyl-D-cysteine and Lanthionine Building Blocks via α-Methyl-D-serine-β-lactone", 《ORGANIC LETTERS》, vol. 5, no. 7, pages 1035 - 1037, XP055725665, DOI: 10.1021/ol034025p *
ZHE ZHUANG ET AL.: "Lactonization as a general route to β-C(sp3)–H functionalization", 《NATURE》, vol. 577, pages 656 - 660 *
ZHE ZHUANG ET AL.: "Ligand-Enabled β-C(sp3)–H Lactonization: A Stepping Stone for General and Practical β-C–H Functionalizations", 《CHEMRXIV》, pages 1 - 13 *

Also Published As

Publication number Publication date
WO2020243754A1 (en) 2020-12-03
US20220306595A1 (en) 2022-09-29
US11866415B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
Nemoto et al. Enantioselective total syntheses of (+)-decursin and related natural compounds using catalytic asymmetric epoxidation of an enone
SI21463A (sl) Postopek za pripravo heksahidro-furo/2,3-b/furan-3-ola
CN114450272A (zh) 用于β-C-H官能化的配体激活β-C(sp3)-H内酯化
Sepe et al. Concise synthesis of AHMHA unit in perthamide C. Structural and stereochemical revision of perthamide C
Devi et al. Phenolate-induced intramolecular ring-opening cyclization of N-tosylaziridines: access to functionalized benzoxacycles
Wang et al. Application of palladium-catalyzed aryl C–H alkylation in total synthesis of (−)-berkelic acid
Lepronier et al. Palladium‐Catalyzed [2+ 1] Cycloadditions Affording Vinylidenecyclopropanes as Precursors of 7‐Membered Carbocycles
Palao et al. Formation of quaternary carbons through cobalt-catalyzed C (sp 3)–C (sp 3) Negishi cross-coupling
Cran et al. The intramolecular Morita–Baylis–Hillman-type alkylation reaction
Frost et al. Hydrogen borrowing catalysis using 1 and 2 alcohols: Investigation and scope leading to α and β branched products
Zemtsov et al. Nucleophilic trifluoromethylation of arylidene Meldrum’s acids
Lapuh et al. Late-stage C–H amination of abietane diterpenoids
Yoshida et al. Formal meta-specific intramolecular Friedel–Crafts allylic alkylation of phenols through a spirocyclization–dienone–phenol rearrangement cascade
JP4359500B2 (ja) ジルコニウム触媒によるβ−ジカルボニルのヒドロキシル化
Banwell et al. A total synthesis of the styryllactone (+)-goniodiol from naphthalene
EP1731509B1 (en) Process for producing nitrogenous 5-membered cyclic compound
Kamo et al. Synthesis of enantiomerically pure juglomycin C and NHAB
Zhou et al. Catalytic asymmetric syntheses of (−)-oudemanisin A and its diastereomer
Kotera et al. Gold-catalyzed stereoselective reaction of tricarbonylchromium complexes of ortho-alkynyl benzaldehydes and benzaldimines with nucleophiles
Wang et al. A Flexible Common Approach to α‐Substituted Serines and Alanines: Diastereoconvergent Syntheses of Sphingofungins E and F
Lee Desymmetrization‐Initiated Stereocontrolled Synthesis of (−)‐Kaitocephalin
Cheng et al. General and practical approach to the syntheses of linear homoallylic alcohols
JP2002020322A (ja) 3価ヨウ素化合物を用いたアルコール化合物の酸化方法
Knittl-Frank A Concise Semisynthesis of Hederagonic Acid
EP2402328B1 (en) Method for producing optically active fluorinated oxetane

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination