CN115093231A - 一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法 - Google Patents

一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法 Download PDF

Info

Publication number
CN115093231A
CN115093231A CN202210720664.XA CN202210720664A CN115093231A CN 115093231 A CN115093231 A CN 115093231A CN 202210720664 A CN202210720664 A CN 202210720664A CN 115093231 A CN115093231 A CN 115093231A
Authority
CN
China
Prior art keywords
ceramic matrix
tail edge
mold
guide vane
split
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210720664.XA
Other languages
English (en)
Other versions
CN115093231B (zh
Inventor
张晰
杨勇
刘持栋
孙翔
李建章
王卿
成来飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Xinyao Ceramic Composite Material Co Ltd
Original Assignee
Xi'an Golden Mountain Ceramic Composites Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Golden Mountain Ceramic Composites Co ltd filed Critical Xi'an Golden Mountain Ceramic Composites Co ltd
Priority to CN202210720664.XA priority Critical patent/CN115093231B/zh
Publication of CN115093231A publication Critical patent/CN115093231A/zh
Application granted granted Critical
Publication of CN115093231B publication Critical patent/CN115093231B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/226Carbides
    • F05D2300/2261Carbides of silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/228Nitrides
    • F05D2300/2282Nitrides of boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明公开了一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法,该方法包括以下步骤:将预埋劈缝模型均匀放置于夹持有内型模具的导向叶片纤维预制体的开放式尾缘内,依次缝合、覆盖模具和缝合,制得夹持有内型模具和预埋劈缝模型的导向叶片纤维预制体;然后依次沉积界面层和陶瓷基体,去除模具,加工至设计尺寸,继续沉积陶瓷基体,精加工至设计尺寸,然后进行损伤修复,制得具有尾缘劈缝的陶瓷基复合材料导向叶片。该导向叶片能够大幅度降低导向叶片尾缘处温度约43.7%,显著增强了导向叶片整体冷却效果,本发明的制备方法简单易操作,适用于大深径比的尾缘劈缝的制备,有效解决了大深径比槽道无法直接加工的问题。

Description

一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法
技术领域
本发明涉及燃气涡轮发动机制造技术领域,具体涉及一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法。
背景技术
在航空发动机和燃气轮机等燃气涡轮发动机中,提高涡轮前燃气温度,是提高发动机性能的最直接有效的方法之一,对于发动机的涡轮系统而言,提高涡轮前燃气温度意味着对涡轮导向叶片设计要求的提高,这就需要涡轮导向叶片能够在高温、高压、高速气流冲刷的恶劣环境中长时间工作。目前先进航空发动机的涡轮前燃气温度可高达2000K以上,常用的高温合金涡轮导向叶片已经无法胜任使用要求,即使采用密度仅为高温合金1/3-1/4、耐热温度比高温合金高150-350℃、耐酸碱腐蚀和强韧性高的世界公认具有潜力的陶瓷基复合材料作为高压涡轮导叶的主体材料,在面对恶劣的工况和日益增长的需求时,依旧需要采取先进、有效的冷却手段以保护涡轮导向叶片构件的高温稳定性和长时使用寿命,以保证其结构工作在适宜的温度环境中。
一般情况下,涡轮导向叶片为空心结构,且在多数高压涡轮导向叶片的结构设计中,多采用在导向叶片尾缘处设置劈缝的结构形式,用以形成尾缘吹气的冷却方式以增强冷却效果,当导向叶片在引入尾缘吹气后,冷却气流能够吹除尾缘绝大部分位置的高温气流,使尾缘温度降低,减缓或防止尾缘结构不断侵蚀和型面后退,有效阻挡对尾缘结构的热侵蚀。然而在采用陶瓷基复合材料作为涡轮导向叶片的主体材料时,尾缘劈缝需要从叶片的尾缘到叶片内腔实现贯通,对于周期式尾缘劈缝结构形式来说,尾缘劈缝具有典型的大深径比槽道特征,常规的机械加工和激光加工手段均难以实现这类特征的高精度、高效率加工,如采用制备完毕的实心陶瓷基复合材料以机械加工的途径制备叶片,尽管能够实现尾缘劈缝的机械加工,却严重破坏了纤维的连续性,对叶片整体强度和使用寿命造成致命影响。
发明内容
为了解决上述技术问题,本发明的目的是提供一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法,以解决现有技术中陶瓷基复合材料导向叶片尾缘劈缝难以高精度、高效率加工,以及叶片整体强度低和使用寿命短的问题。
本发明解决上述技术问题的技术方案如下:提供一种具有尾缘劈缝的陶瓷基复合材料导向叶片的制备方法,包括以下步骤:
S1:以耐高温材料制备均具有通气孔的导向叶片的内型模具、叶盆模具和叶背模具;
S2:将碳纤维布和/或碳化硅纤维布覆盖在内型模具的外表面,覆盖纤维布开口形成开放式尾缘,然后用碳纤维束或碳化硅纤维束为缝合线,以通气孔为缝合路径,将内型模具和覆盖在内型模具上的纤维布缝合为一体,制得夹持有内型模具的导向叶片纤维预制体;
S3:以开放式尾缘型面为参考,通过叠层铺放的方式,将碳纤维布和/或碳化硅纤维布堆叠形成板状纤维布叠层,均匀裁剪,制得若干条状纤维布叠层,即预埋劈缝模型;
S4:将步骤S3制得的预埋劈缝模型均匀放置于步骤S2制得的夹持有内型模具的导向叶片纤维预制体的开放式尾缘内,然后用碳纤维束或碳化硅纤维束为缝合线,将预埋劈缝模型和开放式尾缘缝合为一体;再用步骤S1制得的叶盆模具和叶背模具将其覆盖,用碳纤维束或碳化硅纤维束为缝合线,以通气孔为缝合路径,将内型模具、叶盆模具、叶背模具、覆盖在内型模具上的纤维布和预埋劈缝模型缝合为一体,制得夹持有内型模具和预埋劈缝模型的导向叶片纤维预制体;
S5:在步骤S4制得的夹持有内型模具和预埋劈缝模型的导向叶片纤维预制体表面依次沉积界面层和陶瓷基体,去除模具,加工至设计尺寸,继续沉积陶瓷基体,精加工至设计尺寸,然后进行损伤修复,制得具有尾缘劈缝的陶瓷基复合材料导向叶片。
本发明的有益效果为:本发明通过在导向叶片纤维预制体定型阶段在开放式尾缘处放置预埋劈缝模型,并将导向叶片纤维预制体和预埋劈缝模型两者缝合为一体,经过后续加工,实现了在导向叶片尾缘处形成周期式劈缝结构的目的,既保证了导向叶片纤维预制体能够顺利定型,同时还解决了开放式尾缘在预制体定型过程中尾缘部位无强度支撑和连接问题,更大幅降低了深径比尾缘劈缝的加工问题,避免了尾缘部位小曲率半径折弯所导致的预制体定型损伤大的问题。不仅如此,本发明较无尾缘劈缝的导向叶片,当发动机燃气气流经导向叶片前缘气膜孔流入叶身腔体后,可以有效从尾缘劈缝处流出,形成气流通路,改善导向叶片内腔冷却,提升导向叶片整体冷却效果。
在上述技术方案的基础上,本发明还可以做如下改进:
进一步,步骤S1中所述耐高温材料为电极石墨或高纯石墨。
进一步,步骤S1中所述通气孔直径为3-8mm。
进一步,步骤S1中所述内型模具、叶盆模具和叶背模具厚度为2.5-8mm。
进一步,步骤S2中纤维布覆盖厚度为导向叶片设计厚度的1.05-1.2倍。
进一步,步骤S2中所述纤维布为2.5维纤维编织布、二维平纹纤维编织布、或二维缎纹纤维编织布。
进一步,步骤S3中预埋劈缝模型厚度为尾缘劈缝宽度的1-1.15倍,长度为尾缘劈缝深度的0.95-1.05倍,宽度为3-8mm。
进一步,步骤S3中所述纤维布为2.5维纤维编织布、二维平纹纤维编织布或二维缎纹纤维编织布。
进一步,步骤S4中在用叶盆模具和叶背模具覆盖前,在相邻的预埋劈缝模型之间垫入石墨纸,在去除模具时,将石墨纸去掉。
采用上述进一步技术方案的有益效果为:放置石墨纸能够使尾缘劈缝周围结构更加明显,防止基体致密化工艺将劈缝封堵。
进一步,步骤S5中为氮化硼界面层。
进一步,步骤S5中通过沉积陶瓷基体进行损伤修复。
进一步,步骤S5中均为碳化硅陶瓷基体。
进一步,步骤S5中均通过化学气相沉积法进行沉积。
进一步,氮化硼界面层制备过程为:于压力为50-1000Pa条件下,升温至650-1000℃,保温1-2h后,依次通入氩气、氢气、氨气和三氯化硼的混合气体,氩气、氢气、氨气和三氯化硼的体积流量比为1:1.5-4:4-6:4-6,沉积15-35h后,继续保温1.5-2.5h,降温至室温;循环执行1-3次。
进一步,碳化硅陶瓷基体制备过程为:于压力为200-5000Pa条件下,升温至900-1200℃,保温1-2h后,通入三氯甲基硅烷、氢气和氩气的混合气体,三氯甲基硅烷、氢气和氩气的体积流量比为1:5-15:10-20,沉积30-80h后,继续保温1.5-2.5h,降温至室温;循环执行4-8次。
进一步,通过沉积陶瓷基体进行损伤修复时,循环执行1-3次。
本发明还提供上述的具有尾缘劈缝的陶瓷基复合材料导向叶片的制备方法制得的具有尾缘劈缝的陶瓷基复合材料导向叶片。
本发明具有以下有益效果:
1、本发明制得的具有尾缘劈缝的陶瓷基复合材料导向叶片,通过前缘和尾缘在叶身内腔能够形成气流通道,可大幅度降低导向叶片尾缘处温度约43.7%(通过模拟计算,无尾缘劈缝冷却时尾缘处最高温度为1600℃,有尾缘劈缝冷却时尾缘处温度为900℃),显著增强了导向叶片整体冷却效果。
2、本发明的制备方法简单易操作,适用于大深径比的尾缘劈缝的制备,有效解决了大深径比槽道无法直接加工的问题。
3、本发明的制备方法有效避免了叶身连续纤维因小曲率弯折引起的性能降损伤,同时解决了开放式尾缘结构支撑定型问题。
附图说明
图1为具有尾缘劈缝的陶瓷基复合材料导向叶片整体结构示意图;
图2为图1中A处的剖视图;
图3为图1的侧视图;
图4为内型模具、预埋劈缝模型和导向叶片的爆炸图;
其中,1、内型模具;2、叶背;3、叶盆;4、开放式尾缘;5、预埋劈缝模型;6、尾缘劈缝。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1:
一种具有尾缘劈缝的陶瓷基复合材料导向叶片,其制备方法包括以下步骤:
S1:以电极石墨为原材料,按照导向叶片的内腔型面尺寸制备内型模具1;再分别按照导向叶片的叶盆3和叶背2型面尺寸制备叶盆3模具和叶背2模具;其中,内型模具1、叶盆3模具和叶背2模具壁厚为3mm,内型模具1、叶盆3模具和叶背2模具上均布有直径为5mm的通气孔;
S2:将2.5维碳化硅纤维编织布覆盖在内型模具1的外表面,覆盖厚度为导向叶片设计厚度的1.1倍,覆盖纤维布开口形成开放式尾缘4,然后用碳化硅纤维束为缝合线,以通气孔为缝合路径,将内型模具1和覆盖在内型模具1上的纤维布缝合为一体,制得夹持有内型模具1的导向叶片纤维预制体;
S3:以开放式尾缘4型面为参考,通过叠层铺放的方式,将2.5维碳化硅纤维编织布堆叠形成板状纤维布叠层,均匀裁剪,制得若干条状纤维布叠层,即预埋劈缝模型5;其中,预埋劈缝模型5厚度为尾缘劈缝6宽度的1.1倍,长度为尾缘劈缝6深度的1倍,宽度为5mm;
S4:将步骤S3制得的预埋劈缝模型5均匀放置于步骤S2制得的夹持有内型模具1的导向叶片纤维预制体的开放式尾缘4内,然后用碳化硅纤维束为缝合线,将预埋劈缝模型5和开放式尾缘4缝合为一体,在相邻的预埋劈缝模型5之间垫入石墨纸;再用步骤S1制得的叶盆3模具和叶背2模具将其覆盖,用碳化硅纤维束为缝合线,以通气孔为缝合路径,将内型模具1、叶盆3模具、叶背2模具、覆盖在内型模具1上的纤维布和预埋劈缝模型5缝合为一体,制得夹持有内型模具1和预埋劈缝模型5的导向叶片纤维预制体;
S5:在步骤S4制得的夹持有内型模具1和预埋劈缝模型5的导向叶片纤维预制体放置在化学气相沉积炉内,在其表面依次沉积氮化硼界面层和碳化硅陶瓷基体,去除模具,得到密度为2g/cm3的半致密化坯料;采用机械加工的方式,按照图纸加工至设计尺寸,用刀片去除石墨纸,从导向叶片的内腔使用气枪除去残留在尾缘劈缝6内的残渣与碎屑,确保导向叶片的内腔至尾缘劈缝6贯通,继续放置在化学气相沉积炉内,沉积碳化硅陶瓷基体,得到密度为2.3g/cm3的致密化坯体;采用机械加工的方式精加工至设计尺寸,再放置在化学气相沉积炉内,沉积碳化硅陶瓷基体进行损伤修复,制得具有尾缘劈缝6的陶瓷基复合材料导向叶片,密度为2.68g/cm3
其中,氮化硼界面层制备过程为:于压力为550Pa条件下,升温至680℃,保温1.5h后,依次通入氩气、氢气、氨气和三氯化硼的混合气体,氩气、氢气、氨气和三氯化硼的体积流量比为1:3:5:5,沉积30h后,继续保温1.5-2.5h,降温至室温;循环执行2次;
碳化硅陶瓷基体制备过程为:于压力为1200Pa条件下,升温至1050℃,保温1.5h后,通入三氯甲基硅烷、氢气和氩气的混合气体,三氯甲基硅烷、氢气和氩气的体积流量比为1:12:15,沉积72h后,继续保温2h,降温至室温;循环执行7次;通过沉积陶瓷基体进行损伤修复时,循环执行2次。
实施例2:
一种具有尾缘劈缝的陶瓷基复合材料导向叶片,其制备方法包括以下步骤:
S1:以高纯石墨为原材料,按照导向叶片的内腔型面尺寸制备内型模具1;再分别按照导向叶片的叶盆3和叶背2型面尺寸制备叶盆3模具和叶背2模具;其中,内型模具1、叶盆3模具和叶背2模具壁厚为2.5mm,内型模具1、叶盆3模具和叶背2模具上均布有直径为3mm的通气孔;
S2:将二维平纹碳纤维编织布覆盖在内型模具1的外表面,覆盖厚度为导向叶片设计厚度的1.05倍,覆盖纤维布开口形成开放式尾缘4,然后用碳纤维束为缝合线,以通气孔为缝合路径,将内型模具1和覆盖在内型模具1上的纤维布缝合为一体,制得夹持有内型模具1的导向叶片纤维预制体;
S3:以开放式尾缘4型面为参考,通过叠层铺放的方式,将二维平纹碳纤维编织布堆叠形成板状纤维布叠层,均匀裁剪,制得若干条状纤维布叠层,即预埋劈缝模型5;其中,预埋劈缝模型5厚度为尾缘劈缝6宽度的1倍,长度为尾缘劈缝6深度的0.95倍,宽度为3mm;
S4:将步骤S3制得的预埋劈缝模型5均匀放置于步骤S2制得的夹持有内型模具1的导向叶片纤维预制体的开放式尾缘4内,然后用碳纤维束为缝合线,将预埋劈缝模型5和开放式尾缘4缝合为一体,在相邻的预埋劈缝模型5之间垫入石墨纸;再用步骤S1制得的叶盆3模具和叶背2模具将其覆盖,用碳纤维束为缝合线,以通气孔为缝合路径,将内型模具1、叶盆3模具、叶背2模具、覆盖在内型模具1上的纤维布和预埋劈缝模型5缝合为一体,制得夹持有内型模具1和预埋劈缝模型5的导向叶片纤维预制体;
S5:在步骤S4制得的夹持有内型模具1和预埋劈缝模型5的导向叶片纤维预制体放置在化学气相沉积炉内,在其表面依次沉积氮化硼界面层和碳化硅陶瓷基体,去除模具,得到密度为1.8g/cm3的半致密化坯料;采用机械加工的方式,按照图纸加工至设计尺寸,用刀片去除石墨纸,从导向叶片的内腔使用气枪除去残留在尾缘劈缝6内的残渣与碎屑,确保导向叶片的内腔至尾缘劈缝6贯通,继续放置在化学气相沉积炉内,沉积碳化硅陶瓷基体,得到密度为2.2g/cm3的致密化坯体;采用机械加工的方式精加工至设计尺寸,再放置在化学气相沉积炉内,沉积碳化硅陶瓷基体进行损伤修复,制得具有尾缘劈缝6的陶瓷基复合材料导向叶片,密度为2.6g/cm3
其中,氮化硼界面层制备过程为:于压力为50Pa条件下,升温至1000℃,保温1h后,依次通入氩气、氢气、氨气和三氯化硼的混合气体,氩气、氢气、氨气和三氯化硼的体积流量比为1:1.5:4:4,沉积15h后,继续保温1.5h,降温至室温;
碳化硅陶瓷基体制备过程为:于压力为200Pa条件下,升温至1200℃,保温1h后,通入三氯甲基硅烷、氢气和氩气的混合气体,三氯甲基硅烷、氢气和氩气的体积流量比为1:5:10,沉积30h后,继续保温1.5h,降温至室温;循环执行4次;通过沉积陶瓷基体进行损伤修复时,循环执行1次。
实施例3:
一种具有尾缘劈缝的陶瓷基复合材料导向叶片,其制备方法包括以下步骤:
S1:以电极石墨为原材料,按照导向叶片的内腔型面尺寸制备内型模具1;再分别按照导向叶片的叶盆3和叶背2型面尺寸制备叶盆3模具和叶背2模具;其中,内型模具1、叶盆3模具和叶背2模具壁厚为8mm,内型模具1、叶盆3模具和叶背2模具上均布有直径为8mm的通气孔;
S2:将2.5维碳化硅纤维编织布和二维缎纹碳化硅纤维编织布依次覆盖在内型模具1的外表面,覆盖厚度为导向叶片设计厚度的1.2倍,覆盖纤维布开口形成开放式尾缘4,然后用碳纤维束为缝合线,以通气孔为缝合路径,将内型模具1和覆盖在内型模具1上的纤维布缝合为一体,制得夹持有内型模具1的导向叶片纤维预制体;
S3:以开放式尾缘4型面为参考,通过叠层铺放的方式,将2.5维碳化硅纤维编织布和二维缎纹碳化硅纤维编织布依次堆叠形成板状纤维布叠层,均匀裁剪,制得若干条状纤维布叠层,即预埋劈缝模型5;其中,预埋劈缝模型5厚度为尾缘劈缝6宽度的1.15倍,长度为尾缘劈缝6深度的1.05倍,宽度为8mm;
S4:将步骤S3制得的预埋劈缝模型5均匀放置于步骤S2制得的夹持有内型模具1的导向叶片纤维预制体的开放式尾缘4内,然后用碳纤维束为缝合线,将预埋劈缝模型5和开放式尾缘4缝合为一体,在相邻的预埋劈缝模型5之间垫入石墨纸;再用步骤S1制得的叶盆3模具和叶背2模具将其覆盖,用碳纤维束为缝合线,以通气孔为缝合路径,将内型模具1、叶盆3模具、叶背2模具、覆盖在内型模具1上的纤维布和预埋劈缝模型5缝合为一体,制得夹持有内型模具1和预埋劈缝模型5的导向叶片纤维预制体;
S5:在步骤S4制得的夹持有内型模具1和预埋劈缝模型5的导向叶片纤维预制体放置在化学气相沉积炉内,在其表面依次沉积氮化硼界面层和碳化硅陶瓷基体,去除模具,得到密度为2.2g/cm3的半致密化坯料;采用机械加工的方式,按照图纸加工至设计尺寸,用刀片去除石墨纸,从导向叶片的内腔使用气枪除去残留在尾缘劈缝6内的残渣与碎屑,确保导向叶片的内腔至尾缘劈缝6贯通,继续放置在化学气相沉积炉内,沉积碳化硅陶瓷基体,得到密度为2.5g/cm3的致密化坯体;采用机械加工的方式精加工至设计尺寸,再放置在化学气相沉积炉内,沉积碳化硅陶瓷基体进行损伤修复,制得具有尾缘劈缝6的陶瓷基复合材料导向叶片,密度为2.75g/cm3
其中,氮化硼界面层制备过程为:于压力为1000Pa条件下,升温至650℃,保温2h后,依次通入氩气、氢气、氨气和三氯化硼的混合气体,氩气、氢气、氨气和三氯化硼的体积流量比为1:4:6:6,沉积35h后,继续保温2.5h,降温至室温;循环执行3次;
碳化硅陶瓷基体制备过程为:于压力为5000Pa条件下,升温至900℃,保温2h后,通入三氯甲基硅烷、氢气和氩气的混合气体,三氯甲基硅烷∶氢气∶氩气的体积流量比为1:15:20,沉积80h后,继续保温2.5h,降温至室温;循环执行8次;通过沉积陶瓷基体进行损伤修复时,循环执行3次。
对比例1:
一种无尾缘劈缝的陶瓷基复合材料导向叶片,其制备方法包括以下步骤:
S1:以电极石墨为原材料,按照导向叶片的内腔型面尺寸制备内型模具1;再分别按照导向叶片的叶盆3和叶背2型面尺寸制备叶盆3模具和叶背2模具;其中,内型模具1、叶盆3模具和叶背2模具壁厚为3mm,内型模具1、叶盆3模具和叶背2模具上均布有直径为5mm的通气孔;
S2:将2.5维碳化硅纤维编织布连续包裹缠绕覆盖在内型模具1的外表面,直至覆盖厚度为导向叶片设计厚度的1.1倍,然后用碳化硅纤维束为缝合线,以通气孔为缝合路径,将内型模具1、叶盆3模具、叶背2模具和覆盖在内型模具1上的连续缠绕纤维布缝合为一体,制得夹持有内型模具1的导向叶片纤维预制体;
S3:将步骤S2制得的夹持有内型模具1的导向叶片纤维预制体放置在化学气相沉积炉内,在其表面依次沉积氮化硼界面层和碳化硅陶瓷基体,去除模具,得到密度为2g/cm3的半致密化坯料;采用机械加工的方式,按照图纸加工至设计尺寸,继续放置在化学气相沉积炉内,沉积碳化硅陶瓷基体,得到密度为2.3g/cm3的致密化坯体;采用机械加工的方式精加工至设计尺寸,再放置在化学气相沉积炉内,沉积碳化硅陶瓷基体进行损伤修复,制得无尾缘劈缝的陶瓷基复合材料导向叶片,密度为2.68g/cm3
其中,氮化硼界面层制备过程为:于压力为50Pa条件下,升温至1000℃,保温1h后,依次通入氩气、氢气、氨气和三氯化硼的混合气体,氩气、氢气、氨气和三氯化硼的体积流量比为1:3:5:5,沉积15h后,继续保温1.5h,降温至室温;
碳化硅陶瓷基体制备过程为:于压力为200Pa条件下,升温至1200℃,保温1h后,通入三氯甲基硅烷、氢气和氩气的混合气体,三氯甲基硅烷、氢气和氩气的体积流量比为1:5:10,沉积30h后,继续保温1.5h,降温至室温;循环执行4次;通过沉积陶瓷基体进行损伤修复时,循环执行1次。
试验例
一、可靠性
将实施例1-3得的具有尾缘劈缝的陶瓷基复合材料导向叶片进行可靠性效果验证,具体验证方法为:按照《GJB 150.16A-2009军用装备实验室环境试验方法第16部分:振动试验》,验证结果为:在10-2000Hz频带、总均方根加速度25grms条件下,试验后叶身结构完整,未出现开裂、分层、掉块等异常现象,说明本发明制备的具有尾缘劈缝的陶瓷基复合材料导向叶片能够提高构件结构的可靠性。
二、冷却效果
将实施例1-3和对比例1制得的导向叶片分别进行冷却效果试验,具体实验方法为:将导向叶片置于冷效试验器中,通过模拟发动机燃气环境,对导向叶片尾缘处气流流量和温度进行监控,对试验数据进行模拟计算,得出最终结果,试验结果为:实施例1-3制得的导向叶片冷却时,尾缘处温度均约为900℃,而对比例1制得的导向叶片冷却时,尾缘处最高温度为1600℃,本发明导向叶片尾缘处温度大幅度降低约43.7%,说明本发明制备的具有尾缘劈缝的陶瓷基复合材料导向叶片在保证构件结构可靠性的同时,能够显著增强构件整体冷却效果。
此外,尾缘劈缝的预制,解决了在连续纤维预制体定型时通过破坏纤维的连续性进行劈缝制备的问题,避免了较小的曲率弯折容易引起纤维的损伤,同时保证了开始方式尾缘结构支撑定型问题以及可靠性和稳定性。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种具有尾缘劈缝的陶瓷基复合材料导向叶片的制备方法,其特征在于,包括以下步骤:
S1:以耐高温材料制备均具有通气孔的导向叶片的内型模具(1)、叶盆(3)模具和叶背(2)模具;
S2:将碳纤维布和/或碳化硅纤维布覆盖在内型模具(1)的外表面,覆盖纤维布开口形成开放式尾缘(4),然后用碳纤维束或碳化硅纤维束为缝合线,以通气孔为缝合路径,将内型模具(1)和覆盖在内型模具(1)上的纤维布缝合为一体,制得夹持有内型模具(1)的导向叶片纤维预制体;
S3:以开放式尾缘(4)型面为参考,通过叠层铺放的方式,将碳纤维布和/或碳化硅纤维布堆叠形成板状纤维布叠层,均匀裁剪,制得若干条状纤维布叠层,即预埋劈缝模型(5);
S4:将步骤S3制得的预埋劈缝模型(5)均匀放置于步骤S2制得的夹持有内型模具(1)的导向叶片纤维预制体的开放式尾缘(4)内,然后用碳纤维束或碳化硅纤维束为缝合线,将预埋劈缝模型(5)和开放式尾缘(4)缝合为一体;再用步骤S1制得的叶盆(3)模具和叶背(2)模具将其覆盖,用碳纤维束或碳化硅纤维束为缝合线,以通气孔为缝合路径,将内型模具(1)、叶盆(3)模具、叶背(2)模具、覆盖在内型模具(1)上的纤维布和预埋劈缝模型(5)缝合为一体,制得夹持有内型模具(1)和预埋劈缝模型(5)的导向叶片纤维预制体;
S5:在步骤S4制得的夹持有内型模具(1)和预埋劈缝模型(5)的导向叶片纤维预制体表面依次沉积界面层和陶瓷基体,去除模具,加工至设计尺寸,继续沉积陶瓷基体,精加工至设计尺寸,然后进行损伤修复,制得具有尾缘劈缝(6)的陶瓷基复合材料导向叶片。
2.根据权利要求1所述的具有尾缘劈缝的陶瓷基复合材料导向叶片的制备方法,其特征在于,步骤S1中所述耐高温材料为电极石墨或高纯石墨。
3.根据权利要求1所述的具有尾缘劈缝的陶瓷基复合材料导向叶片的制备方法,其特征在于,步骤S2中纤维布覆盖厚度为导向叶片设计厚度的1.05-1.2倍。
4.根据权利要求1所述的具有尾缘劈缝的陶瓷基复合材料导向叶片的制备方法,其特征在于,步骤S3中预埋劈缝模型(5)厚度为尾缘劈缝(6)宽度的1-1.15倍,长度为尾缘劈缝(6)深度的0.95-1.05倍,宽度为3-8mm。
5.根据权利要求1所述的具有尾缘劈缝的陶瓷基复合材料导向叶片的制备方法,其特征在于,步骤S4中在用叶盆(3)模具和叶背(2)模具覆盖前,在相邻的预埋劈缝模型(5)之间垫入石墨纸,在去除模具时,将石墨纸去掉。
6.根据权利要求1所述的具有尾缘劈缝的陶瓷基复合材料导向叶片的制备方法,其特征在于,步骤S5中为氮化硼界面层。
7.根据权利要求1所述的具有尾缘劈缝的陶瓷基复合材料导向叶片的制备方法,其特征在于,步骤S5中通过沉积陶瓷基体进行损伤修复。
8.根据权利要求1或7所述的具有尾缘劈缝的陶瓷基复合材料导向叶片的制备方法,其特征在于,步骤S5中均为碳化硅陶瓷基体。
9.根据权利要求1或7所述的具有尾缘劈缝的陶瓷基复合材料导向叶片的制备方法,其特征在于,步骤S5中均通过化学气相沉积法进行沉积。
10.根据权利要求1-9任一项所述的具有尾缘劈缝的陶瓷基复合材料导向叶片的制备方法制得的具有尾缘劈缝(6)的陶瓷基复合材料导向叶片。
CN202210720664.XA 2022-06-23 2022-06-23 一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法 Active CN115093231B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210720664.XA CN115093231B (zh) 2022-06-23 2022-06-23 一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210720664.XA CN115093231B (zh) 2022-06-23 2022-06-23 一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法

Publications (2)

Publication Number Publication Date
CN115093231A true CN115093231A (zh) 2022-09-23
CN115093231B CN115093231B (zh) 2023-09-01

Family

ID=83291966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210720664.XA Active CN115093231B (zh) 2022-06-23 2022-06-23 一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法

Country Status (1)

Country Link
CN (1) CN115093231B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117823234A (zh) * 2024-03-05 2024-04-05 西北工业大学 一种陶瓷纤维层叠的双空腔气冷涡轮工作叶片结构
CN117823234B (zh) * 2024-03-05 2024-05-28 西北工业大学 一种陶瓷纤维层叠的双空腔气冷涡轮工作叶片结构

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382453A (en) * 1992-09-02 1995-01-17 Rolls-Royce Plc Method of manufacturing a hollow silicon carbide fiber reinforced silicon carbide matrix component
US20080124512A1 (en) * 2006-11-28 2008-05-29 General Electric Company Cmc articles having small complex features
US20090014926A1 (en) * 2007-07-09 2009-01-15 Siemens Power Generation, Inc. Method of constructing a hollow fiber reinforced structure
JP2010216291A (ja) * 2009-03-13 2010-09-30 Ihi Corp タービン翼の製造方法
CN202417610U (zh) * 2011-12-22 2012-09-05 中航商用航空发动机有限责任公司 涡轮叶片尾缘劈缝冷却结构及具有该冷却结构的涡轮叶片
US20150004000A1 (en) * 2013-03-04 2015-01-01 Rolls-Royce North American Technologies, Inc Method for making gas turbine engine ceramic matrix composite airfoil
CN107013255A (zh) * 2017-06-01 2017-08-04 西北工业大学 一种带有连续直肋的涡轮叶片尾缘扰流半劈缝冷却结构
CN107266099A (zh) * 2017-06-16 2017-10-20 中国人民解放军第五七九工厂 一种航空发动机陶瓷基复合材料涡轮导向器叶片近净成型用夹具
US20170328216A1 (en) * 2016-05-11 2017-11-16 General Electric Company Ceramic matrix composite airfoil cooling
CN112177682A (zh) * 2020-09-29 2021-01-05 大连理工大学 一种采用波浪式隔肋的涡轮叶片尾缘劈缝冷却结构
US20210032995A1 (en) * 2019-07-30 2021-02-04 Rolls-Royce Plc Ceramic matrix composite vane with cooling holes and methods of making the same
CN112592187A (zh) * 2020-12-14 2021-04-02 西安鑫垚陶瓷复合材料有限公司 基于碳陶材料的航空叶片成型工装及工艺
GB202105996D0 (en) * 2021-04-27 2021-06-09 Rolls Royce Plc Fibre reinforced gas turbine engine component
CN113236370A (zh) * 2021-05-25 2021-08-10 杭州汽轮动力集团有限公司 一种燃气轮机涡轮高压动叶片的冷却结构
CN113898417A (zh) * 2021-11-19 2022-01-07 西北工业大学 一种具有扰流结构的陶瓷基复合材料涡轮导向叶片及其制备方法
CN113929467A (zh) * 2021-10-14 2022-01-14 西安鑫垚陶瓷复合材料有限公司 带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法
CN114105663A (zh) * 2021-11-19 2022-03-01 西北工业大学 一种含冷却腔的陶瓷基复合材料涡轮导向叶片的叶身定型方法
CN114427481A (zh) * 2022-01-06 2022-05-03 西北工业大学 具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片、模具及制备方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382453A (en) * 1992-09-02 1995-01-17 Rolls-Royce Plc Method of manufacturing a hollow silicon carbide fiber reinforced silicon carbide matrix component
US20080124512A1 (en) * 2006-11-28 2008-05-29 General Electric Company Cmc articles having small complex features
US20090014926A1 (en) * 2007-07-09 2009-01-15 Siemens Power Generation, Inc. Method of constructing a hollow fiber reinforced structure
JP2010216291A (ja) * 2009-03-13 2010-09-30 Ihi Corp タービン翼の製造方法
CN202417610U (zh) * 2011-12-22 2012-09-05 中航商用航空发动机有限责任公司 涡轮叶片尾缘劈缝冷却结构及具有该冷却结构的涡轮叶片
US20150004000A1 (en) * 2013-03-04 2015-01-01 Rolls-Royce North American Technologies, Inc Method for making gas turbine engine ceramic matrix composite airfoil
US20170328216A1 (en) * 2016-05-11 2017-11-16 General Electric Company Ceramic matrix composite airfoil cooling
CN107013255A (zh) * 2017-06-01 2017-08-04 西北工业大学 一种带有连续直肋的涡轮叶片尾缘扰流半劈缝冷却结构
CN107266099A (zh) * 2017-06-16 2017-10-20 中国人民解放军第五七九工厂 一种航空发动机陶瓷基复合材料涡轮导向器叶片近净成型用夹具
US20210032995A1 (en) * 2019-07-30 2021-02-04 Rolls-Royce Plc Ceramic matrix composite vane with cooling holes and methods of making the same
CN112177682A (zh) * 2020-09-29 2021-01-05 大连理工大学 一种采用波浪式隔肋的涡轮叶片尾缘劈缝冷却结构
CN112592187A (zh) * 2020-12-14 2021-04-02 西安鑫垚陶瓷复合材料有限公司 基于碳陶材料的航空叶片成型工装及工艺
GB202105996D0 (en) * 2021-04-27 2021-06-09 Rolls Royce Plc Fibre reinforced gas turbine engine component
CN113236370A (zh) * 2021-05-25 2021-08-10 杭州汽轮动力集团有限公司 一种燃气轮机涡轮高压动叶片的冷却结构
CN113929467A (zh) * 2021-10-14 2022-01-14 西安鑫垚陶瓷复合材料有限公司 带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法
CN113898417A (zh) * 2021-11-19 2022-01-07 西北工业大学 一种具有扰流结构的陶瓷基复合材料涡轮导向叶片及其制备方法
CN114105663A (zh) * 2021-11-19 2022-03-01 西北工业大学 一种含冷却腔的陶瓷基复合材料涡轮导向叶片的叶身定型方法
CN114427481A (zh) * 2022-01-06 2022-05-03 西北工业大学 具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片、模具及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
罗潇等: "涡轮发动机用陶瓷基复合材料涡轮转子研究进展", 《推进技术》, vol. 42, no. 01, pages 230 - 240 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117823234A (zh) * 2024-03-05 2024-04-05 西北工业大学 一种陶瓷纤维层叠的双空腔气冷涡轮工作叶片结构
CN117823234B (zh) * 2024-03-05 2024-05-28 西北工业大学 一种陶瓷纤维层叠的双空腔气冷涡轮工作叶片结构

Also Published As

Publication number Publication date
CN115093231B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
US6280550B1 (en) Fabrication of composite articles having an infiltrated matrix
CN104507677B (zh) 用于航空器燃气涡轮发动机的陶瓷中心体及制造方法
US9579714B1 (en) Method and assembly for forming components having internal passages using a lattice structure
CN110966049B (zh) 航空发动机陶瓷基复合材料固定导向器叶片结构及其成型
US20140127457A1 (en) Ceramic matrix composite component forming method
CN103030416A (zh) Cmc构件、功率发生系统和形成cmc构件的方法
CN107266099B (zh) 一种航空发动机陶瓷基复合材料涡轮导向器叶片近净成型用夹具
CN113001716B (zh) 陶瓷基复合物部件及制造陶瓷基复合物部件的方法
EP3459733B1 (en) Method for forming ceramic matrix composite articles
EP3378846B1 (en) Method for forming passages in composite components
CN111102017A (zh) 航空发动机陶瓷基复合材料固定导向器叶片结构及其成型
EP3181266B1 (en) Method and assembly for forming components having internal passages using a lattice structure
CN114105663B (zh) 一种含冷却腔的陶瓷基复合材料涡轮导向叶片的叶身定型方法
CN111168004B (zh) 一种基于具有籽晶块内嵌结构螺旋选晶器的凝胶注模一体化铸型成型单晶零件的方法
CN113898417B (zh) 一种具有扰流结构的陶瓷基复合材料涡轮导向叶片及其制备方法
CN115093231A (zh) 一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法
CN114427481B (zh) 具有内部冷却槽道的陶瓷基复合材料涡轮转子叶片、模具及制备方法
CN114315396A (zh) 具有可磨耗涂层的陶瓷基复合材料涡轮外环及其制备方法
CN113929482B (zh) 一种陶瓷基复合材料涡轮导向叶片及其制备方法
GB2573137A (en) CMC aerofoil
EP3181265A1 (en) Method and assembly for forming components having internal passages using a lattice structure
EP3869011A1 (en) Ceramic matrix composite component having low density core and method of making
EP3046957B1 (en) Method for prepregging tackifier for cmc articles
CN110985134B (zh) 航空发动机陶瓷基复合材料固定导向器叶片结构及其成型
CN114057491B (zh) 一种陶瓷基复合材料脉冲爆震发动机燃烧室的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: No. 912, West Section of Biyuan 1st Road, High-tech Zone, Xi'an City, Shaanxi Province 710061

Patentee after: Xi'an Xinyao Ceramic Composite Co.,Ltd.

Address before: No. 912, West Section of Biyuan 1st Road, High-tech Zone, Xi'an City, Shaanxi Province 710061

Patentee before: XI'AN GOLDEN MOUNTAIN CERAMIC COMPOSITES CO.,LTD.

CP01 Change in the name or title of a patent holder