CN112251657B - 一种改善稀土镁合金塑性成形的制备方法 - Google Patents

一种改善稀土镁合金塑性成形的制备方法 Download PDF

Info

Publication number
CN112251657B
CN112251657B CN202010958653.6A CN202010958653A CN112251657B CN 112251657 B CN112251657 B CN 112251657B CN 202010958653 A CN202010958653 A CN 202010958653A CN 112251657 B CN112251657 B CN 112251657B
Authority
CN
China
Prior art keywords
alloy
rolling
extrusion
magnesium
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010958653.6A
Other languages
English (en)
Other versions
CN112251657A (zh
Inventor
刘轲
刘焱
杜文博
于子键
王朝辉
李淑波
杜宪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202010958653.6A priority Critical patent/CN112251657B/zh
Publication of CN112251657A publication Critical patent/CN112251657A/zh
Application granted granted Critical
Publication of CN112251657B publication Critical patent/CN112251657B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

一种改善稀土镁合金塑性成形的制备方法,属于金属合金技术领域。本发明以Mg‑Gd‑Er‑Zr基础合金体系,在该体系中加入微量金属元素,该合金为Mg‑Gd‑Er‑Zr‑X,X选自Al、Ca、Sn,其中含有8.0wt%~10.0wt%的Gd,0.8wt%~1.5wt%的Er,0.3wt%~0.7wt%的Zr,0wt%~0.2wt%的X元素,不大于0.2wt%的不可避免的夹杂物,其余量为镁。本发明采用传统的挤压、轧制技术,通过调控熔炼工艺,挤压相关参数如挤压温度、挤压速度、挤压比,轧制相关参数如轧制速度、轧制温度、压下量,以及热处理条件等,最后得到具有优异的宏观表面以及良好力学性能的镁合金板材。

Description

一种改善稀土镁合金塑性成形的制备方法
技术领域
本发明属于金属合金技术领域,涉及镁合金合金板材挤压、轧制成形工艺,属于金属材料先进制造技术,具体为一种镁金属板材的成形方法。
背景技术
镁合金是目前实际应用中最为轻质的工程结构材料,镁也是地球上储量最丰富的金属元素之一。镁合金具有优良的性能,其密度约为1.8g/cm3,只有铝的2/3,钢的1/4,具有比重轻、比强度及比刚性高、震动吸收性能好以及易导热、电磁屏蔽性能好、易回收再生利用等特点,可满足汽车及航空航天领域对材料轻量化的要求,近年来镁合金产量在全球的年增长率高达20%,其原因主要是汽车和易携带型电子产品等产业对镁合金的急剧需求拉动了全球镁合金用量的增加。镁合金将广泛应用于现代汽车、航空航天、国防和易携带型电子产品等领域,被誉为“21世纪的绿色工程材料”。但是镁合金也有绝对强度低,高温下力学性能较差,室温变形加困难,易腐蚀等缺点。因此高性能镁合金的研究成为了21世纪的一个重要课题。
本课题基于镁合金研究领域的前沿,主要研究内容包括以稀土镁合金为基础,开发用于汽车及航天航空等领域的高性能变形镁合金,通过研究发现高稀土含量的镁合金能够获得较高的强度,同时会出现时效处理后延伸率显著下降的缺点,使得合金在应用上受限。
发明内容
本发明主要是针对高稀土含量镁合金成形困难的问题。发明了一种在高稀土镁合金中添加微量的金属元素来提高高稀土镁合金的塑性变形能力,添加的微量金属元素为Al、Ca、Sn,金属元素的量控制在0wt%~0.2wt%这一范围,并且将合金进行形变热处理后使得合金表面光滑质地良好,获得较高的延伸率。
本发明涉及一种微量元素提高稀土镁合金塑性成形的方法及其制备技术。
本发明通过设计以Mg-Gd-Er-Zr为体系,在体系中加入微量金属元素,形成合金Mg-Gd-Er-Zr-X,其中含有8.0wt%~10.0wt%的Gd,0.8wt%~1.5wt%的Er,0.3wt%~0.7wt%的Zr,0wt%~0.2wt%的X元素,X元素选自Al、Ca、Sn中的一种优选Sn,不大于0.2wt%的不可避免的夹杂物,其余量为镁。本发明采用传统的挤压、轧制技术,通过调控熔炼工艺,挤压相关参数如挤压温度、挤压速度、挤压比,轧制相关参数如轧制速度、轧制温度、压下量,以及热处理条件等,最后得到具有优异的宏观表面以及良好力学性能的镁合金板材。
本发明通过以下技术方案实现:一种高稀土镁合金板材的制备方案,主要步骤为:(1)首先采用井式电阻炉中和低碳钢金属模具获得Mg-Gd-Er-Zr-X合金金属铸锭;(2)对各合金进行温度为450~475℃时长为4.5~5h的固溶处理,并置于室温水中淬火;(3)将固溶处理后的合金进行热挤压;(4)将挤压后的合金进行热轧制获得最终的镁合金板材。使得合金具有优异力学性能的镁合金板材。此发明突破了高稀土镁合金轧制变形后延伸率较低的缺点。
步骤(3)在同一挤压工艺参数下进行挤压,挤压速率0.3~0.6mm/s,挤压温度为435~450℃,挤压比为18~20。
步骤(4)轧制工艺:将挤压后的合金采用交叉轧制的方法进行轧制,轧制保温温度区间均为425℃~450℃,轧制速率为8~10m/min,单道次的轧制压下量为8%~15%,每道次之间回炉保温时间为15min~20min,累计变形量在80%左右,最后获得厚度为1.0mm~1.3mm的镁合金板材。
采用本发明的方法得到的合金尤其添加Sn的延伸率有所提高,且表面相对平整光亮光滑。合金的力学性能为屈服强度185MPa~249MPa,抗拉强度213.2MPa~280.1MPa,延伸率2.6%~6.2%。
附图说明
图1为实施例1所得合金外观图;
图2为实施例2所得合金外观图
图3为实施例3所得合金外观图
图4为实施例4所得合金外观图.
具体实施方式
下面结合实施例对本发明做进一步说明,但发明并不限于以下实施例。
实施例1
采用井式电阻炉中和低碳钢金属模具获得Mg-10Gd-1Er-0.5Zr合金金属铸锭,所用原材料为纯镁,Mg-30Gd中间合金,Mg-30Er中间合金,Mg-24Zr中间合金,预热原料,将熔炼炉加热至450℃左右放入纯镁以及一半的镁钆合金,730℃左右时添加镁铒合金以及镁X合金,融化完毕后加入镁锆合金及剩余镁钆合金,待其融化完毕进行捞渣搅拌3min,然后保温15min,达到熔炼温度730℃左右进行浇铸,将铸锭进行切削割铣,然后在475℃的温度下保温5h进行固溶处理,对固溶处理后的合金进行热挤压,挤压速率0.5mm/s,挤压温度为450℃,挤压比为20,将获得的挤压板采用交叉轧制的方法进行轧制,第一道次和第二道次轧制保温温度为425℃,保温时间为20min,单道次压下量为15%,第三到四道次轧制保温温度为425℃,保温时间为20min,单道次压下量为10%,第五到十一道次轧制保温温度为425℃,保温时间为10min,单道次压下量为10%,第十二到十九道次轧制保温温度为435℃,保温时间为15min,单道次压下量为8%,轧制速率均为8~10m/min,累计变形量在80%左右,最后获得厚度为1.1mm的镁合金板材,使得合金最终的力学性能为屈服强度249MPa,抗拉强度280.1MPa,延伸率4.6%;
实施例2
采用井式电阻炉中和低碳钢金属模具获得Mg-10Gd-1Er-0.2Al-0.5Zr合金金属铸锭,所用原材料为纯镁,纯铝,Mg-30Gd中间合金,Mg-30Er中间合金,Mg-24Zr中间合金,预热原料,将熔炼炉加热至450℃左右放入纯镁以及一半的镁钆合金,730℃左右时添加镁铒合金以及纯铝,融化完毕后加入镁锆合金及剩余镁钆合金,待其融化完毕进行捞渣搅拌3min,然后保温15min,达到熔炼温度730℃左右进行浇铸,将铸锭进行切削割铣,然后在475℃的温度下保温5h进行固溶处理,对固溶处理后的合金进行热挤压,挤压速率0.5mm/s,挤压温度为450℃,挤压比为20,将获得的挤压板采用交叉轧制的方法进行轧制,轧制工艺与Mg-10Gd-1Er-0.5Zr合金相同,累计变形量在80%左右,最后获得厚度为1.2mm的镁合金板材,使得合金最终的力学性能为屈服强度216MPa,抗拉强度235MPa,延伸率2.6%,较不添加微量元素的Mg-10Gd-1Er-0.5Zr合金表面相差不大。
实施例3
采用井式电阻炉中和低碳钢金属模具获得Mg-10Gd-1Er-0.2Ca-0.5Zr合金金属铸锭,所用原材料为纯镁,Mg-30Gd中间合金,Mg-30Er中间合金,Mg-15Ca中间合金,Mg-24Zr中间合金,预热原料,将熔炼炉加热至450℃左右放入纯镁以及一半的镁钆合金,730℃左右时添加镁铒合金以及镁钙合金,融化完毕后加入镁锆合金及剩余镁钆合金,待其融化完毕进行捞渣搅拌3min,然后保温15min,达到熔炼温度730℃左右进行浇铸,将铸锭进行切削割铣,然后在475℃的温度下保温5h进行固溶处理,对固溶处理后的合金进行热挤压,挤压速率0.5mm/s,挤压温度为450℃,挤压比为20,将获得的挤压板采用交叉轧制的方法进行轧制,第一道次和第二道次轧制保温温度为450℃,保温时间为20min,单道次压下量为15%,第三到四道次轧制保温温度为450℃,保温时间为20min,单道次压下量为10%,第五到十四道次轧制保温温度为450℃,保温时间为20min,单道次压下量为8%,第十五到十九道次轧制保温温度为450℃,保温时间为15min,单道次压下量为8%,轧制速率均为10m/min,累计变形量在80%左右,最后获得厚度为1.2mm的镁合金板材,使得合金最终的力学性能为屈服强度198MPa,抗拉强度215MPa,延伸率2.7%,较不添加微量元素的Mg-10Gd-1Er-0.5Zr合金表面光泽度较好,但可塑性相对较差。
实施例4
采用井式电阻炉中和低碳钢金属模具获得Mg-10Gd-1Er-0.2Sn-0.5Zr合金金属铸锭,所用原材料为纯镁,纯锡(纯度达到99.9%以上),Mg-30Gd中间合金,Mg-30Er中间合金,Mg-24Zr中间合金,预热原料,将熔炼炉加热至450℃左右放入纯镁以及一半的镁钆合金,730℃左右时添加镁铒合金以及纯铝,融化完毕后加入镁锆合金及剩余镁钆合金,待其融化完毕进行捞渣搅拌3min,然后保温15min,达到熔炼温度730℃左右进行浇铸,将铸锭进行切削割铣,然后在475℃的温度下保温5h进行固溶处理,对固溶处理后的合金进行热挤压,挤压速率0.5mm/s,挤压温度为435℃,挤压比为20,将获得的挤压板采用交叉轧制的方法进行轧制,轧制工艺与Mg-10Gd-1Er-0.5Zr合金相同,累计变形量在80%左右,最后获得厚度为1.1mm左右的镁合金板材使得合金最终的力学性能为屈服强度185MPa,抗拉强度213.2MPa,延伸率6.2%,较不添加微量元素的Mg-10Gd-1Er-0.5Zr合金表面更为平滑,有光泽,且同时可塑性更高。

Claims (1)

1.一种改善稀土镁合金塑性成形的制备方法,其特征在于,以Mg-Gd-Er-Zr为体系,在体系中加入微量金属元素,形成合金Mg-Gd-Er-Zr-X,其中含有8.0wt%~10.0wt%的Gd,0.8wt%~1.5wt%的Er,0.3wt%~0.7wt%的Zr,0wt%~0.2wt%且不为0的X元素,X元素选自Ca、Sn中的一种,不大于0.2wt%的不可避免的夹杂物,其余量为镁;采用传统的挤压、轧制技术,通过调控熔炼工艺、挤压、轧制以及热处理条件,最后得到具有优异的宏观表面以及良好力学性能的镁合金板材;
主要步骤为:(1)首先采用井式电阻炉中和低碳钢金属模具获得Mg-Gd-Er-Zr-X合金金属铸锭;(2)对各合金进行温度为450~475℃时长为4.5~5h的固溶处理,并置于室温水中淬火;(3)将固溶处理后的合金进行热挤压;(4)将挤压后的合金进行热轧制获得最终的镁合金板材;
步骤(3)在同一挤压工艺参数下进行挤压,挤压速率0.3~0.6mm/s,挤压温度为435~450℃,挤压比为18~20;
步骤(4)轧制工艺:将挤压后的合金采用交叉轧制的方法进行轧制,轧制保温温度区间均为425℃~450℃,轧制速率为8~10m/min,单道次的轧制压下量为8%~15%,每道次之间回炉保温时间为15min~20min,累计变形量在80%,最后获得镁合金板材。
CN202010958653.6A 2020-09-13 2020-09-13 一种改善稀土镁合金塑性成形的制备方法 Active CN112251657B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010958653.6A CN112251657B (zh) 2020-09-13 2020-09-13 一种改善稀土镁合金塑性成形的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010958653.6A CN112251657B (zh) 2020-09-13 2020-09-13 一种改善稀土镁合金塑性成形的制备方法

Publications (2)

Publication Number Publication Date
CN112251657A CN112251657A (zh) 2021-01-22
CN112251657B true CN112251657B (zh) 2022-04-19

Family

ID=74232138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010958653.6A Active CN112251657B (zh) 2020-09-13 2020-09-13 一种改善稀土镁合金塑性成形的制备方法

Country Status (1)

Country Link
CN (1) CN112251657B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388768A (zh) * 2021-05-05 2021-09-14 北京工业大学 一种低成本高性能稀土镁合金及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008060A (zh) * 2006-11-30 2007-08-01 中国科学院长春应用化学研究所 一种耐热镁基稀土合金及其制备方法
CN101463441A (zh) * 2009-01-15 2009-06-24 上海交通大学 含稀土高强度耐热镁合金及其制备方法
CA3091705A1 (en) * 2017-02-24 2018-08-30 Innomaq 21, S.L. Method for the economic manufacture of light components
CN109536803A (zh) * 2019-01-16 2019-03-29 北京工业大学 一种高延展性低稀土镁合金板材及其制备方法
CN111041311A (zh) * 2019-12-31 2020-04-21 北京工业大学 一种具有低成本高性能稀土镁合金及制备技术
CN111057924A (zh) * 2020-01-05 2020-04-24 北京工业大学 一种高塑性低稀土镁合金及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160215372A1 (en) * 2015-01-28 2016-07-28 Medtronic Vascular, Inc. Biodegradable magnesium alloy
CN111455245A (zh) * 2020-05-21 2020-07-28 东北大学 一种含钆钇稀土元素的高强度Mg-Ca-Mn-Al-Zn系变形镁合金及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008060A (zh) * 2006-11-30 2007-08-01 中国科学院长春应用化学研究所 一种耐热镁基稀土合金及其制备方法
CN101463441A (zh) * 2009-01-15 2009-06-24 上海交通大学 含稀土高强度耐热镁合金及其制备方法
CA3091705A1 (en) * 2017-02-24 2018-08-30 Innomaq 21, S.L. Method for the economic manufacture of light components
CN109536803A (zh) * 2019-01-16 2019-03-29 北京工业大学 一种高延展性低稀土镁合金板材及其制备方法
CN111041311A (zh) * 2019-12-31 2020-04-21 北京工业大学 一种具有低成本高性能稀土镁合金及制备技术
CN111057924A (zh) * 2020-01-05 2020-04-24 北京工业大学 一种高塑性低稀土镁合金及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Mg-Gd系合金的合金化研究进展》;唐昌平 等;《材料导报A》;20181130;第32卷(第11期);第3761页右栏第1段,第3762页右栏第3段,第3764页右栏第2段 *
《Remarkably enhanced mechanical properties of Mg-8Gd-1Er-0.5Zr alloy on the route of extrusion, rolling and aging》;Xiaobing Zheng等;《Materials Letters》;20180228;第212卷;第155页右栏2-4段 *

Also Published As

Publication number Publication date
CN112251657A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
CN103255329B (zh) 一种低成本细晶弱织构镁合金薄板及其制造方法
CN103667825A (zh) 一种超高强高韧耐蚀铝合金及其制造方法
CN103276264B (zh) 一种低成本热强变形镁合金及其制备方法
CN105543540A (zh) 一种铜铬锆合金及其制备方法
CN103667842A (zh) 一种低Gd含量、高延展性镁合金板材及其热轧制工艺
CN101407879A (zh) 含Yb变形镁合金及其动态析出强韧化制备方法
CN103014456B (zh) 耐腐蚀铝合金发泡模铸件的加工工艺
CN109338187B (zh) 一种低成本可高速挤压的高强韧变形镁合金及其制备方法
CN104195390A (zh) 一种高强耐蚀耐热易成型Al-Mg合金
CN115125423B (zh) 一种高强高成形性镁锂合金及其制备方法和应用
CN109536803B (zh) 一种高延展性低稀土镁合金板材及其制备方法
CN113444944B (zh) 低成本高强高延展性稀土镁合金及其制备方法
CN112746201A (zh) 一种高性能稀土Al-Mg-Si铝合金挤压材料及其制备方法
CN108950337B (zh) 一种低成本高强度Mg-Zn-Y-Ce-Ca镁合金及其制备方法
CN108866408B (zh) 一种低成本高塑性变形镁合金
CN114855043B (zh) 一种超细晶高强塑性镁合金及其制备方法
CN111057924B (zh) 一种高塑性低稀土镁合金及其制备方法
CN113444903A (zh) 一种高钆稀土镁合金棒材及其制备方法
CN112251657B (zh) 一种改善稀土镁合金塑性成形的制备方法
CN111041311A (zh) 一种具有低成本高性能稀土镁合金及制备技术
CN112522552B (zh) 一种耐蚀的铝合金及其制备方法和应用
CN110205505B (zh) 一种室温高塑性锌合金制备方法
CN109371301B (zh) 一种室温高塑性镁合金及其制备方法
CN115305395B (zh) 一种高强塑性Mg-Al-Sn-Ca-RE合金及其制备方法
CN113981286B (zh) 一种耐蚀高强塑性镁合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant