CN114427481A - 具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片、模具及制备方法 - Google Patents

具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片、模具及制备方法 Download PDF

Info

Publication number
CN114427481A
CN114427481A CN202210010384.XA CN202210010384A CN114427481A CN 114427481 A CN114427481 A CN 114427481A CN 202210010384 A CN202210010384 A CN 202210010384A CN 114427481 A CN114427481 A CN 114427481A
Authority
CN
China
Prior art keywords
blade
ceramic matrix
channel
temperature
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210010384.XA
Other languages
English (en)
Other versions
CN114427481B (zh
Inventor
刘持栋
刘小冲
付志强
穆阳阳
涂建勇
张晰
成来飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202210010384.XA priority Critical patent/CN114427481B/zh
Publication of CN114427481A publication Critical patent/CN114427481A/zh
Application granted granted Critical
Publication of CN114427481B publication Critical patent/CN114427481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明涉及一种具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片、模具及制备方法,通过在涡轮转子叶片纤维预制体定型时引入具有一定强度且易于清除的型材,通过后续的陶瓷基体致密化工艺,将型材原位消除,以在叶片预定部位原位形成冷却槽道。本方法一方面规避了冷却槽道的机械加工难度,及其可能造成的加工损伤;另一方面实现了转子叶片内部任意截面、任意路径的冷却槽道的成型,大大改善了叶片的冷却效果。

Description

具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片、模具及 制备方法
技术领域
本发明属于燃气涡轮发动机制造技术领域,涉及一种具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片、模具及制备方法。
背景技术
在航空发动机和燃气轮机等燃气涡轮发动机结构中,涡轮系统的作用是将高温燃气中的部分热能和势能转换成机械功,驱动压气机和附件工作。涡轮是燃气涡轮发动机中热负荷和动力负荷最大的系统,其特点是输出功率大、使用温度高、重量要求轻、结构尺寸小。涡轮系统中的主要热端构件包括导向叶片、涡轮外环、涡轮盘、转子叶片等。涡轮转子叶片是涡轮发动机内将燃料内能转化为动能核心部件,其作为流道件直接面对燃气冲击、高温氧化等恶劣环境。随着航空发动机和燃气轮机等燃气涡轮发动机的发展,其服役环境变得愈加苛刻。
发动机涡轮转子叶片常用的高温合金材料存在耐温性不高于1100℃、重量大等问题;而能够耐较高温度的碳纤维增强碳基体复合材料又存在高温易氧化的缺点。陶瓷基复合材料密度仅为高温合金的1/3~1/4、耐热温度比高温合金高150~350℃、耐酸碱腐蚀、强韧性高;同时,陶瓷基复合材料在高温燃气环境中反应所生成的氧化物保护膜能够封堵材料表面的裂纹和孔隙,阻止外界氧向材料内部扩散,从而保证构件的高温稳定性和长时使用寿命。因此,陶瓷基复合材料已被国内外公认为是新一代航空发动机热防护构件的首选材料之一。
目前,先进航空发动机的涡轮前燃气温度可高达1800℃以上,已显著超出当前常用的高温合金材料的耐温极限;即使采用世界公认具有潜力的陶瓷基复合材料作为转子叶片的主体材料,在恶劣的使用条件下仍需采取冷却手段来保证其结构工作在适宜的温度环境中。在诸多冷却手段中,在叶片内部设置贯通于叶尖和榫头的气流冷却槽道,是获得有效冷却效果的主要技术途径之一。
然而,在采用陶瓷基复合材料作为涡轮转子叶片的主体材料时,无法通过机械加工等常规手段实现极大深径比、复杂通道截面、弯曲路径的冷却槽道,导致陶瓷基复合材料涡轮转子叶片在实际使用时存在超温失效风险。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片、模具及制备方法,通过在涡轮转子叶片纤维预制体定型时引入具有一定强度且易于清除的型材,通过后续的陶瓷基体致密化工艺,将型材原位消除,以在叶片预定部位原位形成冷却槽道。本方法一方面规避了冷却槽道的机械加工难度,及其可能造成的加工损伤;另一方面实现了转子叶片内部任意截面、任意路径的冷却槽道的成型,大大改善了叶片的冷却效果。
技术方案
一种具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片,其特征在于采用陶瓷基复合材料一体成型,结构包括叶身2和其下端的榫头3;所述叶身2的叶背侧4与叶盆侧5之间设有多条冷却用槽道1,所述槽道1自叶身2顶部贯通至榫头3底部。
所述槽道1的截面形状包括但不限于圆形、椭圆形或长方形。
所述陶瓷基复合材料是碳纤维和碳化硅纤维中的一种或多种。
所述碳纤维和碳化硅纤维中基体是碳化硅、氮化硅和碳化硼中的一种或多种。
一种所述具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片的模具的制备方法,其特征在于包括叶盆侧4和叶背侧5两个零件的几何模型以及槽道的几何模型;以叶片径向的几何中性面为参考,将叶片分为叶盆侧4和叶背侧5两个零件的几何模型,两个模型衔接的型面中,以槽道壁面的型面为参考,建立槽道的几何模型;再以高纯石墨为原材料,按照叶盆侧和叶背侧两个零件的流道面为参考,制备叶盆模具和叶背模具;所述叶盆模具和叶背模具上均匀分布通气孔。
所述叶盆模具和叶背模具的壁厚为2.5-8mm。
所述通气孔的孔径为3-8mm。
一种利用所制备的模具制备具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片的方法,步骤如下:
步骤1、纤维布铺层:分别以叶盆模具和叶背模具的内型面为参考,采用碳纤维布和碳化硅纤维布中的一种或多种为原材料,通过叠层铺放的方式,堆叠至叶盆侧零件盒叶背侧零件设计厚度的1.05-1.2倍;本步骤完成后,制得叶盆侧纤维叠层和叶背侧纤维叠层;所述纤维布的经向在叶片径向方向上连续;
根据叶片的设计要求,在厚度逐渐变小的叶片顶部,需逐渐减少纤维布铺层;在厚度逐渐变大的榫头部位,需逐渐增加局部纤维布夹层,以满足设计尺寸要求;
步骤2、槽道预制:以步骤1获得的槽道的几何模型为参考,采用含碳薄片制备槽道型材,并将其铺放于叶盆侧纤维叠层或叶背侧纤维叠层相应位置,采用PVA胶及逆行固定;
步骤3、合模缝制:将带有槽道型材的叶盆侧纤维叠层和叶背侧纤维叠层连同模具合并,以碳纤维束或碳化硅纤维束为缝合线,贯穿通气孔,将叶背模具和叶盆模具连同其内部的纤维布缝合为一体,并采用高纯石墨材质的连接件完成模具的夹紧;
步骤4、界面层制备:将模具和带有槽道型材的叶片预制体放置在化学气相沉积炉内,在纤维预制体表面制备界面层;
所述界面层材料是氮化硼或热解碳;
所述氮化硼界面层的制备工艺参数为:炉体内压力为50-1000Pa,升温至650-1000℃,保温1-2h后,依次通入氩气、氢气、氨气以及三氯化硼气体,沉积15-35h后继续保温1-2h,降温至室温;此步骤可能需循环执行1-3次;
所述热解碳界面层的制备工艺参数为:炉体内压力为200-2200Pa,升温至650-1100℃,保温1-2h后,依次通入丙烯、天然气和氢气,沉积24-72h后继续保温1-2h,降温至室温;此步骤可能需循环执行1-3次;
步骤5、陶瓷基体预制:将步骤4得到的具有界面层的叶片预制体和模具一起放置于碳化硅化学气相沉积炉内,制备碳化硅陶瓷基体;去除叶背模具和叶盆模具;此步骤完成后,得到密度为1.8-2.2g/cm3的半致密化的叶片坯体;
所述碳化硅陶瓷基体的制备工艺参数为:炉体内压力为200-5000Pa,升温至900-1200℃,保温1-2h后,通入三氯甲基硅烷、氢气和氩气的混合气体,三氯甲基硅烷∶氢气∶氩气的流量比为1∶5-15∶15-25,沉积30-60h后继续保温2h,降温至室温;此步骤可能需循环执行3-5次;
步骤6、槽道型材去除:步骤5执行完毕后,槽道型材在高温下已完全碳化或挥发;采用出气口直径接近槽道截面的喷气设备,将出气口塞入槽道的叶身顶部出口或榫头底部出口,将槽道内部的槽道型材残留物吹除;
步骤7、陶瓷基体制备:将半致密化的叶片坯体放置于碳化硅化学气相沉积炉内,继续制备碳化硅陶瓷基体,工艺参数与步骤4所述一致;此步骤完成后,得到密度为2.3-2.5g/cm3的致密化叶片坯体;
步骤8、机械加工:按照设计图纸,通过机械加工方式,将致密化叶片坯体加工至设计尺寸,得到陶瓷基复合材料转子叶片半成品;
步骤9、加工损伤修复:将陶瓷基复合材料转子叶片半成品置于碳化硅化学气相沉积炉内,将碳化硅陶瓷覆盖至所有加工面,此步骤可能需循环执行1-3次;本步骤所述化学气相沉积工艺参数与步骤5一致;
步骤10:精密修配:加工损伤修复工序完成后,采用抛光设备对叶片的榫头部位进行精密修配,并去除叶片其他部位的毛刺;此步骤完成后,得到密度为2.5-2.8g/cm3的陶瓷基复合材料转子叶片成品。
所述纤维布编织方式可以是2.5维编织、二维平纹编织、二维缎纹编织和单向布中的一种或多种。
所述含碳薄片为包括但不仅限于芳纶纸、薄木材、薄木棒或硫酸纸具有一定强度且易于碳化或清除的材料。
有益效果
本发明提出的一种具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片、模具及制备方法,通过在涡轮转子叶片纤维预制体定型时引入具有一定强度且易于清除的型材,通过后续的陶瓷基体致密化工艺,将型材原位消除,以在叶片预定部位原位形成冷却槽道。本方法一方面规避了冷却槽道的机械加工难度,及其可能造成的加工损伤;另一方面实现了转子叶片内部任意截面、任意路径的冷却槽道的成型,大大改善了叶片的冷却效果。
本发明所具有的优点和有益效果是:
第一、本发明采用陶瓷基复合材料作为涡轮转子叶片主体材料,在无冷却措施的条件下,可将构件的长时使用温度提升至1350℃。相比于高温合金材料1050℃的耐温能力,构件的耐温性得到大幅提升,同时可显著降低构件的结构重量约40-65%(注:高温合金材料密度约为8.5-8.7g/cm3,陶瓷基复合材料密度约为2.5-2.7g/cm3,测试方法《GB/T 2997-2000精细陶瓷密度和显气孔率试验方法》,陶瓷基复合材料耐温性测试方法《Q/AVIC06185-2015连续纤维增强陶瓷基复合材料高温力学性能试验方法》)。
第二、通过在涡轮转子叶片内部原位形成冷却槽道的方法,一方面规避了冷却槽道的机械加工难度,及其可能造成的加工损伤;另一方面实现了转子叶片内部任意截面、任意路径的冷却槽道的成型,大大改善了叶片的冷却效果。
附图说明
图1为本发明实施例中所述具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片的设计模型。
图2为本发明实施例中所述具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片的工艺拆分模型。
图3为本发明实施例中所述叶片预制体制备过程示意图。
图4为本发明实施例中所述叶片预制体制备完毕后的剖面图。
图5为本发明实施例中所述叶片叶背侧纤维叠层示意图。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
下述实验方法和检测方法,如没有特殊说明,均为常规方法;下述试剂和原料,如没有特殊说明,均为市售。
实施例1
一种陶瓷基复合材料涡轮转子叶片,其特征在于:
(1)所述涡轮转子叶片材质为陶瓷基复合材料。所述陶瓷基复合材料的增强体为碳化硅纤维,基体为碳化硅。
(2)所述涡轮转子叶片由叶身和榫头构成。
(3)所述涡轮转子叶片内部具有冷却用槽道。所述槽道从叶身顶部至榫头底部贯通,槽道截面形状是长方形。
或所述槽道从叶身顶部至榫头底部贯通,槽道截面形状是椭圆形。
或槽道截面形状是圆形。
上述陶瓷基复合材料涡轮转子叶片的制备方法,包括以下步骤:
步骤1:工艺拆分。以叶片径向的几何中性面为参考,将叶片分为叶盆侧和叶背侧两个零件的几何模型;以槽道壁面的型面为参考,建立槽道的几何模型。
步骤2:模具设计和制备。以高纯石墨为原材料,按照叶盆侧和叶背侧两个零件的流道面为参考,制备叶盆模具和叶背模具。
所述叶盆模具和叶背模具的壁厚为2.75mm;所述叶盆模具和叶背模具上有大量通气孔,孔径为3.5mm。
步骤3:叶片预制体制备。
步骤3.1:纤维布铺层。分别以叶盆模具和叶背模具的内型面为参考,采用二维缎纹编织碳化硅纤维布为原材料,通过叠层铺放的方式,堆叠至叶盆侧零件盒叶背侧零件设计厚度的1.08倍。本步骤完成后,制得叶盆侧纤维叠层和叶背侧纤维叠层。
堆叠至叶盆侧零件盒叶背侧零件设计厚度在1.05-1.2倍可选择;
所述纤维布编织方式可以是2.5维编织、二维平纹编织、二维缎纹编织和单向布中的一种或多种。纤维布的经向在叶片径向方向上连续。
进一步地,在厚度逐渐变小的叶片顶部,逐渐减少纤维布铺层;在厚度逐渐变大的榫头部位,逐渐增加局部纤维布夹层。
步骤3.2:槽道预制。以步骤1获得的槽道的几何模型为参考,采用硫酸纸制备槽道型材,从叶身顶部至榫头底部贯通,并将其铺放于叶背侧纤维叠层相应位置,采用PVA胶临时固定。
采用含碳薄片制备槽道型材,并将其铺放于叶盆侧纤维叠层叶背侧纤维叠层相应位置,采用PVA胶临时固定。
步骤3.3:合模缝制。将带有槽道型材的叶盆侧纤维叠层和叶背侧纤维叠层连同模具合并,以碳化硅纤维束为缝合线,贯穿通气孔,将叶背模具和叶盆模具连同其内部的纤维布缝合为一体,并采用高纯石墨材质的连接件完成模具的夹紧。
本步骤完成后,得到带有槽道型材的叶片预制体。
步骤3:界面层制备。将模具和带有槽道型材的叶片预制体放置在化学气相沉积炉内,在纤维预制体表面制备氮化硼界面层。
所述氮化硼界面层的制备工艺参数为:炉体内压力为50-1000Pa,升温至650-1000℃,保温1-2h后,依次通入氩气、氢气、氨气以及三氯化硼气体,沉积15-35h后继续保温1-2h,降温至室温。此步骤循环执行1-3次。
或制备热解碳界面层,制备工艺参数为:炉体内压力为200-2200Pa,升温至650-1100℃,保温1-2h后,依次通入丙烯、天然气和氢气,沉积24-72h后继续保温1-2h,降温至室温。此步骤可能需循环执行1-3次。
步骤4:陶瓷基体预制。将步骤3中得到的具有界面层的叶片预制体和模具一起放置于碳化硅化学气相沉积炉内,制备碳化硅陶瓷基体。去除叶背模具和叶盆模具。
此步骤完成后,得到密度为1.8-2.2g/cm3半致密化的叶片坯体
所述碳化硅陶瓷基体的制备工艺参数为:炉体内压力为360Pa,升温至1050℃,保温2h后,通入三氯甲基硅烷、氢气和氩气的混合气体,三氯甲基硅烷∶氢气∶氩气的流量比为1∶8∶18,沉积60h后继续保温2h,降温至室温。此步骤循环执行4次。
或在此范围内选择:所述碳化硅陶瓷基体的制备工艺参数为:炉体内压力为200-5000Pa,升温至900-1200℃,保温1-2h后,通入三氯甲基硅烷、氢气和氩气的混合气体,三氯甲基硅烷∶氢气∶氩气的流量比为1∶5-15∶15-25,沉积30-60h后继续保温2h,降温至室温。此步骤可能需循环执行3-5次。
步骤5:槽道型材去除。步骤4执行完毕后,槽道型材在高温下已完全碳化或挥发。采用出气口直径接近槽道截面的喷气设备,将出气口塞入槽道的叶身顶部出口或榫头底部出口,将槽道内部的槽道型材残留物吹除。
步骤6:陶瓷基体制备。将半致密化的叶片坯体放置于碳化硅化学气相沉积炉内,继续制备碳化硅陶瓷基体,工艺参数与步骤4所述一致。此步骤完成后,得到密度为2.46g/cm3的致密化叶片坯体。
步骤7:机械加工。按照设计图纸,通过机械加工方式,将致密化叶片坯体加工至设计尺寸,得到陶瓷基复合材料转子叶片半成品。
步骤8:加工损伤修复。将陶瓷基复合材料转子叶片半成品置于碳化硅化学气相沉积炉内,将碳化硅陶瓷覆盖至所有加工面,此步骤循环执行2次。本步骤所述化学气相沉积工艺参数与步骤4一致。
步骤9:精密修配。加工损伤修复工序完成后,采用抛光设备对叶片的榫头部位进行精密修配,并去除叶片其他部位的毛刺。此步骤完成后,得到密度为2.61g/cm3的陶瓷基复合材料转子叶片成品。
实施例2:所述叶盆模具和叶背模具的壁厚为2.5mm;所述叶盆模具和叶背模具上有大量通气孔,孔径为3.0mm。其他工艺步骤和工艺条件不变。
实施例3:所述叶盆模具和叶背模具的壁厚为7.5mm;所述叶盆模具和叶背模具上有大量通气孔,孔径为6mm。其他工艺步骤和工艺条件不变。

Claims (10)

1.一种具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片,其特征在于采用陶瓷基复合材料一体成型,结构包括叶身(2)和其下端的榫头(3);所述叶身(2)的叶背侧(4)与叶盆侧(5)之间设有多条冷却用槽道(1),所述槽道(1)自叶身(2)顶部贯通至榫头(3)底部。
2.根据权利要求1所述具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片,其特征在于:所述槽道(1)的截面形状包括但不限于圆形、椭圆形或长方形。
3.根据权利要求1所述具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片,其特征在于:所述陶瓷基复合材料是碳纤维和碳化硅纤维中的一种或多种。
4.根据权利要求1所述具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片,其特征在于:所述碳纤维和碳化硅纤维中基体是碳化硅、氮化硅和碳化硼中的一种或多种。
5.一种权利要求1~4任一项所述具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片的模具的制备方法,其特征在于包括叶盆侧(4)和叶背侧(5)两个零件的几何模型以及槽道的几何模型;以叶片径向的几何中性面为参考,将叶片分为叶盆侧(4)和叶背侧(5)两个零件的几何模型,两个模型衔接的型面中,以槽道壁面的型面为参考,建立槽道的几何模型;再以高纯石墨为原材料,按照叶盆侧和叶背侧两个零件的流道面为参考,制备叶盆模具和叶背模具;所述叶盆模具和叶背模具上均匀分布通气孔。
6.根据权利要求6所述的制备方法,其特征在于:所述叶盆模具和叶背模具的壁厚为2.5-8mm。
7.根据权利要求6所述的制备方法,其特征在于:所述通气孔的孔径为3-8mm。
8.一种利用权利要求5~7任一项所制备的模具制备权利要求1~4任一项具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片的方法,步骤如下:
步骤1、纤维布铺层:分别以叶盆模具和叶背模具的内型面为参考,采用碳纤维布和碳化硅纤维布中的一种或多种为原材料,通过叠层铺放的方式,堆叠至叶盆侧零件盒叶背侧零件设计厚度的1.05-1.2倍;本步骤完成后,制得叶盆侧纤维叠层和叶背侧纤维叠层;所述纤维布的经向在叶片径向方向上连续;
根据叶片的设计要求,在厚度逐渐变小的叶片顶部,需逐渐减少纤维布铺层;在厚度逐渐变大的榫头部位,需逐渐增加局部纤维布夹层,以满足设计尺寸要求;
步骤2、槽道预制:以步骤1获得的槽道的几何模型为参考,采用含碳薄片制备槽道型材,并将其铺放于叶盆侧纤维叠层或叶背侧纤维叠层相应位置,采用PVA胶及逆行固定;
步骤3、合模缝制:将带有槽道型材的叶盆侧纤维叠层和叶背侧纤维叠层连同模具合并,以碳纤维束或碳化硅纤维束为缝合线,贯穿通气孔,将叶背模具和叶盆模具连同其内部的纤维布缝合为一体,并采用高纯石墨材质的连接件完成模具的夹紧;
步骤4、界面层制备:将模具和带有槽道型材的叶片预制体放置在化学气相沉积炉内,在纤维预制体表面制备界面层;
所述界面层材料是氮化硼或热解碳;
所述氮化硼界面层的制备工艺参数为:炉体内压力为50-1000Pa,升温至650-1000℃,保温1-2h后,依次通入氩气、氢气、氨气以及三氯化硼气体,沉积15-35h后继续保温1-2h,降温至室温;此步骤可能需循环执行1-3次;
所述热解碳界面层的制备工艺参数为:炉体内压力为200-2200Pa,升温至650-1100℃,保温1-2h后,依次通入丙烯、天然气和氢气,沉积24-72h后继续保温1-2h,降温至室温;此步骤可能需循环执行1-3次;
步骤5、陶瓷基体预制:将步骤4得到的具有界面层的叶片预制体和模具一起放置于碳化硅化学气相沉积炉内,制备碳化硅陶瓷基体;去除叶背模具和叶盆模具;此步骤完成后,得到密度为1.8-2.2g/cm3的半致密化的叶片坯体;
所述碳化硅陶瓷基体的制备工艺参数为:炉体内压力为200-5000Pa,升温至900-1200℃,保温1-2h后,通入三氯甲基硅烷、氢气和氩气的混合气体,三氯甲基硅烷∶氢气∶氩气的流量比为1∶5-15∶15-25,沉积30-60h后继续保温2h,降温至室温;此步骤可能需循环执行3-5次;
步骤6、槽道型材去除:步骤5执行完毕后,槽道型材在高温下已完全碳化或挥发;采用出气口直径接近槽道截面的喷气设备,将出气口塞入槽道的叶身顶部出口或榫头底部出口,将槽道内部的槽道型材残留物吹除;
步骤7、陶瓷基体制备:将半致密化的叶片坯体放置于碳化硅化学气相沉积炉内,继续制备碳化硅陶瓷基体,工艺参数与步骤4所述一致;此步骤完成后,得到密度为2.3-2.5g/cm3的致密化叶片坯体;
步骤8、机械加工:按照设计图纸,通过机械加工方式,将致密化叶片坯体加工至设计尺寸,得到陶瓷基复合材料转子叶片半成品;
步骤9、加工损伤修复:将陶瓷基复合材料转子叶片半成品置于碳化硅化学气相沉积炉内,将碳化硅陶瓷覆盖至所有加工面,此步骤可能需循环执行1-3次;本步骤所述化学气相沉积工艺参数与步骤5一致;
步骤10:精密修配:加工损伤修复工序完成后,采用抛光设备对叶片的榫头部位进行精密修配,并去除叶片其他部位的毛刺;此步骤完成后,得到密度为2.5-2.8g/cm3的陶瓷基复合材料转子叶片成品。
9.根据权利要求8所述的方法,其特征在于:所述纤维布编织方式可以是2.5维编织、二维平纹编织、二维缎纹编织和单向布中的一种或多种。
10.根据权利要求8所述的方法,其特征在于:所述含碳薄片为包括但不仅限于芳纶纸、薄木材、薄木棒或硫酸纸具有一定强度且易于碳化或清除的材料。
CN202210010384.XA 2022-01-06 2022-01-06 具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片、模具及制备方法 Active CN114427481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210010384.XA CN114427481B (zh) 2022-01-06 2022-01-06 具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片、模具及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210010384.XA CN114427481B (zh) 2022-01-06 2022-01-06 具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片、模具及制备方法

Publications (2)

Publication Number Publication Date
CN114427481A true CN114427481A (zh) 2022-05-03
CN114427481B CN114427481B (zh) 2024-01-09

Family

ID=81310865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210010384.XA Active CN114427481B (zh) 2022-01-06 2022-01-06 具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片、模具及制备方法

Country Status (1)

Country Link
CN (1) CN114427481B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093231A (zh) * 2022-06-23 2022-09-23 西安鑫垚陶瓷复合材料有限公司 一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9320696D0 (en) * 1993-10-07 1993-12-08 Rolls Royce Plc A method of manufacturing a fibre reinforced composite component
US20110027098A1 (en) * 2008-12-31 2011-02-03 General Electric Company Ceramic matrix composite blade having integral platform structures and methods of fabrication
CN102741043A (zh) * 2010-01-26 2012-10-17 斯奈克玛 用于制造具有内部通道的复合材料叶片的方法及复合材料涡轮发动机叶片
FR2995305A1 (fr) * 2012-09-10 2014-03-14 Snecma Procede de fabrication ameliore d'un noyau en ceramique destine a la fabrication d'une aube de module de turbomachine
US20170328217A1 (en) * 2016-05-11 2017-11-16 General Electric Company Ceramic matrix composite airfoil cooling
CN111102017A (zh) * 2019-12-13 2020-05-05 西安鑫垚陶瓷复合材料有限公司 航空发动机陶瓷基复合材料固定导向器叶片结构及其成型
CN111102014A (zh) * 2019-12-04 2020-05-05 南京航空航天大学 一种陶瓷基复合材料涡轮整体叶盘结构及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9320696D0 (en) * 1993-10-07 1993-12-08 Rolls Royce Plc A method of manufacturing a fibre reinforced composite component
US20110027098A1 (en) * 2008-12-31 2011-02-03 General Electric Company Ceramic matrix composite blade having integral platform structures and methods of fabrication
CN102741043A (zh) * 2010-01-26 2012-10-17 斯奈克玛 用于制造具有内部通道的复合材料叶片的方法及复合材料涡轮发动机叶片
FR2995305A1 (fr) * 2012-09-10 2014-03-14 Snecma Procede de fabrication ameliore d'un noyau en ceramique destine a la fabrication d'une aube de module de turbomachine
US20170328217A1 (en) * 2016-05-11 2017-11-16 General Electric Company Ceramic matrix composite airfoil cooling
CN111102014A (zh) * 2019-12-04 2020-05-05 南京航空航天大学 一种陶瓷基复合材料涡轮整体叶盘结构及其制备方法
CN111102017A (zh) * 2019-12-13 2020-05-05 西安鑫垚陶瓷复合材料有限公司 航空发动机陶瓷基复合材料固定导向器叶片结构及其成型

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093231A (zh) * 2022-06-23 2022-09-23 西安鑫垚陶瓷复合材料有限公司 一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法
CN115093231B (zh) * 2022-06-23 2023-09-01 西安鑫垚陶瓷复合材料有限公司 一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法

Also Published As

Publication number Publication date
CN114427481B (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
CA2747364C (en) Ceramic matrix composite blade having integral platform structures and methods of fabrication
US9080454B2 (en) Composite material turbine engine vane, and method for manufacturing same
JP2019007479A (ja) マイクロチャネルを有するcmc部品およびcmc部品内にマイクロチャネルを形成するための方法
CA2867913C (en) Process for producing ceramic composite components
CN104507677B (zh) 用于航空器燃气涡轮发动机的陶瓷中心体及制造方法
EP2540975B1 (en) Method of forming a hybrid part made from monolithic ceramic skin and CMC core
JP2019064901A (ja) セラミックマトリックス複合材物品
EP3222601A1 (en) Ceramic matrix composites having monomodal pore size distribution and low fiber volume fraction
EP1555391A2 (en) Hybrid ceramic matrix composite turbine blade
EP3450694A2 (en) Flow path assemblies for gas turbine engines and assembly methods therefore
CN107266099B (zh) 一种航空发动机陶瓷基复合材料涡轮导向器叶片近净成型用夹具
US10329201B2 (en) Ceramic matrix composite articles formation method
EP3378846B1 (en) Method for forming passages in composite components
CN114105663B (zh) 一种含冷却腔的陶瓷基复合材料涡轮导向叶片的叶身定型方法
CN114014680A (zh) 一种陶瓷基复合材料涡轮外环及其制备方法
CN106747555B (zh) 一种含自增韧基体、连续纤维增强的热结构复合材料及其制备方法
CN109688643B (zh) 一种碳碳加热器的制造方法
CN114427481B (zh) 具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片、模具及制备方法
CN114484506A (zh) 用于陶瓷基复合材料单头部火焰筒的定型模具及制备方法
CN113898417B (zh) 一种具有扰流结构的陶瓷基复合材料涡轮导向叶片及其制备方法
CN113929482B (zh) 一种陶瓷基复合材料涡轮导向叶片及其制备方法
CN207227293U (zh) 一种航空发动机陶瓷基复合材料涡轮导向器叶片近净成型用夹具
CN115093231B (zh) 一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法
CN114044676A (zh) 一种陶瓷基复合材料隔热屏及其制备方法
CN114835500B (zh) 一种SiC/SiC复合材料变曲率加筋构件制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant