CN114438387A - 一种低成本高强阻燃镁合金及其制备方法 - Google Patents

一种低成本高强阻燃镁合金及其制备方法 Download PDF

Info

Publication number
CN114438387A
CN114438387A CN202210125141.0A CN202210125141A CN114438387A CN 114438387 A CN114438387 A CN 114438387A CN 202210125141 A CN202210125141 A CN 202210125141A CN 114438387 A CN114438387 A CN 114438387A
Authority
CN
China
Prior art keywords
alloy
temperature
magnesium alloy
pure
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210125141.0A
Other languages
English (en)
Other versions
CN114438387B (zh
Inventor
王柯
李世成
唐伟能
胡勇
祁卫东
王敬丰
潘复生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Baosteel Metal Co Ltd
Original Assignee
Chongqing University
Baosteel Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University, Baosteel Metal Co Ltd filed Critical Chongqing University
Priority to CN202210125141.0A priority Critical patent/CN114438387B/zh
Publication of CN114438387A publication Critical patent/CN114438387A/zh
Application granted granted Critical
Publication of CN114438387B publication Critical patent/CN114438387B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/04Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/04Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures
    • B61D17/041Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures with bodies characterised by use of light metal, e.g. aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/04Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures
    • B61D17/08Sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/04Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures
    • B61D17/10Floors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D19/00Door arrangements specially adapted for rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D25/00Window arrangements peculiar to rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D33/00Seats
    • B61D33/0007Details; Accessories
    • B61D33/0014Seat frames
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)

Abstract

本发明公开了一种低成本高强阻燃镁合金,各组分的百分含量为:Zn:5‑6.5wt%,Ca:0.8‑1.8wt%,Zr:0.3‑0.8wt%,余量为Mg和不可避免的杂质,进一步提供了所述镁合金的制备方法。本发明提供的阻燃镁合金,通过合理搭配不同的合金元素,利用合金化的方法,制备含Zn、Ca、Zr的镁合金,不需要用到稀土元素,成本较低,且表现出良好的室温力学性能和阻燃性能。

Description

一种低成本高强阻燃镁合金及其制备方法
技术领域
本发明涉及镁合金技术领域,尤其涉及一种低成本高强阻燃镁合金及其制备方法。
背景技术
镁合金作为当前密度最小的结构金属材料,具有比强度和比刚度高、减震性能好、无磁性、切削加工性好、可二次利用等诸多优良特点;被广泛应用于汽车零部件、航空航天结构件以及3C通讯电子器件等各种领域,被认为是未来最具有开发性和应用潜力的“二十一世纪绿色材料”。
目前轨道交通车体材料主要为铝合金,要实现车体结构的进一步轻量化,选用密度更小镁合金材料是最有效的途径。但是镁合金在化学上属于活泼金属,因此必须要求是不燃性或阻燃性的镁合金材料。常见的商用镁合金牌号燃点都较低,在轨交车体型材上不具有实际应用价值。因此,目前急需要开发一种低成本、高强高燃点综合性能优良的变形镁合金。
目前,镁合金的合金化一直都是作为当前镁合金研究的重点研究方向之一,通过加入一定含量的合金元素,可以赋予镁合金高强韧,以及一定的耐热、耐腐蚀和高燃点的特性。目前国内外报道的阻燃镁合金基本都添加了各类Re系稀土元素;如CN 109280832A公开的一种高强阻燃镁合金,其组成:Nd 5.0-7.0%,Ce 3.0-3.5%,Al 2.0-2.5%,,Si 0.5-0.8%,Ag 1.5-2.0%,Nb 0.8-1.0%,余量为Mg和不可避免的杂质;室温抗拉强度为277-288MPa,屈服强度为197-214MPa,燃点在790-805℃。其中的Ce和Nd均为稀土元素,添加量较高、室温力学性能偏低、成本较高,难以满足大规模工程实际应用。
发明内容
针对现有技术存在的上述不足,本发明的目的在于提供一种低成本高强阻燃镁合金,开发出轨道交通所需的不含有稀土元素的低成本高强阻燃镁合金,解决现有阻燃镁合金由于添加各类稀土元素后导致成本太高,从而无法大规模应用的问题。
进一步,本发明还提供所述低成本高强阻燃镁合金的制备方法,采用镦粗后连续挤压,工程实际应用效果好,且制备的合金具有良好的室温力学性能和阻燃性能,同时满足低成本的需求。
为了解决上述技术问题,本发明采用如下技术方案:
一种低成本高强阻燃镁合金,各组分的百分含量为:Zn:5-6.5wt%,Ca :0.8-1.8wt%,Zr :0.3-0.8wt%,余量为Mg和不可避免的杂质。
一种低成本高强阻燃镁合金的制备方法,按上述组份计算原料,具体步骤包括:
1)将原料纯Mg、纯Zn、Mg-Zr中间合金、Mg-Ca中间合金进行预热,预热温度为200-250℃,时间为10-20分钟;
2)将预热后的纯Mg加入不锈钢坩埚中,放入已经加热至730-750℃的井式电阻炉中,在CO2和SF6的混合气体保护下熔化,得到液态纯Mg;在CO2和SF6的混合气体保护下,将熔体加热至750-760℃时,加入纯Zn、Mg-Ca中间合金,保温10-20分钟,待中间合金全部熔化后,在CO2和SF6的混合气体保护下,升温至770-780℃,再加入Mg-Zr中间合金,待中间合金全部熔化后,加入1-3g精炼剂精炼10-15min,随后搅拌2-5分钟,去除表面浮渣,保温5-10min后取出;
3)将步骤2)中的坩埚和熔体取出后,坩埚和合金熔体一起采用盐水冷至室温;随后切除不锈钢坩埚,去除铸锭上下表面5-10mm厚度含氧化物杂质的表层,再切削成直径75-85mm的合金铸锭;
4)将步骤3)中所得的合金铸锭在400-450℃下固溶处理10-12h,随后采用60-80℃的热水淬火至室温;
5)将步骤4)中固溶处理后的合金铸锭进行镦粗,镦粗前,在320-380℃下保温预热30min-1h;
6)将预热后的铸锭在320-380℃下镦粗30-60s,镦粗压力为挤压机最大挤压力;
7)将步骤6)中镦粗后的铸锭在320-380℃下进行热挤压,挤压成直径16-25mm的棒材;挤压温度为320-380℃,挤压速度为5-20mm/s,挤压比为10∶1-25∶1。
进一步,步骤1)所述纯Mg、纯Zn中Mg、Zn所占的含量为,Mg≥99.98wt%,Zn≥99.97wt%。
进一步,步骤1)所述Mg-Zr中间合金、Mg-Ca中间合金中均为市售产品,Zr、Ca的纯度为Zr为25wt%-35wt%、Ca为20wt%-25wt%。
进一步,步骤2)所述CO2和SF6均为市售产品,其体积比为SF6占比为0.1%-0.5%,其余均为CO2
进一步,步骤2)所述精炼剂为六氯乙烷。
一种低成本高强阻燃镁合金的应用,采用上述方法制备的镁合金,用于轨道交通车体材料,如:车体侧板、车体底板、牵引梁、座椅骨架、门窗等。
相比现有技术,本发明具有如下有益效果:
1、本发明提供的阻燃镁合金,通过合理设计添加较低成本的合金元素种类和比例,在未添加高成本的稀土元素的情况下实现在挤压态良好的室温力学性能和阻燃性能,对轨道交通进一步减轻车重,节约能源和保护环境具有重大意义。
2、本发明的制备方法,采用连续镦粗挤压的制备方法,镦粗温度和挤压温度保持一致,在镦粗后合金发生变形,在挤压后合金的强度和塑性相较于直接挤压更优。
3、本发明制备的阻燃镁合金,仅采用含Zn、Ca、Zr三种对人体无害的合金元素制备而成,所得镁合金的燃点在750-900℃,具有良好的阻燃性能,常见的合金如AZ31、AZ80、AZ91、ZK60等燃点仅为550-600℃;同时,该挤压态镁合金的室温抗拉强度在350-390MPa以上,室温屈服强度在300-370MPa以上,室温延伸率在8%以上,表现出良好的室温力学性能和阻燃性能。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案,下面结合具体实施例对本发明作进一步的说明,但本发明的实施方式不仅限于此。
一、一种低成本高强阻燃镁合金,其元素含量参见表1:
表1实施例1-3及对比例中的镁合金各元素含量(wt%)
Figure DEST_PATH_IMAGE002
通过表1可知,实施例1-3中Ca含量控制在设计的范围内,合金的阻燃性能和力学性能均能达到设计标准;对比例1中不含Ca元素,而对比例2中Ca含量过高,超过和低于设计标准都会使得合金的力学性能或燃点达不到设计标准。本发明各组分均控制在合理范围,某一种元素超过设计标准会使得成本增加和某一项力学性能不达标,而低于设计标准会使燃点或综合力学性能不达标。
二、一种低成本高强阻燃镁合金的制备方法,包括如下步骤:
实施例1
①将原料纯Mg(≥99.98wt%)、纯Zn(≥99.97wt%)、Mg-30.45wt%Zr中间合金、Mg-21.97wt%Ca中间合金进行预热,预热温度为220℃,时间为10分钟;
②将预热后的纯Mg加入不锈钢坩埚中,放入已经加热至740℃的井式电阻炉中,在CO2和SF6的混合气体(SF6的体积占比为0.5%)保护下熔化,得到液态纯Mg;在CO2和SF6的混合气体保护下,将熔体加热至760℃时,加入纯Zn、Mg-Ca中间合金,保温10分钟,待中间合金全部熔化后,在CO2和SF6的混合气体保护下,升温至780℃,再加入Mg-Zr中间合金,待中间合金全部熔化后,加入1.5g精炼剂(六氯乙烷)精炼10min,随后搅拌3分钟,去除表面浮渣,保温10min后取出;
③将②中的坩埚和熔体取出后,坩埚和合金熔体一起采用盐水冷至室温;随后切除不锈钢坩埚,去除合金上下表面5mm厚度,再切削成直径80mm的合金铸锭;
④将③中所得的合金铸锭在400℃下固溶处理12h,随后采用80℃的热水淬火至室温;
⑤将④中固溶处理的合金铸锭继续镦粗,镦粗前,在360℃下保温预热1h;
⑥将预热后的铸锭在360℃下镦粗30s,镦粗压力为挤压机最大挤压力;
⑦将⑥中镦粗后的铸锭在360℃下进行热挤压,挤压成直径16mm的棒材;挤压温度为360℃,挤压速度为10mm/s,挤压比为25:1;
⑧分别对挤压后的棒材在中心部分取拉伸样和随机位置取4mm×6mm×8mm的长方体燃点测试样;进行拉伸力学性能测试和燃点测试,升温速率为15℃/min,拉伸机拉伸速率为1mm/min。
实施例2
①将原料纯Mg(≥99.98wt%)、纯Zn(≥99.97wt%)、Mg-30.45wt%Zr中间合金、Mg-21.97wt%Ca中间合金进行预热,预热温度为200℃,时间为15分钟;
②将预热后的纯Mg加入不锈钢坩埚中,放入已经加热至745℃的井式电阻炉中,在CO2和SF6的混合气体(SF6的体积占比为0.4%)保护下熔化,得到液态纯Mg;在CO2和SF6的混合气体保护下,将熔体加热至760℃时,加入纯Zn、Mg-Ca中间合金,保温10分钟,待中间合金全部熔化后,在CO2和SF6的混合气体保护下,升温至775℃,再加入Mg-Zr中间合金,待中间合金全部熔化后,加入1g精炼剂(六氯乙烷)精炼12min,随后搅拌2分钟,去除表面浮渣,保温10min后取出;
③将②中的坩埚和熔体取出后,坩埚和合金熔体一起采用盐水冷至室温;随后切除不锈钢坩埚,去除上下表面5mm厚度,再切削成直径80mm的合金铸锭;
④将③中所得的合金铸锭在420℃下固溶处理12h,随后采用80℃的热水淬火至室温;
⑤将④中固溶处理的合金铸锭继续镦粗,镦粗前,在320℃下保温预热30min;
⑥将预热后的铸锭在320℃下镦粗30s,镦粗压力为挤压机最大挤压力;
⑦将⑥中镦粗后的铸锭在320℃下进行热挤压,挤压成直径25mm的棒材;挤压温度为320℃,挤压速度为8mm/s,挤压比为10:1;
⑧分别对挤压后的棒材在中心部分取拉伸样和随机位置取4mm×6mm×8mm长方体燃点测试样;进行拉伸力学性能测试和燃点测试,升温速率为15℃/min,拉伸机拉伸速率为1mm/min。
实施例3
①将原料纯Mg(≥99.98wt%)、纯Zn(≥99.97wt%)、Mg-30.45wt%Zr中间合金、Mg-21.97wt%Ca中间合金进行预热,预热温度为250℃,时间为12分钟;
②将预热后的纯Mg加入不锈钢坩埚中,放入已经加热至740℃的井式电阻炉中,在CO2和SF6的混合气体(SF6的体积占比为0.3%)保护下熔化,得到液态纯Mg;在CO2和SF6的混合气体保护下,将熔体加热至760℃时,加入纯Zn、Mg-Ca中间合金,保温10分钟,待中间合金全部熔化后,在CO2和SF6的混合气体保护下,升温至780℃,再加入Mg-Zr中间合金,待中间合金全部熔化后,加入2g精炼剂(六氯乙烷)精炼15min,随后搅拌5分钟,去除表面浮渣,保温10min后取出;
③将②中的坩埚和熔体取出后,坩埚和合金熔体一起采用盐水冷至室温;随后切除不锈钢坩埚,去除合金上下表面5mm厚度,再切削成直径80mm的合金铸锭;
④将③中所得的合金铸锭在450℃下固溶处理10h,随后采用80℃的热水淬火至室温;
⑤将④中固溶处理的合金铸锭继续镦粗,镦粗前,在380℃下保温预热45min;
⑥将预热后的铸锭在380℃下镦粗30s,镦粗压力为挤压机最大挤压力;
⑦将⑥中镦粗后的铸锭在380℃下进行热挤压,挤压成直径16mm的棒材;挤压温度为380℃,挤压速度为10mm/s,挤压比为25:1;
⑧分别对挤压后的棒材在中心部分取拉伸样和随机位置取4mm×6mm×8mm长方体燃点测试样;进行拉伸力学性能测试和燃点测试,升温速率为15℃/min,拉伸机拉伸速率为1mm/min。
对比例1:
①将原料纯Mg(≥99.98wt%)、纯Zn(≥99.97wt%)、Mg-30.45wt%Zr中间合金、Mg-21.97wt%Ca中间合金进行预热,预热温度为225℃,时间为10分钟;
②将预热后的纯Mg加入不锈钢坩埚中,放入已经加热至740℃的井式电阻炉中,在CO2和SF6的混合气体(SF6的体积占比为0.3%)保护下熔化,得到液态纯Mg;在CO2和SF6的混合气体保护下,将熔体加热至760℃时,加入纯Zn、Mg-Ca中间合金,保温10分钟,待中间合金全部熔化后,在CO2和SF6的混合气体保护下,升温至780℃,再加入Mg-Zr中间合金,待中间合金全部熔化后,加入1.5g精炼剂(六氯乙烷)精炼10min,随后搅拌3分钟,去除表面浮渣,保温10min后取出;
③将②中的坩埚和熔体取出后,坩埚和合金熔体一起采用盐水冷至室温;随后切除不锈钢坩埚,去除合金上下表面5mm厚度,再切削成直径80mm的合金铸锭;
④将③中所得的合金铸锭在400℃下固溶处理12h,随后采用80℃的热水淬火至室温;
⑤将④中固溶处理后的铸锭在360℃下进行热挤压,挤压成直径16mm的棒材;挤压温度为360℃,挤压速度为10mm/s,挤压比为25:1;
⑥分别对挤压后的棒材在中心部分取拉伸样和随机位置取4mm×6mm×8mm的长方体燃点测试样;进行拉伸力学性能测试和燃点测试,升温速率为15℃/min,拉伸机拉伸速率为1mm/min。
对比例2:
①将原料纯Mg(≥99.98wt%)、纯Zn(≥99.97wt%)、Mg-30.45wt%Zr中间合金、Mg-21.97wt%Ca中间合金进行预热,预热温度为240℃,时间为12分钟;
②将预热后的纯Mg加入不锈钢坩埚中,放入已经加热至740℃的井式电阻炉中,在CO2和SF6的混合气体(SF6的体积占比为0.4%)保护下熔化,得到液态纯Mg;在CO2和SF6的混合气体保护下,将熔体加热至760℃时,加入纯Zn、Mg-Ca中间合金,保温10分钟,待中间合金全部熔化后,在CO2和SF6的混合气体保护下,升温至780℃,再加入Mg-Zr中间合金,待中间合金全部熔化后,加入2g精炼剂(六氯乙烷)精炼15min,随后搅拌5分钟,去除表面浮渣,保温10min后取出;
③将②中的坩埚和熔体取出后,坩埚和合金熔体一起采用盐水冷至室温;随后切除不锈钢坩埚,去除合金上下表面5mm厚度,再切削成直径80mm的合金铸锭;
④将③中所得的合金铸锭在450℃下固溶处理10h,随后采用80℃的热水淬火至室温;
⑤将④中固溶处理的合金铸锭继续镦粗,镦粗前,在380℃下保温预热45min;
⑥将预热后的铸锭在320℃下镦粗60s,镦粗压力为挤压机最大挤压力;
⑦将⑥中镦粗后的铸锭在320℃下进行热挤压,挤压成直径25mm的棒材;挤压温度为320℃,挤压速度为5mm/s,挤压比为10:1;
⑧分别对挤压后的棒材在中心部分取拉伸样和随机位置取4mm×6mm×8mm长方体燃点测试样;进行拉伸力学性能测试和燃点测试,升温速率为15℃/min,拉伸机拉伸速率为1mm/min。
表2为实施例1-3和对比例1-2所得镁合金的室温力学性能和燃点参数。
表2
Figure DEST_PATH_IMAGE004
通过表2可知,按照本发明所述镁合金具有良好的强度、延伸率和燃点性能,并且不含有稀土元素,因此具有成本低等优势。将高强阻燃镁合金应用于轨道交通车体材料,如:车体侧板、车体底板、牵引梁、座椅骨架、门窗等,具有较强的竞争力。
本发明中的对比例1中合金未采用镦粗挤压的加工方式,合金的室温力学性能未达到设计标准,也未添加具有阻燃效果的Ca元素,合金燃点未达到750℃,不满足设计技术要求;对比例2中合金Ca元素超过设计标准,合金的室温塑性偏低,未到达设计技术要求的8%以上,不满足设计标准。
最后需要说明的是,以上实施例仅用以说明本发明的技术方案而非限制技术方案,本领域的普通技术人员应当理解,那些对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,均应涵盖在本发明的权利要求范围当中。

Claims (7)

1. 一种低成本高强阻燃镁合金,其特征在于,各组分的百分含量为:Zn:5-6.5wt%,Ca :0.8-1.8wt%,Zr :0.3-0.8wt%,余量为Mg和不可避免的杂质。
2.一种低成本高强阻燃镁合金的制备方法,其特征在于,按权利要求1所述组份计算原料,其步骤包括:
1)将原料纯Mg、纯Zn、Mg-Zr中间合金、Mg-Ca中间合金进行预热,预热温度为200-250℃,时间为10-20分钟;
2)将预热后的纯Mg加入不锈钢坩埚中,放入已经加热至730-750℃的井式电阻炉中,在CO2和SF6的混合气体保护下熔化,得到液态纯Mg;在CO2和SF6的混合气体保护下,将熔体加热至750-760℃时,加入纯Zn、Mg-Ca中间合金,保温10-20分钟,待中间合金全部熔化后,在CO2和SF6的混合气体保护下,升温至770-780℃,再加入Mg-Zr中间合金,待中间合金全部熔化后,加入1-3g精炼剂精炼10-15min,随后搅拌2-5分钟,去除表面浮渣,保温5-10min后取出;
3)将步骤2)中的坩埚和熔体取出后,坩埚和合金熔体一起采用盐水冷至室温;随后切除不锈钢坩埚,去除铸锭上下表面5-10mm厚度含氧化物杂质的表层,再切削成直径75-85mm的合金铸锭;
4)将步骤3)中所得的合金铸锭在400-450℃下固溶处理10-12h,随后采用60-80℃的热水淬火至室温;
5)将步骤4)中固溶处理后的合金铸锭进行镦粗,镦粗前,在320-380℃下保温预热30min-1h;
6)将预热后的铸锭在320-380℃下镦粗30-60s,镦粗压力为挤压机最大挤压力;
7)将步骤6)中镦粗后的铸锭在320-380℃下进行热挤压,挤压成直径16-25mm的棒材;挤压温度为320-380℃,挤压速度为5-20mm/s,挤压比为10:1-25:1。
3.根据权利要求2所述的一种低成本高强阻燃镁合金的制备方法,其特征在于,步骤1)所述纯Mg、纯Zn中Mg、Zn所占的含量为,Mg≥99.98wt%,Zn≥99.97wt%。
4.根据权利要求2所述的一种低成本高强阻燃镁合金的制备方法,其特征在于,步骤1)所述Mg-Zr中间合金、Mg-Ca中间合金中均为市售产品,Zr、Ca的纯度为Zr为25wt%-35wt%、Ca为20wt%-25wt%。
5.根据权利要求2所述的一种低成本高强阻燃镁合金的制备方法,其特征在于,步骤2)所述CO2和SF6均为市售产品,其体积比为SF6占比为0.1%-0.5%,其余均为CO2
6.根据权利要求2所述的一种低成本高强阻燃镁合金的制备方法,其特征在于,步骤2)所述精炼剂为六氯乙烷。
7.一种低成本高强阻燃镁合金的应用,其特征在于,采用权利要求2至6任一方法制备的镁合金,用于轨道交通车体材料。
CN202210125141.0A 2022-02-10 2022-02-10 一种低成本高强阻燃镁合金及其制备方法 Active CN114438387B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210125141.0A CN114438387B (zh) 2022-02-10 2022-02-10 一种低成本高强阻燃镁合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210125141.0A CN114438387B (zh) 2022-02-10 2022-02-10 一种低成本高强阻燃镁合金及其制备方法

Publications (2)

Publication Number Publication Date
CN114438387A true CN114438387A (zh) 2022-05-06
CN114438387B CN114438387B (zh) 2022-10-14

Family

ID=81372290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210125141.0A Active CN114438387B (zh) 2022-02-10 2022-02-10 一种低成本高强阻燃镁合金及其制备方法

Country Status (1)

Country Link
CN (1) CN114438387B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116555650A (zh) * 2023-05-29 2023-08-08 中国科学院金属研究所 一种高强高韧变形阻燃镁合金及制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257478A (ja) * 2005-03-16 2006-09-28 National Institute Of Advanced Industrial & Technology 難燃性系マグネシウム合金及びその製造方法
JP2010036221A (ja) * 2008-08-06 2010-02-18 National Institute Of Advanced Industrial & Technology 難燃性マグネシウム合金溶加材
CN103255329A (zh) * 2013-05-07 2013-08-21 宝山钢铁股份有限公司 一种低成本细晶弱织构镁合金薄板及其制造方法
CN108950337A (zh) * 2018-08-07 2018-12-07 重庆大学 一种低成本高强度Mg-Zn-Y-Ce-Ca镁合金及其制备方法
CN109837439A (zh) * 2017-11-29 2019-06-04 中国科学院金属研究所 一种高阻尼Mg-Zn-Ca-Cu-Y-Zr镁合金
CN109972007A (zh) * 2019-03-20 2019-07-05 北京科技大学 一种生物体内可降解Mg-Zn-Ca-M的吻合钉材料及其制备方法
CN112853186A (zh) * 2021-01-10 2021-05-28 沈阳工业大学 一种细晶高强韧变形镁合金及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257478A (ja) * 2005-03-16 2006-09-28 National Institute Of Advanced Industrial & Technology 難燃性系マグネシウム合金及びその製造方法
JP2010036221A (ja) * 2008-08-06 2010-02-18 National Institute Of Advanced Industrial & Technology 難燃性マグネシウム合金溶加材
CN103255329A (zh) * 2013-05-07 2013-08-21 宝山钢铁股份有限公司 一种低成本细晶弱织构镁合金薄板及其制造方法
CN109837439A (zh) * 2017-11-29 2019-06-04 中国科学院金属研究所 一种高阻尼Mg-Zn-Ca-Cu-Y-Zr镁合金
CN108950337A (zh) * 2018-08-07 2018-12-07 重庆大学 一种低成本高强度Mg-Zn-Y-Ce-Ca镁合金及其制备方法
CN109972007A (zh) * 2019-03-20 2019-07-05 北京科技大学 一种生物体内可降解Mg-Zn-Ca-M的吻合钉材料及其制备方法
CN112853186A (zh) * 2021-01-10 2021-05-28 沈阳工业大学 一种细晶高强韧变形镁合金及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116555650A (zh) * 2023-05-29 2023-08-08 中国科学院金属研究所 一种高强高韧变形阻燃镁合金及制备方法和应用

Also Published As

Publication number Publication date
CN114438387B (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
CN101880803B (zh) 汽车车身板用Al-Mg系铝合金及其制造方法
CN110004341B (zh) 高强度的含稀土的镁合金及其制备方法
CN103045913B (zh) Al-Fe-Ir-RE铝合金及其制备方法和电力电缆
CN101880802B (zh) 汽车车身板用Al-Mg系高镁铝合金及其制造方法
CN110629075A (zh) 一种高强度高延伸率铝合金板材及其制造方法
CN102978471B (zh) Al-Fe-Ga-RE铝合金及其制备方法和电力电缆
CN105108372A (zh) 一种高速列车铝合金车体焊接专用铝合金焊丝及其制备方法
CN114438387B (zh) 一种低成本高强阻燃镁合金及其制备方法
CN101392345A (zh) 含镍耐热稀土镁合金及其制备方法
CN114438356A (zh) 一种高强耐蚀高韧Al-Mg-Zn-Ag(-Cu)铝合金的制备方法
CN114892055A (zh) 一种高强韧Mg-Al-Zn镁合金及其制备方法
CN111254333B (zh) 一种多元高强耐蚀变形镁合金及其制备方法
CN102978477B (zh) Al-Fe-Ru-RE铝合金及其制备方法和电力电缆
CN115852217A (zh) 一种高强度易挤压铝合金及其型材挤压方法
CN115449682A (zh) 一种稀土与碱土元素复合的镁基合金及其制备方法
CN114855043A (zh) 一种超细晶高强塑性镁合金及其制备方法
CN114015918A (zh) 一种低密度高强度高模量的镁锂合金及制备方法
CN112251657B (zh) 一种改善稀土镁合金塑性成形的制备方法
CN109609824A (zh) 一种高塑性铸造镁合金及其制备方法
WO2023246736A1 (zh) 一种Al-Zn-Mg-Cu系铝合金板材的制造方法及铝合金板材
CN103014419B (zh) Al-Fe-Ge-RE铝合金及其制备方法和电力电缆
CN114934217B (zh) 一种微合金的Mg-Sn-Bi-Gd-Zr高塑性镁合金及其制备方法
CN108486445B (zh) 一种可快速挤压成形的镁合金及其制备方法
CN101397623A (zh) 含铜耐热稀土镁合金及其制备方法
CN117778845A (zh) 一种复合添加Ca和Y的高强阻燃镁合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant