CN114421164B - Low-profile magnetoelectric dipole antenna unit based on artificial surface plasmon and frequency scanning array - Google Patents
Low-profile magnetoelectric dipole antenna unit based on artificial surface plasmon and frequency scanning array Download PDFInfo
- Publication number
- CN114421164B CN114421164B CN202210101041.4A CN202210101041A CN114421164B CN 114421164 B CN114421164 B CN 114421164B CN 202210101041 A CN202210101041 A CN 202210101041A CN 114421164 B CN114421164 B CN 114421164B
- Authority
- CN
- China
- Prior art keywords
- artificial surface
- surface plasmon
- transmission line
- magnetoelectric dipole
- magnetoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 45
- 230000005855 radiation Effects 0.000 claims abstract description 29
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 claims description 4
- 238000005452 bending Methods 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 4
- 238000004891 communication Methods 0.000 abstract description 5
- 238000004088 simulation Methods 0.000 description 10
- 239000002184 metal Substances 0.000 description 8
- 238000013461 design Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/062—Two dimensional planar arrays using dipole aerials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
技术领域technical field
本发明涉及电子领域和无线通信技术领域,具体地,涉及一种低剖面的磁电偶极子天线设计的基于人工表面等离激元的低剖面磁电偶极子天线单元及频扫阵列。The present invention relates to the field of electronics and wireless communication technology, in particular to a low-profile magnetoelectric dipole antenna design based on artificial surface plasmon polaritons and a frequency-swept array.
背景技术Background technique
随着无线通信技术的快速发展,同时受限于有限的安装空间,为了保障已有的网络和服务能够平稳地演进,现有的无线通信系统通常需要磁电偶极子天线具有较低的剖面,然而受限于磁电偶极子的工作原理,大多数磁电偶极子天线设计剖面通常为0.25λ左右,因此这一要求显著增加了天线设计的难度。With the rapid development of wireless communication technology and limited installation space, in order to ensure the smooth evolution of existing networks and services, existing wireless communication systems usually require magnetoelectric dipole antennas with a low profile , however, limited by the working principle of the magnetoelectric dipole, the design profile of most magnetoelectric dipole antennas is usually around 0.25λ, so this requirement significantly increases the difficulty of antenna design.
文献1(查尔文(A.Chlaviin)公布了一种拥有相同E面与H面方向图的新型天线,天线与传播专业IRE学报(Transactions of the IRE Professional Group on Antennasand Propagation),1954,2(3):113-119)中首次提出了基于两种偶极子实现方向图互补这一理论的可行性。Document 1 (A. Chlaviin announced a new type of antenna with the same E-plane and H-plane pattern, Transactions of the IRE Professional Group on Antennas and Propagation, 1954, 2( 3): 113-119) for the first time proposed the feasibility of the theory of complementary pattern based on two kinds of dipoles.
文献2(卢克(K.M.Luk),王(H.Wong)公开了一种新型宽带单向天线[J].国际微波和光学技术杂志(International Journal of Microwave and Optical Technology),2006,1(1):35-44)设计了一种工作于一个极化的磁电偶极子天线,通过采用一个Γ型探针同时激励一对水平贴片和垂直短路贴片来实现电偶极子与磁偶极子辐射,然而单元整体尺寸为0.64λ×0.5λ×0.25λ,尺寸较大且馈电复杂,不利于组成扫描阵列。Document 2 (K.M.Luk, H.Wong) disclosed a novel broadband unidirectional antenna [J]. International Journal of Microwave and Optical Technology, 2006, 1(1 ):35-44) designed a magnetoelectric dipole antenna working in one polarization, by using a Γ-type probe to simultaneously excite a pair of horizontal patches and vertical short-circuit patches Dipole radiation, however, the overall size of the unit is 0.64λ×0.5λ×0.25λ, the size is large and the feeding is complicated, which is not conducive to forming a scanning array.
之后,对于该类型的天线,相关领域的专家、学者和工程技术人员进行了广泛的研究,获得了一系列的技术成果,然而,就已公开的相关磁电偶极子天线技术与结构而言,还存在着以下几个问题。Afterwards, for this type of antenna, experts, scholars and engineering technicians in related fields conducted extensive research and obtained a series of technical achievements. However, as far as the disclosed related magnetoelectric dipole antenna technology and structure , there are still the following problems.
首先,这些改进大多更关注于增加此类天线的阻抗带宽,虽然也进行了较多低剖面小型化设计,但剖面大多大于0.1λ。其次,目前公开的大部分磁电偶极子天线,为保持良好的性能,大多馈电结构复杂,加工困难,不易于组成大角度扫描阵列。由此可见,如何实现低剖面的磁电偶极子,简单的馈电方式,及其在大角度扫描阵列的应用是业内人士亟待解决的问题。First of all, most of these improvements focus more on increasing the impedance bandwidth of this type of antenna. Although many low-profile miniaturized designs have been carried out, the profiles are mostly greater than 0.1λ. Secondly, in order to maintain good performance, most of the currently disclosed magnetoelectric dipole antennas have complex feeding structures, difficult processing, and are not easy to form large-angle scanning arrays. It can be seen that how to realize low-profile magnetoelectric dipoles, a simple feeding method, and its application in large-angle scanning arrays are problems to be solved urgently by people in the industry.
经现有技术专利文献检索发现,中国发明专利公开号为CN111262005A,公开了一种适用于5G基站的双极化宽带磁电偶极子天线单元及天线阵列,属于移动通信基站天线技术领域,不仅实现了双极化,而且具有小型化、宽频带、增益大、后瓣小、方向图稳定、隔离度大等优点,完全可以满足现代5G通信基站的需求。包括金属盒装反射结构以及磁电偶极子、馈电结构,金属盒装结构包括金属底板,磁电偶极子包括对称且间隔分布的多个磁电偶极单元,每个磁电偶极单元均包括上层介质基板以及位于其下方的平行介质板,上层介质基板表面的介质层上印刷有金属贴片以作为电偶极子,平行介质板上设置有金属涂层,金属涂层以及金属底板共同形成磁偶极子;馈电结构包括一对正交布设的馈线,每个馈线的底部与穿过金属底板布设的同轴线连接。而本发明提供了小尺寸的零部件安装结构,解决狭窄造型车灯内部空间不足的问题。因此,该文献与本发明所介绍的方法是属于不同的发明构思。According to the retrieval of existing technical patent literature, the Chinese invention patent publication number is CN111262005A, which discloses a dual-polarized broadband magnetoelectric dipole antenna unit and antenna array suitable for 5G base stations, belonging to the technical field of mobile communication base station antennas, not only Dual polarization is achieved, and it has the advantages of miniaturization, wide frequency band, large gain, small back lobe, stable pattern, and high isolation, which can fully meet the needs of modern 5G communication base stations. Including metal box reflective structure and magnetoelectric dipole, feed structure, metal box structure includes metal bottom plate, magnetoelectric dipole includes a plurality of magnetoelectric dipole units distributed symmetrically and at intervals, each magnetoelectric dipole Each unit includes an upper dielectric substrate and a parallel dielectric plate below it. Metal patches are printed on the dielectric layer on the surface of the upper dielectric substrate as electric dipoles. The parallel dielectric plate is provided with a metal coating, a metal coating and a metal The base plate together forms a magnetic dipole; the feeding structure includes a pair of orthogonally arranged feeder lines, and the bottom of each feeder line is connected with a coaxial line laid through the metal base plate. However, the present invention provides a small-sized component mounting structure, which solves the problem of insufficient internal space of the narrow-shaped vehicle lamp. Therefore, the method introduced in this document and the present invention belongs to different inventive concepts.
发明内容Contents of the invention
针对现有技术中的缺陷,本发明的目的是提供一种基于人工表面等离激元的低剖面磁电偶极子天线单元及频扫阵列。In view of the defects in the prior art, the object of the present invention is to provide a low-profile magnetoelectric dipole antenna unit and a frequency-sweeping array based on artificial surface plasmons.
根据本发明提供的一种基于人工表面等离激元的低剖面磁电偶极子天线单元,包括磁电偶极子辐射结构和共面波导馈电结构,共面波导馈电结构位于磁电偶极子辐射结构一端,磁电偶极子辐射结构通过共面波导馈电结构进行馈电;A low-profile magnetoelectric dipole antenna unit based on artificial surface plasmons provided by the present invention includes a magnetoelectric dipole radiation structure and a coplanar waveguide feeding structure, and the coplanar waveguide feeding structure is located at the magnetoelectric At one end of the dipole radiating structure, the magnetoelectric dipole radiating structure is fed through the coplanar waveguide feeding structure;
磁电偶极子辐射结构包括水平结构的人工表面等离激元传输线和立体人工表面等离激元传输线结构,立体人工表面等离激元传输线结构位于水平结构的人工表面等离激元传输线的中间,水平结构的人工表面等离激元传输线作为电偶极子进行辐射,立体人工表面等离激元传输线结构作为磁偶极子进行辐射。The magnetoelectric dipole radiation structure includes a horizontal artificial surface plasmon transmission line structure and a three-dimensional artificial surface plasmon transmission line structure. The three-dimensional artificial surface plasmon transmission line structure is located between the horizontal artificial surface plasmon transmission line In the middle, the horizontal structure of the artificial surface plasmon transmission line radiates as an electric dipole, and the three-dimensional artificial surface plasmon transmission line structure radiates as a magnetic dipole.
一些实施例中,磁电偶极子辐射结构由良导体折弯而成,弯折的角度为90°。In some embodiments, the magnetoelectric dipole radiating structure is formed by bending a good conductor, and the bending angle is 90°.
一些实施例中,还包括菱形贴片,菱形贴片位于水平结构的人工表面等离激元传输线靠近共面波导馈电结构的一侧中心,菱形贴片弥补由于槽深渐变渐变而引起的电偶极子辐射能量的不平衡。In some embodiments, a diamond patch is also included. The diamond patch is located in the center of one side of the artificial surface plasmon transmission line of the horizontal structure close to the coplanar waveguide feeding structure. An imbalance in the energy radiated by dipoles.
一些实施例中,槽深渐变位于水平结构的人工表面等离激元传输线靠近共面波导馈电结构的一侧上,槽深渐变使能量更好的传输进磁电偶极子辐射结构中。In some embodiments, the gradually changing groove depth is located on the side of the artificial surface plasmon transmission line of the horizontal structure close to the coplanar waveguide feeding structure, and the gradually changing groove depth enables better energy transmission into the magnetoelectric dipole radiation structure.
一些实施例中,立体人工表面等离激元传输线结构呈开口凸字型。In some embodiments, the three-dimensional artificial surface plasmon transmission line structure is in a convex shape with openings.
一些实施例中,立体人工表面等离激元传输线结构的电流走向呈开口电流环状。In some embodiments, the current direction of the three-dimensional artificial surface plasmon transmission line structure is in the shape of an open current loop.
本发明还提供了一种基于人工表面等离激元的低剖面磁电偶极子频扫阵列,包括基于人工表面等离激元的低剖面磁电偶极子天线单元。The present invention also provides a low-profile magnetoelectric dipole frequency-sweep array based on artificial surface plasmons, including a low-profile magnetoelectric dipole antenna unit based on artificial surface plasmons.
一些实施例中,磁电偶极子辐射结构沿轴向周期性扩展连接成串馈阵列,共面波导馈电结构对串馈阵列进行激励,共面波导馈电结构分别位于串馈阵列端部两侧。In some embodiments, the magnetoelectric dipole radiation structure is periodically expanded and connected in the axial direction to form a series feed array, and the coplanar waveguide feed structure excites the series feed array, and the coplanar waveguide feed structures are respectively located at the ends of the series feed array sides.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明通过磁电偶极子辐射结构实现磁电偶极子的更低剖面,减小天线整体尺寸;(1) The present invention realizes the lower section of the magnetoelectric dipole through the radiation structure of the magnetoelectric dipole, and reduces the overall size of the antenna;
(2)本发明通过磁电偶极子辐射结构组成串馈阵列具有频扫特性,可以实现较大角度范围内的波束扫描,波束扫描范围边界接近侧射方向;(2) The present invention forms a serial feed array through a magnetoelectric dipole radiation structure, which has frequency sweep characteristics, and can realize beam scanning in a relatively large angle range, and the boundary of the beam scanning range is close to the side-firing direction;
(3)本发明天线采用共面波导直接馈电,降低了制作成本,整体结构简单,易于加工。(3) The antenna of the present invention uses a coplanar waveguide for direct feeding, which reduces the manufacturing cost, and has a simple overall structure and is easy to process.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1为本发明实施例提供的一种基于人工表面等离激元的低剖面磁电偶极子天线单元的整体示意图;FIG. 1 is an overall schematic diagram of a low-profile magnetoelectric dipole antenna unit based on artificial surface plasmons provided by an embodiment of the present invention;
图2为本发明实施例提供的一种基于人工表面等离激元的低剖面磁电偶极子天线单元的侧视图;2 is a side view of a low-profile magnetoelectric dipole antenna unit based on artificial surface plasmons provided by an embodiment of the present invention;
图3为本发明实施例提供的一种基于人工表面等离激元的低剖面磁电偶极子天线单元的俯视图;3 is a top view of a low-profile magnetoelectric dipole antenna unit based on artificial surface plasmons provided by an embodiment of the present invention;
图4为本发明实施例提供的当输入端口被激励时,天线于2.85GHz处的电流幅值分布图;Fig. 4 is a current amplitude distribution diagram of the antenna at 2.85 GHz when the input port is excited according to an embodiment of the present invention;
图5为本发明实施例提供的当输入端口被激励时,天线于2.85GHz处的矢量电流分布整体图;FIG. 5 is an overall diagram of the vector current distribution of the antenna at 2.85 GHz when the input port is excited according to an embodiment of the present invention;
图6为本发明实施例提供的当输入端口被激励时,天线于2.85GHz处的矢量电流分布侧视图;6 is a side view of the vector current distribution of the antenna at 2.85 GHz when the input port is excited according to an embodiment of the present invention;
图7为本发明实施例中单元天线输入端口的反射系数仿真结果;Fig. 7 is the reflection coefficient simulation result of the unit antenna input port in the embodiment of the present invention;
图8为本发明实施例在2.7GHz时于phi=0°与phi=90°方位面上的方向图仿真结果。FIG. 8 is a simulation result of the pattern of the embodiment of the present invention on the azimuth planes of phi=0° and phi=90° at 2.7 GHz.
图9为本发明实施例在2.85GHz时于phi=0°与phi=90°方位面上的方向图仿真结果。FIG. 9 is a simulation result of the pattern of the embodiment of the present invention on the azimuth planes of phi=0° and phi=90° at 2.85 GHz.
图10为本发明实施例在3GHz时于phi=0°与phi=90°方位面上的方向图仿真结果。FIG. 10 is a simulation result of the pattern of the embodiment of the present invention on the azimuth planes of phi=0° and phi=90° at 3GHz.
图11为本发明实施例提供的一种基于人工表面等离激元的低剖面磁电偶极子频扫天线阵列的整体示意图。FIG. 11 is an overall schematic diagram of a low-profile magnetoelectric dipole frequency-swept antenna array based on artificial surface plasmons provided by an embodiment of the present invention.
图12为本发明实施例提供的一种基于人工表面等离激元的低剖面磁电偶极子频扫天线阵列的侧视图。Fig. 12 is a side view of a low-profile magnetoelectric dipole frequency-swept antenna array based on artificial surface plasmons provided by an embodiment of the present invention.
图13为本发明实施例提供的频扫阵列天线输入端口的反射系数及两个端口传输系数的仿真结果。Fig. 13 is a simulation result of the reflection coefficient of the input port of the frequency-swept array antenna and the transmission coefficient of two ports provided by the embodiment of the present invention.
图14为本发明实施例提供的频扫阵列天线在2.4GHz、2.5GHz、2.6GHz、2.7GHz、2.8GHz、2.9GHz、3GHz时于phi=90°方位面上的方向图仿真结果。FIG. 14 shows the simulation results of the pattern of the frequency-swept array antenna provided by the embodiment of the present invention on the phi=90° azimuth plane at 2.4GHz, 2.5GHz, 2.6GHz, 2.7GHz, 2.8GHz, 2.9GHz, and 3GHz.
图15为本发明实施例提供的频扫阵列天线在2.3GHz-3GHz频段于phi=90°方位面上最大增益角度的变化。Fig. 15 shows the variation of the maximum gain angle on the azimuth plane of phi=90° in the 2.3GHz-3GHz frequency band of the frequency-swept array antenna provided by the embodiment of the present invention.
图16为本发明实施例提供的频扫阵列天线在2.3GHz-3GHz频段阵列最大增益的变化。Fig. 16 shows the variation of the maximum array gain of the frequency-swept array antenna provided by the embodiment of the present invention in the 2.3GHz-3GHz frequency band.
图中标号:Labels in the figure:
磁电偶极子辐射结构1、水平结构的人工表面等离激元传输线11、立体人工表面等离激元传输线结构12、共面波导馈电结构2、菱形贴片3、槽深渐变4、串馈阵列5。Magnetoelectric
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several changes and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
实施例1Example 1
本发明提供的一种基于人工表面等离激元的低剖面磁电偶极子天线单元,根据图1-3所示,包括磁电偶极子辐射结构1、共面波导馈电结构2、菱形贴片3以及槽深渐变4,共面波导馈电结构2位于磁电偶极子辐射结构1一端,磁电偶极子辐射结构1通过共面波导馈电结构2进行馈电。其中,磁电偶极子辐射结构1由良导体弯折90°,磁电偶极子辐射结构1沿轴向周期性扩展。A low-profile magnetoelectric dipole antenna unit based on artificial surface plasmons provided by the present invention, as shown in Figures 1-3, includes a magnetoelectric
磁电偶极子辐射结构1包括水平结构的人工表面等离激元传输线11和呈开口凸字型的立体人工表面等离激元传输线结构12,立体人工表面等离激元传输线结构12位于水平结构的人工表面等离激元传输线11的中间。水平结构的人工表面等离激元传输线11作为电偶极子进行辐射;立体人工表面等离激元传输线结构12作为磁偶极子进行辐射。优选的,其电流走向呈开口电流环状。The magnetoelectric
菱形贴片3连接于水平结构的人工表面等离激元传输线11靠近共面波导馈电结构2的一侧中心,菱形贴片3弥补由于槽深渐变4而引起的电偶极子辐射能量的不平衡。槽深渐变4位于水平结构的人工表面等离激元传输线11靠近共面波导馈电结构2的一侧上,槽深渐变4使能量更好的传输进磁电偶极子辐射结构1中。The diamond-shaped
更为具体的,根据图4-6所示,将具有慢波特性的磁电偶极子辐射结构1多次直角弯折,使得所构成的单元于中心频率2.85GHz处,开口“凸”型立体人工表面等离激元传输线结构12上的电流分布类似于一个顺时针电流走向的开口电流环,作为一个磁偶极子进行辐射。而单元两侧的水平人工表面等离激元传输线11结构上的电流方向一致,作为一对电偶极子进行辐射。在本实施案例中,所使用的人工表面等离激元传输线采用共面波导进行馈电,并对靠近馈电侧的人工表面等离激元传输线槽深渐变4进行渐变设计以扩大天线的工作带宽。一个菱形贴片3被附加在靠近馈电侧的水平结构的人工表面等离激元传输线11结构中心以弥补由槽深渐变4而引起的电偶极子两端辐射能量的不对称。More specifically, as shown in Figures 4-6, the magnetoelectric
附图7-附图10给出了实例天线的相关性能仿真参数,仿真结果可以看出,该天线在2.73GHz-2.97GHz频段上工作良好,相对阻抗带宽为8.4%。天线具有明显的磁电偶极子工作特性,具有较高的天线增益(8.5-9dBi),较低的后瓣辐射,单元在E面(phi=90°)和H面(phi=0°)上的方向图较为对称。而单元的E面方向图之所以主瓣有所偏移,主要是因为为了更好地传输能量,单元靠近馈电侧的人工表面等离激元传输线槽深渐变进行了渐变设计,破坏了电偶极子两端辐射能量的平衡。Accompanying
实施例2Example 2
本发明还提供了一种基于人工表面等离激元的低剖面磁电偶极子频扫阵列,根据图11-12所示,包括基于人工表面等离激元的低剖面磁电偶极子天线单元。多个磁电偶极子辐射结构1串联成串馈阵列5,共面波导馈电结构2对串馈阵列5进行激励,共面波导馈电结构2分别位于串馈阵列5端部两侧。优选的,共面波导馈电结构5采用印制电路板工艺实现,而串馈阵列5则通过将5个磁电偶极子辐射结构1相互连接来实现,该结构由良导体折弯而成。The present invention also provides a frequency-swept array of low-profile magnetoelectric dipoles based on artificial surface plasmons, as shown in Figures 11-12, including low-profile magnetoelectric dipoles based on artificial surface plasmons Antenna unit. Multiple magnetoelectric
更为具体的,附图13-附图16给出了频扫阵列实例天线的相关性能仿真参数,从仿真结果可以看出,该频扫阵列天线在2.4GHz-3GHz具有良好的阻抗性能,相对工作带宽为22.2%,端口有源反射系数<-10dB,端口间隔离度>10dB。阵列在该频段内可以实现54°的波束扫描,阵列增益>8dBi,其中在2.4-2.7GHz,阵列以较稳定的速率(120°/GHz)扫描,而在2.7-3GHz,由于波束越来越靠近阵列侧射方向,扫描速率减慢,但仍然可以实现一定角度范围的波束扫描。More specifically, accompanying drawings 13 to 16 show the relevant performance simulation parameters of the frequency-swept array antenna. It can be seen from the simulation results that the frequency-swept array antenna has good impedance performance at 2.4GHz-3GHz, relatively The working bandwidth is 22.2%, the active reflection coefficient of the port is <-10dB, and the isolation between ports is >10dB. The array can achieve 54° beam scanning in this frequency band, and the array gain is >8dBi. In 2.4-2.7GHz, the array scans at a relatively stable rate (120°/GHz), while in 2.7-3GHz, due to the increasing beam The scanning rate slows down when approaching the side-firing direction of the array, but beam scanning within a certain angular range can still be achieved.
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。In the description of this application, it should be understood that the terms "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", The orientation or positional relationship indicated by "bottom", "inner", "outer", etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the application and simplifying the description, rather than indicating or implying the referred device Or elements must have a certain orientation, be constructed and operate in a certain orientation, and thus should not be construed as limiting the application.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and those skilled in the art may make various changes or modifications within the scope of the claims, which do not affect the essence of the present invention. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210101041.4A CN114421164B (en) | 2022-01-27 | 2022-01-27 | Low-profile magnetoelectric dipole antenna unit based on artificial surface plasmon and frequency scanning array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210101041.4A CN114421164B (en) | 2022-01-27 | 2022-01-27 | Low-profile magnetoelectric dipole antenna unit based on artificial surface plasmon and frequency scanning array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114421164A CN114421164A (en) | 2022-04-29 |
CN114421164B true CN114421164B (en) | 2022-11-29 |
Family
ID=81279643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210101041.4A Active CN114421164B (en) | 2022-01-27 | 2022-01-27 | Low-profile magnetoelectric dipole antenna unit based on artificial surface plasmon and frequency scanning array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114421164B (en) |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB588044A (en) * | 1944-10-31 | 1947-05-13 | Standard Telephones Cables Ltd | Improvements in aerial arrays |
WO2013000519A2 (en) * | 2011-06-30 | 2013-01-03 | Elevenantenna Ab | Improved broadband multi-dipole antenna with frequency-independent radiation characteristics |
CN106712227B (en) * | 2015-07-29 | 2020-05-19 | 比亚迪股份有限公司 | Wireless charging transmitting device |
CN105261841A (en) * | 2015-09-16 | 2016-01-20 | 东南大学 | Quasi-surface plasmon-based leaky-wave antenna |
CN105305099B (en) * | 2015-11-13 | 2018-08-21 | 东南大学 | A kind of wide angle frequency scanning patch array of plane surface phasmon feed |
CN108336500B (en) * | 2018-02-07 | 2020-05-26 | 南京邮电大学 | Single-beam dual-period surface plasmon side-firing leaky-wave antenna |
CN109639240A (en) * | 2018-12-20 | 2019-04-16 | 电子科技大学 | Terahertz frequency multiplier based on artificial surface phasmon |
CN109742532B (en) * | 2019-01-30 | 2020-08-18 | 厦门大学 | Symmetry period slot leaky-wave antenna based on artificial surface plasmon |
CN110085989A (en) * | 2019-05-05 | 2019-08-02 | 南京邮电大学 | A kind of Yagi spark gap leaky-wave antenna based on artificial surface phasmon |
CN110518348A (en) * | 2019-09-03 | 2019-11-29 | 电子科技大学 | A kind of wideband dual polarized electromagnetic dipole antenna element in the equal face E and the face H |
CN110838618B (en) * | 2019-11-15 | 2021-10-08 | 上海交通大学 | Dual-mode antenna based on artificial surface plasmon structure |
CN111129763A (en) * | 2020-02-24 | 2020-05-08 | 盛纬伦(深圳)通信技术有限公司 | Ridge waveguide slot array antenna |
CN111555023B (en) * | 2020-04-27 | 2022-06-14 | 东南大学 | Sum-difference beam antenna with asymmetric dual artificial surface plasmon |
CN113782966B (en) * | 2021-07-12 | 2022-11-08 | 南京邮电大学 | High-gain low-profile Vivaldi antenna based on artificial surface plasmon polariton |
CN113571886B (en) * | 2021-07-30 | 2022-09-20 | 上海交通大学 | Low-profile phase mode antenna and three-dimensional space scanning array formed by same |
-
2022
- 2022-01-27 CN CN202210101041.4A patent/CN114421164B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114421164A (en) | 2022-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7889137B2 (en) | Antenna structure with antenna radome and method for rising gain thereof | |
US7164386B2 (en) | Space-filling miniature antennas | |
CN107275766B (en) | Broadband surface wave antenna based on non-uniform periodic structure loading | |
CN112117532B (en) | Compact low-coupling triple-polarization backtracking array and triple-polarization MIMO antenna unit based on microstrip antenna | |
CN101083357A (en) | Omnidirectional radiative microstrip aerial | |
CN107834212A (en) | High-gain high order cavity array antenna based on new super surface | |
CN112787099A (en) | Patch-driven super-surface antenna applied to 5G millimeter wave communication | |
CN112615147A (en) | Compact low-coupling extensible MIMO antenna based on orthogonal mode | |
CN106356618B (en) | A microwave high-frequency dual-polarization small base station panel antenna | |
EP3830903B1 (en) | Broadband antenna having polarization dependent output | |
CN111146572A (en) | Folding circular polarization reflective array antenna | |
CN110867643A (en) | Wide beam antenna, antenna array and radar applying antenna array | |
CN110233334A (en) | The horizontal polarization leaky-wave antenna of mirror image Medium Wave Guide is integrated based on substrate | |
WO2008105617A1 (en) | Shaped-beam antenna with multi-layered metallic disk array structure surrounded by dielectric ring | |
CN114421164B (en) | Low-profile magnetoelectric dipole antenna unit based on artificial surface plasmon and frequency scanning array | |
CN117855859A (en) | Broadband Huygens super-surface unit, transmission array antenna and design method | |
CN114069260A (en) | Antenna system and electronic equipment comprising same | |
CN108565548B (en) | Millimeter wave antenna | |
Sifat et al. | High gain wideband log periodic dipole array antenna loaded with corrugations | |
CN115036682B (en) | Circularly polarized antenna with wide beam performance covering whole upper half space and based on high-order mode non-uniform compressed dipole | |
CN113964489B (en) | Wide-angle scanning phased array antenna based on bent-shaped slot | |
CN116706552A (en) | An electrically small, low-profile edge-firing Huygens source antenna with a helical structure | |
CN115775968A (en) | Satellite-borne ultra-wideband low-profile lightweight array antenna | |
CN211743384U (en) | Wide beam antenna, antenna array and radar applying antenna array | |
CN114094353A (en) | An ultra-wideband tightly coupled array antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |