CN114425621A - 一种合金增材的耐磨管道 - Google Patents

一种合金增材的耐磨管道 Download PDF

Info

Publication number
CN114425621A
CN114425621A CN202210048206.6A CN202210048206A CN114425621A CN 114425621 A CN114425621 A CN 114425621A CN 202210048206 A CN202210048206 A CN 202210048206A CN 114425621 A CN114425621 A CN 114425621A
Authority
CN
China
Prior art keywords
wear
resistant
alloy
additive
resistant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210048206.6A
Other languages
English (en)
Inventor
孙燕
王文权
秦亚蓉
文永红
孙学泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gansu Jinzechuan Additive Manufacturing Co ltd
Original Assignee
Gansu Jinzechuan Additive Manufacturing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gansu Jinzechuan Additive Manufacturing Co ltd filed Critical Gansu Jinzechuan Additive Manufacturing Co ltd
Priority to CN202210048206.6A priority Critical patent/CN114425621A/zh
Publication of CN114425621A publication Critical patent/CN114425621A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • G01N3/44Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid the indentors being put under a minor load and a subsequent major load, i.e. Rockwell system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

本发明公开了一种合金增材的耐磨管道,属于增材金属耐磨管技术领域,其技术方案要点耐磨管包括底层和耐磨层,所述耐磨层包含以下质量百分比含量的元素;C 3.0‑5.5wt%,Si 0.3‑2.5wt%,Mn 0.3‑2.5wt%,Cr 15‑30wt%,S≤1.0wt%,P≤1.0wt%,Fe合金粉末根据需要添加,以上各元素的质量百分比总和为100%,从而通过冶金结合增材的方式,将碳钢和高耐磨合金成分复合在一起达到冶金结合,实现耐磨性能,由于耐磨层主要结构以针状的碳化铬合金金相组织实现耐磨功能,因此耐磨层表面有龟裂特征,和底材冶金结合后有韧性,打磨抛光后,增加该增材耐磨管的硬度,且根据抗拉强度测试,明显该增材耐磨管抗拉强度、冲击韧性性能较高,有效增加该耐磨管的硬度。

Description

一种合金增材的耐磨管道
技术领域
本发明涉及增材金属耐磨管技术领域,特别涉及一种合金增材的耐磨管道。
背景技术
耐磨管输送已经遍及电力、冶金、煤炭、石油、化工、建材、机械等行业,并高速地发展着,耐磨管的磨损是一种普遍存在的现象,凡两个物体相互接触并有相对运动的表面都会发生磨损,管道磨损是指管道材料受到流动水和小而松散的粒子冲击时,材料表面引起的脱离或转移而造成的损伤破坏的磨损现象。
现有的耐高温耐磨管道,在使用的过程中虽然具备耐磨的特性,但是缺乏高耐磨、高硬度、耐冲击、抗腐蚀的特点,且为了减少成本和制造零件的复杂性,因此有必要提出一种合金增材的耐磨管道来解决上述问题。
发明内容
本发明针对以上问题,提出一种合金增材的耐磨管道来解决上述问题。
本发明是这样实现的,一种合金增材的耐磨管道,包括:耐磨管,所述耐磨管包括底层和耐磨层,所述耐磨层包含以下质量百分比含量的元素;C 3.0-5.5wt%,Si 0.3-2.5wt%,Mn 0.3-2.5wt%,Cr 15-30wt%,S ≤1.0wt%,P ≤1.0wt%,Fe合金粉末根据需要添加,以上各元素的质量百分比总和为100%。
为了使底层中的碳钢和高耐磨合金成分复合在一起达到冶金结合,且保证总厚度在10mm内,作为本发明的一种合金增材的耐磨管道优选的,所述底层材质为碳钢,且厚度为8mm-20mm。
为了增加该耐高温耐磨管道的耐磨性,和对4mm-10mm之间不同厚度耐磨层的硬度进行检测,作为本发明的一种合金增材的耐磨管道优选的,所述耐磨层的厚度为4mm-10mm,且耐磨层结构以针状的碳化铬合金金相组织实现耐磨功能。
为了用合金粉末增材的方式将该耐高温耐磨管道进行制备,作为本发明的一种合金增材的耐磨管道优选的,所述增材耐磨管通过冶金结合增材方式,将碳钢和高耐磨合金成分复合在一起制备而成。
为了对该增材耐磨管的耐磨度和硬度进行检测,作为本发明的一种合金增材的耐磨管道优选的,包括以下步骤:
步骤1、样品准备;
将如权利要求1所述的增材耐磨管切割取样平整展开,将样品焊接在厚度≥100mm的测试块上。
步骤2、打磨抛光;
将样品表面进行磨光磨平,最后用5000目以上超细砂纸抛光。
步骤3、硬度测试;
用台式洛氏硬度仪多点(7个部位)测试取平均值。
为了增加检测的精度,作为本发明的一种合金增材的耐磨管道优选的,步骤2中所述的打磨抛光,采用多点钻取耐磨熔覆层。
为了进一步增加检测的精度,作为本发明的一种合金增材的耐磨管道优选的,步骤3中所述的硬度测试,将增材耐磨管用直读光谱仪进行合金成分检测。
与现有技术相比,本发明的有益效果是:
该种合金增材的耐磨管道,通过冶金结合增材方式,将碳钢和高耐磨合金成分复合在一起达到冶金结合,实现耐磨性能,根据抗拉强度测试,具有合金粉末增材的直管弯曲度和普通的直管弯曲度对比,具有合金粉末增材的弯管弯曲度和未具有耐磨层弯管弯曲度对比,明显该增材耐磨管抗拉强度、冲击韧性性能较高,根据采样打磨检测,耐磨层厚度越高,合金成分和硬度一般会越高,当耐磨层厚度≥4mm时,其硬度和成分即为增材成分,耐磨层越薄合金成分和硬度受到底材稀释影响越明显,由于耐磨层主要结构以针状的碳化铬合金金相组织实现耐磨功能,使得耐磨层表面有龟裂特征,和底材冶金结合后有韧性,打磨抛光,从而有效增加该增材耐磨管的硬度,因此该增材耐磨管具有高耐磨、高硬度、耐冲击、抗腐蚀的特点。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
具体实施方式,一种合金增材的耐磨管道,包括:耐磨管,耐磨管包括底层和耐磨层,耐磨层包含以下质量百分比含量的元素;C 3.0-5.5wt%,Si 0.3-2.5wt%,Mn 0.3-2.5wt%,Cr 15-30wt%,S ≤1.0wt%,P ≤1.0wt%,Fe合金粉末根据需要添加,以上各元素的质量百分比总和为100%。
本实施例中:根据各个元素的质量百分比可将耐磨层进行制备,该耐磨管的耐磨层中各个元素的质量百分比含量为;
Figure 29614DEST_PATH_IMAGE002
作为本发明的一种技术优化方案,底层材质为碳钢,且厚度为8mm-20mm。
本实施例中:由于底层材质为碳钢,可将碳钢和高耐磨合金成分复合在一起达到冶金结合,由于底层厚度为8mm-20mm,底层与耐磨层结合后,保证总厚度在10mm内。
作为本发明的一种技术优化方案,耐磨层的厚度为4mm-10mm,且耐磨层结构以针状的碳化铬合金金相组织实现耐磨功能。
本实施例中:通过以针状的碳化铬合金金相组织实现耐磨层的功能,使得耐磨层具有高硬度、耐冲击的特点,由于耐磨层的厚度为4mm-10mm,便于对4mm-10mm之间不同厚度耐磨层的硬度进行检测。
作为本发明的一种技术优化方案,增材耐磨管通过冶金结合增材方式,将碳钢和高耐磨合金成分复合在一起制备而成。
本实施例中:通过将碳钢和高耐磨合金成分结合,从而实现增材耐磨管表面的耐磨性能。
作为本发明的一种技术优化方案,包括以下步骤:
步骤1、样品准备;
将如权利要求1的增材耐磨管切割取样平整展开,将样品焊接在厚度≥100mm的测试块上。
步骤2、打磨抛光;
将样品表面进行磨光磨平,最后用5000目以上超细砂纸抛光。
步骤3、硬度测试;
用台式洛氏硬度仪多点(7个部位)测试取平均值。
本实施例中:将碳钢和高耐磨合金成分结合形成的增材耐磨管,在检测时,将增材耐磨管切割取样,将样品焊接在厚度≥100mm的测试块上,接着将样品表面进行磨光磨平,最后用5000目以上超细砂纸抛光,用台式洛氏硬度仪多点(7个部位)测试取平均值,检测耐磨层的硬度和成分。
作为本发明的一种技术优化方案,步骤2中的打磨抛光,采用多点钻取耐磨熔覆层。
本实施例中:通过采用多点钻取耐磨熔覆层,在耐磨层上采取多个部位对其进行钻取,从而对耐磨层进行多个点硬度检测,提高检测精度。
作为本发明的一种技术优化方案,步骤3中的硬度测试,将增材耐磨管用直读光谱仪进行合金成分检测。
本实施例中:通过用直读光谱仪进行合金成分检测,检测速度较快且精度较为准确,增加检测数据的准确性。
本发明的工作原理及使用流程:制备该增材耐磨管时,采用冶金结合增材方式,把底层碳钢和按照各个元素制备的耐磨层复合在一起达到冶金结合,实现耐磨性能,对该增材耐磨管进行硬度、拉绳和耐磨测试;
将碳钢和高耐磨合金成分结合形成的增材耐磨管,在检测时,将增材耐磨管切割取样,将样品焊接在厚度≥100mm的测试块上,接着将样品表面进行磨光磨平,最后用5000目以上超细砂纸抛光,用台式洛氏硬度仪多点(7个部位)测试取平均值进行检测,检测的耐磨层硬度成分如表1所示;
Figure 150016DEST_PATH_IMAGE003
进行抗拉强度、冲击韧性测试时,采用金属材料夏比摆锤冲击试验方法;
抗拉强度测试结果由表2所示;
Figure DEST_PATH_IMAGE005
根据打磨后表1 所示,耐磨层厚度越高,合金成分和硬度一般会越高,当耐磨层厚度≥4mm时,其硬度和成分即为增材成分,耐磨层越薄合金成分和硬度受到底材稀释影响越明显,由于耐磨层主要结构以针状的碳化铬合金金相组织实现耐磨功能,因此耐磨层表面有龟裂特征,与底材冶金结合后有韧性,打磨抛光后,从而有效增加该增材耐磨管的硬度,根据抗拉强度测试结果由表2所示,具有合金粉末增材的直管弯曲度和普通的直管弯曲度对比,具有合金粉末增材的弯管弯曲度和未具有耐磨层弯管弯曲度对比,明显该增材耐磨管抗拉强度、冲击韧性性能较高,因此根据测试结果得出该增材耐磨管具有高耐磨、高硬度、耐冲击、抗腐蚀的特点。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种合金增材的耐磨管道,其特征在于:包括耐磨管,所述耐磨管包括底层和耐磨层,所述耐磨层包含以下质量百分比含量的元素;C 3.0-5.5wt%,Si 0.3-2.5wt%,Mn0.3-2.5wt%,Cr 15-30wt%,S ≤1.0wt%,P ≤1.0wt%,Fe合金粉末根据需要添加,以上各元素的质量百分比总和为100%。
2.根据权利要求1所述的一种合金增材的耐磨管道,其特征在于:所述底层材质为碳钢,且厚度为8mm-20mm。
3.根据权利要求1所述的一种合金增材的耐磨管道,其特征在于:所述耐磨层的厚度为4mm-10mm,且耐磨层结构以针状的碳化铬合金金相组织实现耐磨功能。
4.根据权利要求1所述的一种合金增材的耐磨管道,其特征在于:所述增材耐磨管通过冶金结合增材方式,将碳钢和高耐磨合金成分复合在一起制备而成。
5.根据权利要求1所述的一种合金增材的耐磨管道,其特征在于,包括以下步骤:
步骤1、样品准备;
将如权利要求1所述的增材耐磨管切割取样平整展开,将样品焊接在厚度≥100mm的测试块上;
步骤2、打磨抛光;
将样品表面进行磨光磨平,最后用5000目以上超细砂纸抛光;
步骤3、硬度测试;
用台式洛氏硬度仪多点(7个部位)测试取平均值。
6.根据权利要求5所述的一种合金增材的耐磨管道,其特征在于:还包括增材金属耐磨管的检测方法,将步骤2中所述的打磨抛光,采用多点钻取耐磨熔覆层。
7.根据权利要求6所述的一种合金增材的耐磨管道,其特征在于:步骤3中所述的硬度测试,将增材耐磨管用直读光谱仪进行合金成分检测。
CN202210048206.6A 2022-01-17 2022-01-17 一种合金增材的耐磨管道 Pending CN114425621A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210048206.6A CN114425621A (zh) 2022-01-17 2022-01-17 一种合金增材的耐磨管道

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210048206.6A CN114425621A (zh) 2022-01-17 2022-01-17 一种合金增材的耐磨管道

Publications (1)

Publication Number Publication Date
CN114425621A true CN114425621A (zh) 2022-05-03

Family

ID=81311722

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210048206.6A Pending CN114425621A (zh) 2022-01-17 2022-01-17 一种合金增材的耐磨管道

Country Status (1)

Country Link
CN (1) CN114425621A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116970876A (zh) * 2023-09-21 2023-10-31 淄博大亚金属科技股份有限公司 一种防锈耐用不锈钢砂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3315920C1 (de) * 1983-05-02 1984-11-08 Hermann C. Starck Berlin, 1000 Berlin Verfahren zur Herstellung einer Hartlegierung auf Nickelbasis
CN101342505A (zh) * 2008-08-07 2009-01-14 西安建筑科技大学 高压盘式粉磨装备的磨盘
CN105156769A (zh) * 2015-07-14 2015-12-16 山东远大锅炉配件制造有限公司 双金属耐磨复合管
CN109082579A (zh) * 2018-08-13 2018-12-25 天津沃盾耐磨材料有限公司 一种耐冲击耐磨复合钢板
CN110983185A (zh) * 2019-12-23 2020-04-10 天津威尔朗科技有限公司 一种高硬度、高耐磨复合钢管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3315920C1 (de) * 1983-05-02 1984-11-08 Hermann C. Starck Berlin, 1000 Berlin Verfahren zur Herstellung einer Hartlegierung auf Nickelbasis
CN101342505A (zh) * 2008-08-07 2009-01-14 西安建筑科技大学 高压盘式粉磨装备的磨盘
CN105156769A (zh) * 2015-07-14 2015-12-16 山东远大锅炉配件制造有限公司 双金属耐磨复合管
CN109082579A (zh) * 2018-08-13 2018-12-25 天津沃盾耐磨材料有限公司 一种耐冲击耐磨复合钢板
CN110983185A (zh) * 2019-12-23 2020-04-10 天津威尔朗科技有限公司 一种高硬度、高耐磨复合钢管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李艾民,王启广: "《机械工程生产实习教程》", 中央民族大学出版社, pages: 124 - 126 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116970876A (zh) * 2023-09-21 2023-10-31 淄博大亚金属科技股份有限公司 一种防锈耐用不锈钢砂及其制备方法和应用
CN116970876B (zh) * 2023-09-21 2023-12-12 淄博大亚金属科技股份有限公司 一种防锈耐用不锈钢砂及其制备方法和应用

Similar Documents

Publication Publication Date Title
Szala et al. Abrasion resistance of S235, S355, C45, AISI 304 and Hardox 500 steels with usage of garnet, corundum and carborundum abrasives
CN104838032A (zh) 非磁性金属合金组合物和应用
JPS6238427B2 (zh)
Petrica et al. Study of abrasive wear phenomena in dry and slurry 3-body conditions
CN114425621A (zh) 一种合金增材的耐磨管道
Gou et al. Bending strength and wear behavior of Fe-Cr-CB hardfacing alloys with and without rare earth oxide nanoparticles
US20140322560A1 (en) Build-up welding material and machinery part welded with weld overlay metal
Adamiak et al. Comparison of abrasion resistance of selected constructional materials
Vencl et al. Abrasive wear resistance of the iron-and WC-based hardfaced coatings evaluated with scratch test method
Lu et al. Early corrosion stage of welded carbon steel joints in CO2-saturated oilfield water
Ghasemi et al. Load effect on scratch micro-mechanisms of solution strengthened Compacted Graphite Irons
Ghosh et al. Performance enhancement of single-layer miniature cBN wheels using CFUBMS-deposited TiN coating
da Silva et al. Relationship between mechanical and metallurgical properties with machinability when drilling high-strength cast irons
Gurumoorthy et al. Microstructure and wear characteristics of nickel based hardfacing alloys deposited by plasma transferred arc welding
Saha et al. Influence of Heat input on Corrosion Resistance of Duplex Stainless Steel Cladding Using Flux Cored Arc Welding on Low Alloy Steel Flats.
Serate et al. Optimizing composition, fabrication, and inspection of Chromium Carbide Overlay (CCO) for oil sands sliding and impact wear applications
Kozyrev et al. Operational factors of new flux cored wires of the Fe–C–Si–Mn–Cr–Ni–Mo system for surfacing of protective plates of shearer cutting drums
Maroli et al. Effect of type and amount of tungsten carbides on the abrasive wear of laser cladded nickel based coatings
Sun et al. Abrasive wear characteristics of 40Mn2 steel in simulated condition of sprocket wheel in crawler bulldozer walking system
Patel et al. Investigations on Wear Behaviour of AISI 4140 Hot Strip Mill Roller Hardfaced with Martensitic Stainless Steel by Submerged Arc Welding Process
Slota et al. Trzepieci nski, T.; Kašcák, L’. A Comparative Study of Hardfacing Deposits Using a Modified Tribological Testing Strategy. Lubricants 2022, 10, 187
CN103806847A (zh) 耐磨防腐抽油杆接箍
Saha et al. On The Variation of Hardness of Duplex Stainless Steel Clad Layer Deposited by Flux-Cored Arc Welding
Deng et al. The effect of arc current on the microstructure and wear characteristics of Stellite12 coatings deposited by PTA on duplex stainless steel
Hao et al. Application of argon-arc clad Ni 60 A anti-abrasion coatings for cutter of agricultural machinery.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220503