CN114426014A - 双电机混合动力汽车串联与并联模式的切换方法 - Google Patents

双电机混合动力汽车串联与并联模式的切换方法 Download PDF

Info

Publication number
CN114426014A
CN114426014A CN202210108763.2A CN202210108763A CN114426014A CN 114426014 A CN114426014 A CN 114426014A CN 202210108763 A CN202210108763 A CN 202210108763A CN 114426014 A CN114426014 A CN 114426014A
Authority
CN
China
Prior art keywords
engine
drive efficiency
efficiency factor
direct
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210108763.2A
Other languages
English (en)
Other versions
CN114426014B (zh
Inventor
邓涛
刘增玥
罗会兵
邓礼勇
谭章麒
谭清
崔环宇
刘秋杨
杨清清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Tsingshan Industrial Co Ltd
Original Assignee
Chongqing Tsingshan Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Tsingshan Industrial Co Ltd filed Critical Chongqing Tsingshan Industrial Co Ltd
Priority to CN202210108763.2A priority Critical patent/CN114426014B/zh
Publication of CN114426014A publication Critical patent/CN114426014A/zh
Application granted granted Critical
Publication of CN114426014B publication Critical patent/CN114426014B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种双电机混合动力汽车串联与并联模式的切换方法,包括:S1,发动机直驱效率因子计算:整车控制单元根据车辆的第一工况判断是否激活发动机直驱效率因子计算;S2,并联模式发动机直驱效率因子计算:整车控制单元根据并联模式期望挡位速比与输出轴转速的乘积得到期望发动机转速,同时,整车控制单元根据期望发动机转速查询并联模式发动机扭矩需求图谱得到并联模式发动机扭矩需求;S3,确定串联模式与并联模式切换时机:整车控制单元根据发动机直驱效率因子与并联模式发动机直驱效率因子关系决定串联模式与并联模式的切换时机。本发明能降低车辆的能耗,提升续航能力。

Description

双电机混合动力汽车串联与并联模式的切换方法
技术领域
本发明涉及混合动力汽车领域,具体涉及一种双电机混合动力汽车串联与并联模式的切换方法。
背景技术
21世纪是人类面临能源瓶颈和环境挑战的时代,也将是汽车面临新技术革命的时代,以石油为主要能源的传统汽车产业必将转变成为一个以新能源为支撑的高新技术产业,环保节能也逐渐成为汽车产业发展的重头戏。
混合动力汽车是指车辆的驱动系统由两个或多个能够通过运转的单个驱动系统联合组成的车辆,车辆的行驶功率根据实际的车辆行驶状态由单个驱动系统单独或共同提供。现在一般的混合动力汽车的动力总成主要包括发动机、发电机、驱动电机、离合器、高压电池等部件,一般的混合动力汽车是发动机和驱动电机作为动力源,发动机可以通过柴油、汽油、压缩天然气等作为燃料提供动力,驱动电机可以通过高压电池或者发电机发电作为电源输入提供动力。发动机工作时主要有串联、并联两种工作模式。为了充分发挥混合动力汽车串联、并联模式下发动机的优势,最大效能的利用发动机高效区,降低车辆燃油消耗,提升车辆经济性和续航能力,提升车辆的驾乘舒适性,在合适的时机进行串联、并联模式切换显得尤为重要。现有技术中对于如何选择串联、并联模式还没有相应的研究方案,导致车辆的能耗高,续航短。
发明内容
本发明提供一种双电机混合动力汽车串联与并联模式的切换方法,本发明能降低车辆的能耗,提升续航能力。
解决上述问题的技术方案如下:
双电机混合动力汽车串联与并联模式的切换方法,包括如下步骤:
S1,发动机直驱效率因子计算:首先,整车控制单元根据车辆的第一工况判断是否激活发动机直驱效率因子计算;其次,整车控制单元根据车辆的第二工况,利用模糊控制系统计算出发动机直驱效率因子,第二工况包括高压电池电量、车速、轮端需求扭矩输入信号;
S2,并联模式发动机直驱效率因子计算:首先,整车控制单元根据并联模式期望挡位速比与输出轴转速的乘积得到期望发动机转速,同时,整车控制单元根据期望发动机转速查询并联模式发动机扭矩需求图谱得到并联模式发动机扭矩需求;然后,整车控制单元根据期望发动机转速和并联模式发动机扭矩需求查询发动机燃油消耗图谱得到并联模式发动机直驱效率因子原始值;最后,整车控制单元对并联模式发动机直驱效率因子原始值进行归一化处理得到并联模式发动机直驱效率因子;
S3,确定串联模式与并联模式切换时机:整车控制单元根据发动机直驱效率因子与并联模式发动机直驱效率因子关系决定串联模式与并联模式的切换时机;当发动机直驱效率因子小于并联模式发动机直驱效率因子时,双电机混合动力汽车从并联模式切换到串联模式;当发动机直驱效率因子大于并联模式发动机直驱效率因子时,双电机混合动力汽车从串联模式切换到并联模式。
本发明的优点为:
本发明根据高压电池电量、车速、轮端需求扭矩等输入,利用模糊控制系统计算出发动机直驱效率因子,并根据发动机直驱效率因子决定串联模式与并联模式的切换时机,从而更准确的控制串联模式与并联模式的切换时机,这有利于降低车辆的能量消耗,提高车辆的续航能力,提升车辆的驾乘舒适性。
附图说明
图1为本发明的双电机混合动力汽车的结构示意图。
图2为本发明的控制逻辑示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行更加详细的描述。所描述的实施例是本发明的一部分实施例,而非全部的实施例。下面通过参考附图描述的实施例为示例性的,旨在用于解释本发明,而不能简单地理解为对本发明的限制。基于本发明的实施例,本领域技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。下面结合附图对本发明的实施例进行详细说明:
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而非指示或暗示所指的装置或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
如图1所示,图中是实施本发明的混合动力汽车的结构示意图。
所述混合动力汽车的动力总成如图1所示,其包括发动机1、离合器2、发电机3、变速器4、驱动电机5、减速器6、驱动车轮8、高压电池9(超过安全电压60V,低于1000V);离合器2的两端分别连接发动机1和变速器4,发电机通过一级减速齿轮与变速器4输入轴进行直接耦合,驱动电机5通过一级减速齿轮与减速器6进行直接耦合,变速器4输出端通过减速器6连接到驱动轮8上,高压电池9通过高压线与发电机3和驱动电机5连接。
如图2所示,图中是实施本发明所述基于模糊控制的双电机混合动力汽车的串联模式与并联模式的切换方法的控制逻辑示意图,实施本发明所述的基于模糊控制的双电机混合动力汽车串联模式与并联模式的切换方法的计算机程序安装与运行于整车控制单元中。实施本发明所述的基于模糊控制的双电机混合动力汽车串联模式与并联模式的切换方法由发动机直驱效率因子计算、并联模式发动机直驱效率因子计算和确定串联模式与并联模式的切换时机组成。
如图1和图2所示,该基于模糊控制的双电机混合动力汽车串联模式与并联模式的切换方法,包括如下步骤:
S1,发动机直驱效率因子计算:首先,整车控制单元根据车辆的第一工况判断是否激活发动机直驱效率因子计算;其次,整车控制单元根据车辆的第二工况,利用模糊控制系统计算出发动机直驱效率因子,第二工况包括高压电池电量、车速、轮端需求扭矩输入信号;
车辆的第一工况包括:钥匙开关、手柄位置、车辆工作模式、加速踏板位置、车速、禁止串联模式请求、禁止并联模式请求。优选地,所述发动机直驱效率因子计算激活条件包括:钥匙开关状态为ON、手柄位置为D、车辆工作模式不为纯电模式、加速踏板位置大于0、禁止串联模式请求为0、禁止并联模式请求为0、车速大于预设车速阈值。
S11,发动机直驱效率因子计算激活条件:若第一工况满足发动机直驱效率因子计算的激活条件,则整车控制单元激活发动机直驱效率因子计算,若第一工况中有任意不满足激活条件的,则整车控制单元退出发动机直驱效率因子计算,输出发动机直驱效率因子为零。即:
整车控制单元根据钥匙开关状态、手柄位置、车辆工作模式、加速踏板位置、车速、禁止串联模式请求、禁止并联模式请求判断当前车辆状态是否满足发动机直驱效率因子计算的激活条件,若满足所有发动机直驱效率因子计算的激活条件,则整车控制单元激活发动机直驱效率因子计算,若发动机直驱效率因子计算的激活条件中有任意一条不满足的情况下,则整车控制单元退出发动机直驱效率因子计算,输出发动机直驱效率因子为零。
S12,整车控制单元获取高压电池电量s、车速v、轮端需求扭矩t作为发动机直驱效率因子模糊控制系统的输入变量;其中:
高压电池电量s取值范围为0-100(%);
车速v取值范围为0-200(km/h);
轮端需求扭矩t取值范围为0-3000(Nm)。
S13,整车控制单元将高压电池电量s、车速v、轮端需求扭矩t、期望发动机转速n对应输入到隶属度函数A1(s)、A2(s)、B1(v)、B2(v)、C1(t)、C2(t)、C3(t)中,分别得到相应的输出值A1s、A2s、B1v、B2v、C1t、C2t、C3t,其中,A1(s)=表示模糊集“高压电池电量低”的隶属函数,A2(s)=表示模糊集“高压电池电量不低”的隶属函数,B1(v)=表示模糊集“车速不高”的隶属函数,B2(v)=表示模糊集“车速高”的隶属函数,C1(t)=表示模糊集“轮端需求扭矩正得小”的隶属函数,C2(t)=表示模糊集“轮端需求扭矩正得中等”的隶属函数,C3(t)=表示模糊集“轮端需求扭矩正得较大”的隶属函数;
本实施例中的各模糊集的隶属度与取值范围如下表1
隶属度 取值范围
A1(s) 0-40
A2(s) 30-100
B1(v) 0-50
B2(v) 40-100
C1(t) 0-40
C2(t) 30-60
C3(t) 50-100
表1本实施例中的各隶属度输入与取值范围如下表2
隶属度输入 取值范围
高压电池电量低(%) 0-40
高压电池电量不低(%) 30-100
车速不高(km/h) 0-50
车速高(km/h) 40-200
轮端需求扭矩正得小(Nm) 0-1000
轮端需求扭矩正得中等(Nm) 800-1800
轮端需求扭矩正得较大(Nm) 1500-3000
表2本实施例隶属度A1(s)的取值范围为0-40,A1(s)取值如表3所示:
Figure BDA0003494301440000071
表3本实施例隶属度A2(s)的取值范围为40-90,A2(s)取值如表4所示:
Figure BDA0003494301440000072
表4本实施例隶属度B1(v)的取值范围为0-50,B1(v)取值如表5所示:
Figure BDA0003494301440000073
表5本实施例隶属度B2(v)的取值范围为40-100,B2(v)取值如表6所示:
Figure BDA0003494301440000081
表6本实施例隶属度C1(t)的取值范围为0-40,C1(t)取值如表7所示:
Figure BDA0003494301440000082
表7本实施例隶属度C2(t)的取值范围为30-60,C2(t)取值如表8所示:
Figure BDA0003494301440000083
表8本实施例隶属度C3(t)的取值范围为50-100,C3(t)取值如表9所示:
Figure BDA0003494301440000091
表9
整车控制单元将隶属度函数A1(s)、A2(s)、B1(v)、B1(v)、C1(t)、C2(t)、C3(t)的输出值A1s、A2s、B1v、B2v、C1t、C2t、C3t输入到发动机直驱效率因子模糊控制规则中,分别得到发动机直驱效率因子模糊控制规则的发动机直驱效率因子输出值即原始值E1、E2、E3、E4、E5、E6、E7、E8、E9;即模糊控制规则的数量为9个,其中:
第1个模糊控制规则为:如果高压电池电量低且车速不高,那么发动机直驱效率因子原始值E1为中低,发动机直驱效率因子原始值E1为A1s与B1v中取大值。
第2个模糊控制规则为:如果高压电池电量低且车速高且轮端需求扭矩正得较大,那么发动机直驱效率因子原始值E2为高,发动机直驱效率因子原始值E2为A1s、B2v、C1t中取大值。
第3个模糊控制规则为:如果高压电池电量低且车速高且轮端需求扭矩正得中等,那么发动机直驱效率因子原始值E3为中高,发动机直驱效率因子原始值E3为A1s、B2v、C2t中取大值。
第4个模糊控制规则为:如果高压电池电量低且车速高且轮端需求扭矩正得较小,那么发动机直驱效率因子原始值E4为中高,发动机直驱效率因子原始值E4为A1s、B2v、C3t中取大值。
第5个模糊控制规则为:如果高压电池电量不低且车速不高且轮端需求扭矩是正得,那么发动机直驱效率因子原始值E5为低,发动机直驱效率因子原始值E5为A2s与B1v中取大值。
第6个模糊控制规则为:如果高压电池电量不低且车速高且轮端需求扭矩正得较大,那么发动机直驱效率因子原始值E6为高,发动机直驱效率因子原始值E6为A2s、B2v、C1t中取大值。
第7个模糊控制规则为:如果高压电池电量不低且车速高且轮端需求扭矩正得中等,那么发动机直驱效率因子原始值E7为高,发动机直驱效率因子原始值E7为A2s、B2v、C2t中取大值。
第8个模糊控制规则为:如果高压电池电量不低且车速高且轮端需求扭矩正得小,那么发动机直驱效率因子原始值E8为高,发动机直驱效率因子原始值E8为A2s、B2v、C3t中取大值。
第9个模糊控制规则为:其他情况下,发动机直驱效率因子原始值E9为0。
S14,整车控制单元将得到的发动机直驱效率因子原始值E1、E2、E3、E4、E5、E6、E7、E8、E9按照如下累加平均公式进行精确化处理得到最终需要的发动机直驱效率因子,累加平均公式为:
Figure BDA0003494301440000101
其中Ai为第i个模糊控制规则输出的发动机直驱效率因子原始值,Knj为规则分子系数,Kdj为规则分母系数。
S2,并联模式发动机直驱效率因子计算:首先,整车控制单元根据并联模式期望挡位速比与输出轴转速的乘积得到期望发动机转速,同时,整车控制单元根据期望发动机转速查询并联模式发动机扭矩需求图谱得到并联模式发动机扭矩需求;然后,整车控制单元根据期望发动机转速和并联模式发动机扭矩需求查询发动机燃油消耗图谱得到并联模式发动机直驱效率因子原始值;最后,整车控制单元对并联模式发动机直驱效率因子原始值进行归一化处理得到并联模式发动机直驱效率因子;
S3,确定串联模式与并联模式切换时机:整车控制单元根据发动机直驱效率因子与并联模式发动机直驱效率因子关系决定串联模式与并联模式的切换时机;当发动机直驱效率因子小于并联模式发动机直驱效率因子时,双电机混合动力汽车从并联模式切换到串联模式;当发动机直驱效率因子大于并联模式发动机直驱效率因子时,双电机混合动力汽车从串联模式切换到并联模式。
本发明根据高压电池电量、车速、轮端需求扭矩等输入,利用模糊控制系统计算出发动机直驱效率因子,并根据发动机直驱效率因子决定串联模式与并联模式的切换时机,从而更准确的控制串联模式与并联模式的切换时机,这有利于降低车辆的能量消耗,提高车辆的续航能力,提升车辆的驾乘舒适性。
以上是对本技术方案的详细说明,应当理解的是,由于文字的局限性,及技术方案的多样性,本领域的技术人员通过对本技术方案的文字、语法或其它的等同替换,同样能够实现本技术方案,因此,这样的替换均应当视为在本申请的保护范围之内。

Claims (5)

1.双电机混合动力汽车串联与并联模式的切换方法,其特征在于,包括如下步骤:
S1,发动机直驱效率因子计算:首先,整车控制单元根据车辆的第一工况判断是否激活发动机直驱效率因子计算;其次,整车控制单元根据车辆的第二工况,利用模糊控制系统计算出发动机直驱效率因子,第二工况包括高压电池电量、车速、轮端需求扭矩输入信号;
S2,并联模式发动机直驱效率因子计算:首先,整车控制单元根据并联模式期望挡位速比与输出轴转速的乘积得到期望发动机转速,同时,整车控制单元根据期望发动机转速查询并联模式发动机扭矩需求图谱得到并联模式发动机扭矩需求;然后,整车控制单元根据期望发动机转速和并联模式发动机扭矩需求查询发动机燃油消耗图谱得到并联模式发动机直驱效率因子原始值;最后,整车控制单元对并联模式发动机直驱效率因子原始值进行归一化处理得到并联模式发动机直驱效率因子;
S3,确定串联模式与并联模式切换时机:整车控制单元根据发动机直驱效率因子与并联模式发动机直驱效率因子关系决定串联模式与并联模式的切换时机;当发动机直驱效率因子小于并联模式发动机直驱效率因子时,双电机混合动力汽车从并联模式切换到串联模式;当发动机直驱效率因子大于并联模式发动机直驱效率因子时,双电机混合动力汽车从串联模式切换到并联模式。
2.根据权利要求1所述的双电机混合动力汽车串联与并联模式的切换方法,其特征在于,整车控制单元通过模糊控制系统计算发动机直驱效率因子的具体步骤为:
S11,发动机直驱效率因子计算激活条件:若第一工况满足发动机直驱效率因子计算的激活条件,则整车控制单元激活发动机直驱效率因子计算,若第一工况中有任意不满足激活条件的,则整车控制单元退出发动机直驱效率因子计算,输出发动机直驱效率因子为零;
S12,整车控制单元获取高压电池电量s、车速v、轮端需求扭矩t作为发动机直驱效率因子模糊控制系统的输入变量;
S13,整车控制单元将高压电池电量s、车速v、轮端需求扭矩t、期望发动机转速n对应输入到隶属度函数A1(s)、A2(s)、B1(v)、B2(v)、C1(t)、C2(t)、C3(t)中,分别得到相应的输出值A1s、A2s、B1v、B2v、C1t、C2t、C3t,其中,A1(s)=表示模糊集“高压电池电量低”的隶属函数,A2(s)=表示模糊集“高压电池电量不低”的隶属函数,B1(v)=表示模糊集“车速不高”的隶属函数,B2(v)=表示模糊集“车速高”的隶属函数,C1(t)=表示模糊集“轮端需求扭矩正得小”的隶属函数,C2(t)=表示模糊集“轮端需求扭矩正得中等”的隶属函数,C3(t)=表示模糊集“轮端需求扭矩正得较大”的隶属函数;
整车控制单元将隶属度函数A1(s)、A2(s)、B1(v)、B1(v)、C1(t)、C2(t)、C3(t)的输出值A1s、A2s、B1v、B2v、C1t、C2t、C3t输入到发动机直驱效率因子模糊控制规则中,分别得到发动机直驱效率因子模糊控制规则的发动机直驱效率因子输出值即原始值E1、E2、E3、E4、E5、E6、E7、E8、E9;
S14,整车控制单元将得到的发动机直驱效率因子原始值E1、E2、E3、E4、E5、E6、E7、E8、E9按照如下累加平均公式进行精确化处理得到最终需要的发动机直驱效率因子,累加平均公式为:
Figure FDA0003494301430000031
其中Ai为第i个模糊控制规则输出的发动机直驱效率因子原始值,Knj为规则分子系数,Kdj为规则分母系数。
3.根据权利要求2所述的双电机混合动力汽车串联与并联模式的切换方法,其特征在于,模糊控制规则的数量为9个,其中:
第1个模糊控制规则为:如果高压电池电量低且车速不高,那么发动机直驱效率因子原始值E1为中低,发动机直驱效率因子原始值E1为A1s与B1v中取大值;
第2个模糊控制规则为:如果高压电池电量低且车速高且轮端需求扭矩正得较大,那么发动机直驱效率因子原始值E2为高,发动机直驱效率因子原始值E2为A1s、B2v、C1t中取大值;
第3个模糊控制规则为:如果高压电池电量低且车速高且轮端需求扭矩正得中等,那么发动机直驱效率因子原始值E3为中高,发动机直驱效率因子原始值E3为A1s、B2v、C2t中取大值;
第4个模糊控制规则为:如果高压电池电量低且车速高且轮端需求扭矩正得较小,那么发动机直驱效率因子原始值E4为中高,发动机直驱效率因子原始值E4为A1s、B2v、C3t中取大值;
第5个模糊控制规则为:如果高压电池电量不低且车速不高且轮端需求扭矩是正得,那么发动机直驱效率因子原始值E5为低,发动机直驱效率因子原始值E5为A2s与B1v中取大值;
第6个模糊控制规则为:如果高压电池电量不低且车速高且轮端需求扭矩正得较大,那么发动机直驱效率因子原始值E6为高,发动机直驱效率因子原始值E6为A2s、B2v、C1t中取大值;
第7个模糊控制规则为:如果高压电池电量不低且车速高且轮端需求扭矩正得中等,那么发动机直驱效率因子原始值E7为高,发动机直驱效率因子原始值E7为A2s、B2v、C2t中取大值;
第8个模糊控制规则为:如果高压电池电量不低且车速高且轮端需求扭矩正得小,那么发动机直驱效率因子原始值E8为高,发动机直驱效率因子原始值E8为A2s、B2v、C3t中取大值;
第9个模糊控制规则为:其他情况下,发动机直驱效率因子原始值E9为0。
4.根据权利要求1所述的双电机混合动力汽车串联与并联模式的切换方法,其特征在于,车辆的第一工况包括:钥匙开关、手柄位置、车辆工作模式、加速踏板位置、车速、禁止串联模式请求、禁止并联模式请求。
5.根据权利要求4所述的双电机混合动力汽车串联与并联模式的切换方法,其特征在于,所述发动机直驱效率因子计算激活条件包括:钥匙开关状态为ON、手柄位置为D、车辆工作模式不为纯电模式、加速踏板位置大于0、禁止串联模式请求为0、禁止并联模式请求为0、车速大于预设车速阈值。
CN202210108763.2A 2022-01-28 2022-01-28 双电机混合动力汽车串联与并联模式的切换方法 Active CN114426014B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210108763.2A CN114426014B (zh) 2022-01-28 2022-01-28 双电机混合动力汽车串联与并联模式的切换方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210108763.2A CN114426014B (zh) 2022-01-28 2022-01-28 双电机混合动力汽车串联与并联模式的切换方法

Publications (2)

Publication Number Publication Date
CN114426014A true CN114426014A (zh) 2022-05-03
CN114426014B CN114426014B (zh) 2024-04-05

Family

ID=81312400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210108763.2A Active CN114426014B (zh) 2022-01-28 2022-01-28 双电机混合动力汽车串联与并联模式的切换方法

Country Status (1)

Country Link
CN (1) CN114426014B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102490718A (zh) * 2011-11-30 2012-06-13 重庆大学 双离合器式混合动力汽车电机起动发动机的控制方法
CN107264293A (zh) * 2017-06-30 2017-10-20 重庆大学 一种基于模糊控制的并联式混合动力车的能量回收方法
CN107662599A (zh) * 2016-07-29 2018-02-06 长城汽车股份有限公司 车辆的控制方法、控制装置及车辆
CN108216253A (zh) * 2018-01-05 2018-06-29 重庆青山工业有限责任公司 车辆的驾驶员类型识别控制功能模块构架及控制系统
CN109229091A (zh) * 2018-08-29 2019-01-18 东南大学 基于能量效率最大化的多模混合动力汽车能量管理策略
CN112265539A (zh) * 2020-09-07 2021-01-26 河北工业大学 一种重型混合动力汽车动力系统构型选择方法
CN112455423A (zh) * 2020-11-27 2021-03-09 重庆青山工业有限责任公司 双电机混合动力汽车的纯电起步控制方法
CN113022548A (zh) * 2021-03-08 2021-06-25 江苏大学 一种混合动力汽车模式切换控制系统及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102490718A (zh) * 2011-11-30 2012-06-13 重庆大学 双离合器式混合动力汽车电机起动发动机的控制方法
CN107662599A (zh) * 2016-07-29 2018-02-06 长城汽车股份有限公司 车辆的控制方法、控制装置及车辆
CN107264293A (zh) * 2017-06-30 2017-10-20 重庆大学 一种基于模糊控制的并联式混合动力车的能量回收方法
CN108216253A (zh) * 2018-01-05 2018-06-29 重庆青山工业有限责任公司 车辆的驾驶员类型识别控制功能模块构架及控制系统
CN109229091A (zh) * 2018-08-29 2019-01-18 东南大学 基于能量效率最大化的多模混合动力汽车能量管理策略
CN112265539A (zh) * 2020-09-07 2021-01-26 河北工业大学 一种重型混合动力汽车动力系统构型选择方法
CN112455423A (zh) * 2020-11-27 2021-03-09 重庆青山工业有限责任公司 双电机混合动力汽车的纯电起步控制方法
CN113022548A (zh) * 2021-03-08 2021-06-25 江苏大学 一种混合动力汽车模式切换控制系统及其控制方法

Also Published As

Publication number Publication date
CN114426014B (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
CN109532566B (zh) 燃料电池动力系统及动力电池荷电状态控制方法
US6775601B2 (en) Method and control system for controlling propulsion in a hybrid vehicle
US20030085577A1 (en) Control apparatus for transmission-equipped hybrid vehicle, and control method for the same
CN101478172A (zh) 确定混合动力电动车中相对于充电状态的最优操作点的方法
CN111873983B (zh) 一种混合动力汽车扭矩控制的方法、装置及混合动力汽车
CN102658817A (zh) 一种混合动力汽车实现纯电动功能的控制方法
CN102951039A (zh) 一种基于模糊控制的增程式电动车能量管理方法
CN111016874B (zh) 一种用于混合动力汽车的扭矩分配方法和扭矩分配装置
CN104742898A (zh) 一种分速汇矩式混合动力功率流控制方法
CN102901639A (zh) 一种混合动力汽车的加速踏板诊断方法
CN109240125B (zh) 一种混动车变速箱二轴需求扭矩计算方法
CN101624053B (zh) 一种插电式混合动力汽车挡位信号安全的控制方法
CN109177968B (zh) 一种功率分流式混合动力汽车的驱动模式控制方法
CN112172545B (zh) 带超级电容的燃料电池汽车的超级电容控制系统及方法
CN104760591A (zh) 混合动力综合控制系统
CN116834613A (zh) 一种动力电池辅助的氢燃料电池汽车系统能量管理方法
CN113147514B (zh) 一种多能量源氢燃料电池汽车能量管理控制方法及系统
Yang et al. Drive train design and modeling of a parallel diesel hybrid electric bus based on AVL/cruise
CN114426014A (zh) 双电机混合动力汽车串联与并联模式的切换方法
Zhong et al. An optimal torque distribution strategy for an integrated starter—generator parallel hybrid electric vehicle based on fuzzy logic control
CN115596566A (zh) Gpf主动再生方法及混合动力车辆管理系统
CN1439545A (zh) 一种双发动机的混联式混合动力汽车
Zhao et al. Comparison of Hybrid Fuel Cell Vehicle Technology and Fuel Efficiency
Zhichao et al. RESEARCH ON FUEL CONSUMPTION REDUCTION STRATEGY OF 48V MILD HYBRID ELECTRIC VEHICLE
CN211592224U (zh) 一种甲醇混合动力系统与一种甲醇混合动力车辆

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant