CN114415633B - 多网络攻击下基于动态事件触发机制的安全跟踪控制方法 - Google Patents
多网络攻击下基于动态事件触发机制的安全跟踪控制方法 Download PDFInfo
- Publication number
- CN114415633B CN114415633B CN202210019326.3A CN202210019326A CN114415633B CN 114415633 B CN114415633 B CN 114415633B CN 202210019326 A CN202210019326 A CN 202210019326A CN 114415633 B CN114415633 B CN 114415633B
- Authority
- CN
- China
- Prior art keywords
- attack
- tracking
- network
- dynamic event
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000011159 matrix material Substances 0.000 claims abstract description 31
- 230000005540 biological transmission Effects 0.000 claims abstract description 17
- 238000004891 communication Methods 0.000 claims abstract description 5
- 230000005059 dormancy Effects 0.000 claims description 12
- 238000005070 sampling Methods 0.000 claims description 6
- 230000000750 progressive effect Effects 0.000 claims description 3
- 238000013461 design Methods 0.000 abstract description 4
- 238000004088 simulation Methods 0.000 description 9
- 230000004044 response Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/24—Pc safety
- G05B2219/24065—Real time diagnostics
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明公开了一种多网络攻击下基于动态事件触发机制的安全跟踪控制方法,首先建立离散系统模型和参考模型,引入动态事件触发机制,同时考虑到通信网络中随机发生的拒绝服务攻击和欺骗攻击的影响,建立综合网络攻击模型,在动态事件触发机制和多重网络攻击下建立跟踪控制器模型和误差系统模型。在建立的模型基础上,利用李雅普诺夫稳定性理论获得保证误差系统渐近稳定和H∞跟踪性能的充分条件。此外,求解线性矩阵不等式得到控制器增益。与现有跟踪控制器设计方法相比,本发明能够减轻网络传输负载,节约有限的网络资源,同时可以保证误差跟踪系统在多网络攻击影响下安全、稳定运行。
Description
技术领域
本发明属于网络控制技术领域,尤其涉及一种多网络攻击下基于动态事件触发机制的安全跟踪控制方法。
背景技术
网络控制系统因其潜在的广泛应用受到格外关注,例如在电网、民用基础设施、自动驾驶汽车和传感器网络等方面的应用。与传统的点对点连接的控制系统相比,网络控制系统具有方便安装维护和信息共享、成本低等优点。网络的引入使得通信资源变得越来越珍贵,如何解决资源受限问题,给控制系统的分析带来了挑战。
在网络控制系统分析中另外一个必须考虑的重要因素是网络安全问题。网络的利用和未受保护的无线网络上的数据传输不可避免地会受到攻击者的关注。当前威胁网络安全的攻击主要有拒绝服务攻击和欺骗攻击。拒绝服务攻击是攻击者试图堵塞数据传输通道,导致数据在特定时刻无法到达控制器。欺骗攻击发生时,当前传输的数据会被伪造的数据包篡改,破坏数据的真实性。需要指出的是,网络信息安全得不到保障,将严重制约网络控制系统的发展。
因此,研究拒绝服务攻击和欺骗攻击下基于动态事件触发机制的网络控制系统的安全跟踪控制是一个亟待解决的问题。
发明内容
本发明目的在于提供一种多网络攻击下基于动态事件触发机制的安全跟踪控制方法,以解决资源受限和网络信息安全的技术问题。
为解决上述技术问题,本发明的具体技术方案如下:
一种多网络攻击下基于动态事件触发机制的安全跟踪控制方法,包括以下步骤:
步骤1、建立离散系统模型和参考模型;
所述离散系统模型如下:
x(k+1)=Ax(k)+Bu(k)+Dω(k)
其中,x(k)∈Rn为状态向量,u(k)∈Rm为控制输入,ω(k)为外部扰动;A,B,D为合适维度的已知常数矩阵;Rn为n维向量空间,Rm为m维向量空间,n和m属于自然数集N;
所述参考模型如下:
xr(k+1)=Arxr(k)+Brr(k)
其中,xr(k)∈Rp是参考模型的状态向量,r(k)∈Rq是参考输入上界,Ar和Br为常数矩阵;Rp为p维向量空间,Rq为q维向量空间,p和q属于自然数集N;
步骤2、引入动态事件触发机制,来解决资源约束问题;
不满足如下条件的数据包被认为是不必要的数据将被触发机制丢弃;当满足如下条件时,采样数据被释放到网络当中且被传输到跟踪控制器:
其中e(k)是跟踪误差,e(kt)是最近传输时刻的采样数据,eT(k),/>是相应的转置矩阵;k是当前采样时刻,kt是最近传输时刻,kt+1为下一传输时刻;θ和σ为已知正标量;N为自然数集;
在动态事件触发机制下,跟踪控制器的输入被描述为:
u(k)=Ke(kt);
其中K为待设计的跟踪控制器增益;
步骤3、考虑拒绝服务攻击和欺骗攻击对网络传输数据造成的影响,建立综合网络攻击模型;
步骤4、基于多网络攻击和动态事件触发机制,设计网络控制系统跟踪控制器和跟踪误差模型;
步骤5、基于李雅普诺夫稳定性理论,得到确保误差系统渐进稳定的充分性条件;
步骤6、求解线性矩阵不等式,获取跟踪控制器增益。
进一步的,所述步骤2中正时变阈值函数ε(k)定义如下:
其中λ∈(0,1)为给定常数,ε(k+1)为k+1时刻阈值;正时变阈值函数ε(k)根据跟踪误差动态调整,当跟踪误差e(k)趋于稳定时,采样条件kt+1被满足的次数下降,变化很小的数据将不会被传输。
进一步的,步骤3具体包括以下步骤:
步骤3.1、考虑网络通道中欺骗攻击的影响,跟踪控制器的实际输入变为:
其中βk为伯努利分布变量;βk=0表示欺骗攻击活跃,实际控制器输入被欺骗攻击替换为h(e(kt));βk=1表示欺骗攻击休眠,实际控制器输入为真实值/>h(e(kt))为欺骗攻击的信号满足:
hT(e(kt))h(e(kt))≤eT(kt)GTGe(kt)
G为已知常数矩阵;
步骤3.2、考虑拒绝服务攻击的影响时,
此公式提供了随机出现的多重攻击的综合公式,其中,为双重攻击下的控制器输入,αk为伯努利分布变量;αk=0时表示拒绝服务攻击活跃,通信信道被拒绝服务攻击阻断,此时控制器输入为0;αk=1表示拒绝服务攻击休眠,实际控制器输入为真实值/>
随机变量αk和βk为相互独立的伯努利随机变量取{0,1}上的值,并满足如下概率分布
为拒绝服务攻击休眠的概率,/>为欺骗攻击休眠的概率,其中/>
若αkβk=0,表示系统受到攻击,其中αk=0是只发生拒绝服务攻击的情况,βk=0是只发生欺骗攻击的情况,实际控制器输入分别是h(e(kt))和0;当αkβk=1时,网络不受攻击影响。
进一步的,所述步骤4具体包括以下步骤:
在经过动态事件触发机制、欺骗攻击和拒绝服务攻击之后,控制器输入的真实值变化为因此将u(k)表示为如下形式:
同时系统模型x(k)表示为:
定义跟踪误差为则跟踪误差系统模型如下:
其中Ve(k)=(A-Ar)xr(k)+Dω(k)-Brr(k)。
进一步的,所述步骤5具体包括以下步骤:
设定标量λ∈(0,1),θ∈(0,+∞),γ∈(0,+∞),δ∈(0,+∞),矩阵K,误差系统在跟踪性能的条件下是渐近稳定的,存在正定矩阵P,使得下列不等式成立:
其中
Ξ51=[G -G 0 0]
且I为合适维度的单位矩阵,*为对称矩阵Ω的对称项。
进一步的,所述步骤6具体包括以下步骤:
设定标量λ∈(0,1),θ∈(0,+∞),δ∈(0,+∞),H∞跟踪性能指标参数γ∈(0,+∞),误差系统在跟踪性能的条件下是渐近稳定的,存在正定矩阵P,使得下列不等式成立:
其中:
且
令X=P-1,Y=KX,则控制器的预期增益为:K=YX-1。
本发明的多网络攻击下基于动态事件触发机制的安全跟踪控制方法,具有以下优点:
1、本发明引入动态事件触发机制来动态地调整触发条件,进一步更有效地减轻网络传输的负担,从而提高网络带宽资源利用率。
2、考虑实际系统受到拒绝服务攻击和欺骗攻击的情况,本发明提出一种多网络攻击数学模型建立方法,首次将多个网络攻击、动态事件触发机制与跟踪控制模型相结合。
3、考虑受限的网络资源、系统安全以及外部扰动因素,建立动态事件触发安全误差系统模型,该模型能够抵制网络攻击和外部扰动的影响,在有效节省网络资源的情况下,实现最终H∞(H∞是对传递函数增益大小的一个度量指标)稳定。
4、考虑到网络系统中数据传输量大而网络资源受限的特性,研究了一类基于动态事件触发机制的离散网络控制系统的H∞跟踪控制器设计问题,利用李雅普诺夫稳定性理论和线性矩阵不等式技术,得到了跟踪误差系统渐近稳定的充分性条件,并且给出了期望的跟踪控制器增益。
附图说明
图1为本发明的提供的跟踪控制器设计流程图;
图2为本发明仿真实例中系统状态x(k)和参考模型xr(k)的状态响应图;
图3为本发明仿真实例中跟踪误差系统响应图;
图4为本发明仿真实例中控制输入在多网络攻击下的响应图;
图5为本发明动态事件触发机制下的释放间隔和释放周期图。
具体实施方式
为了更好地了解本发明的目的、结构及功能,下面结合附图,对本发明一种多网络攻击下基于动态事件触发机制的安全跟踪控制方法做进一步详细的描述。
如图1所示的受多重网络攻击的基于动态事件触发机制的安全跟踪控制器设计方法,包括以下步骤:
步骤S1、建立一类离散系统模型和参考模型;
具体地,所述离散系统模型如下:
x(k+1)=Ax(k)+Bu(k)+Dω(k)
其中,x(k)∈Rn为状态向量,u(k)∈Rm为控制输入,ω(k)为外部扰动;A,B,D为合适维度的已知常数矩阵;Rn为n维向量空间,Rm为m维向量空间,n和m属于自然数集N。
建立参考模型如下:
xr(k+1)=Arxr(k)+Brr(k)
其中,xr(k)∈Rp是参考模型的状态向量,r(k)∈Rq是参考输入上界,Ar和Br为常数矩阵;Rp,Rq分别为p维和q维向量空间,p和q属于自然数集N。
步骤S2、引入动态事件触发机制;
具体地,本发明引入如下动态事件触发机制来解决资源约束问题。不满足如下条件的数据包被认为是不必要的数据将被触发机制丢弃;当满足如下条件时,采样数据被释放到网络当中且被传输到跟踪控制器:
其中e(k)是跟踪误差,e(kt)是最近传输时刻的采样数据,eT(k),/>是相应的转置矩阵;k是当前采样时刻,kt是最近传输时刻,kt+1为下一传输时刻;θ和σ为已知正标量;N为自然数集;正时变阈值函数ε(k)定义如下:
其中λ∈(0,1)为给定常数,ε(k+1)为k+1时刻阈值;从上述公式可以看出,阈值ε(k)可以根据跟踪误差动态调整。当跟踪误差e(k)趋于稳定时,采样条件kt+1被满足的次数下降,一些变化很小的数据将不会被传输,有效地节省了有限的网络资源。
在动态事件触发机制下,跟踪控制器的输入被描述为:
u(k)=Ke(kt);
其中K为待设计的跟踪控制器增益。
步骤S3、考虑拒绝服务攻击和欺骗攻击对网络传输数据造成的影响,建立综合网络攻击模型;
步骤3.1、考虑网络通道中欺骗攻击的影响,跟踪控制器的实际输入变为:
其中βk为伯努利分布变量;βk=0表示欺骗攻击活跃,实际控制器输入被欺骗攻击替换为h(e(kt));βk=1表示欺骗攻击休眠,实际控制器输入为真实值/>h(e(kt))为欺骗攻击的信号满足:
hT(e(kt))h(e(kt))≤eT(kt)GTGe(kt)
G为已知常数矩阵;
步骤3.2、考虑拒绝服务攻击的影响时,
此公式提供了随机出现的多重攻击的综合公式,其中,为双重攻击下的控制器输入,αk为伯努利分布变量;αk=0时表示DoS攻击活跃,通信信道被DoS攻击阻断,此时控制器输入为0;αk=1表示DoS攻击休眠,实际控制器输入为真实值/>
随机变量αk和βk为相互独立的伯努利随机变量取{0,1}上的值,并满足如下概率分布
为拒绝服务攻击休眠的概率,/>为欺骗攻击休眠的概率,其中/>
值得注意的是,在步骤3.2中,如果αkβk=0,表示系统受到攻击,其中αk=0或βk=0分别是只发生DoS攻击和只发生欺骗攻击的情况,实际控制器输入分别是h(e(kt))和0。当αkβk=1时,网络不受攻击影响。
步骤S4、基于多网络攻击和动态事件触发机制,设计网络控制系统跟踪控制器和跟踪误差模型如下:
考虑多次网络攻击,u(k)表示为:
在经过动态事件触发机制、欺骗攻击和DoS攻击之后,控制器输入的真实值变化为因此将u(k)表示为上述形式。
同时系统模型x(k)表示为:
定义跟踪误差为则跟踪误差系统模型如下:
其中Ve(k)=(A-Ar)xr(k)+Dω(k)-Brr(k)。
步骤S5、基于李雅普诺夫稳定性理论(Lyapunov)稳定性理论,得到确保误差系统渐进稳定的充分性条件;
设定标量λ∈(0,1),θ∈(0,+∞),γ∈(0,+∞),δ∈(0,+∞),矩阵K,误差系统在跟踪性能的条件下是渐近稳定的,如果存在正定矩阵P,使得下列不等式成立
其中
Ξ51=[G -G 0 0]
且I为合适维度的单位矩阵,*为对称矩阵Ω的对称项。
证明过程如下:
构建李雅普诺夫函数如下:
令ΔV(k)=V(k+1)-V(k),并对ΔV(k)取期望E,有:
由
可得
其中
事件触发机制改写为:
可得
引入欺骗攻击函数条件
综合可得:
改写为:
其中γ为跟踪性能指标,
使用舒尔定理(Schur),可以得出;成立当且仅当Ω成立
根据零初始条件,可得:
可以得出,误差系统渐进稳定。
步骤S6、求解线性矩阵不等式,获取跟踪控制器增益;
设定标量λ∈(0,1),θ∈(0,+∞),δ∈(0,+∞),H∞跟踪性能指标参数γ∈(0,+∞),误差系统在跟踪性能的条件下是渐近稳定的,如果存在正定矩阵P,使得下列不等式成立:
其中:
且
令X=P-1,Y=KX,则控制器的预期增益为:K=YX-1。
证明如下:
令X=P-1,Y=KX,Σ=diag{X,I,I,I,X,X,X,I},用Σ左乘Ω,用ΣT右乘Ω,可以求得:
其中
由于对任意的正定矩阵X,以及标量δ,由
(I-δ-1X)I-1(I-δ-1X)≥0
可得:
-XX≤-2δX+δ2I
用-2δX+δ2I替换-XX,可得到充分性条件根据步骤S6的结果可以得到误差系统具有渐近稳定性。控制器增益K=YX-1可由Y=KX获得。
步骤S7、仿真算例分析
下面采用仿真分析的方法提供一份具体实施例,通过编写Matlab程序求解线性矩阵不等式以获得跟踪控制器增益并绘制仿真曲线,用仿真实例证明本发明的有效性:
考虑系统参数为:
考虑参考模型参数为:
设定参考输入上界为:
并且给定σ=0.7,θ=3,λ=0.9。
欺骗攻击和非线性函数表述为:
h(e(kt))=0.1sin(-0.4e(kt))
其中G=diag{-0.1,0.5}。
考虑扰动输入为:
令H∞跟踪性能指标参数γ=0.52。
使用matlab的LMI工具箱可得出:
进而跟踪控制器的增益为:K=[-0.2089 0.1102]
图2-图5给出了仿真结果。状态向量x(k)和跟踪信号xr(k)如图2所示。从图2可以发现,跟踪信号与二十秒后的状态响应轨迹基本一致。图3显示跟踪误差e(k)逐渐趋近于零。控制输入u(k)的响应,如图4所示,其中实线为控制输入,黑色无边框表示欺骗攻击,白色有边框表示DoS攻击,黑色有边框表示欺骗攻击和DoS攻击同时发生。可以看到,当拒绝服务攻击和欺骗攻击同时发生时,控制输入u(k)的响应。图5显示了在动态事件触发下的释放时刻和释放间隔。
从以上仿真结果可以看出:本发明公开的一种多网络攻击下基于动态事件触发的网络控制系统的安全跟踪控制方法能够在多网络攻击情况下保证误差系统渐近稳定的同时,减轻有限网络带宽的压力,显示了本发明技术方案的有效性。
可以理解,本发明是通过一些实施例进行描述的,本领域技术人员知悉的,在不脱离本发明的精神和范围的情况下,可以对这些特征和实施例进行各种改变或等效替换。另外,在本发明的教导下,可以对这些特征和实施例进行修改以适应具体的情况及材料而不会脱离本发明的精神和范围。因此,本发明不受此处所公开的具体实施例的限制,所有落入本申请的权利要求范围内的实施例都属于本发明所保护的范围内。
Claims (6)
1.一种多网络攻击下基于动态事件触发机制的安全跟踪控制方法,其特征在于,包括以下步骤:
步骤1、建立离散系统模型和参考模型;
所述离散系统模型如下:
x(k+1)=Ax(k)+Bu(k)+Dω(k)
其中,x(k)∈Rn为状态向量,u(k)∈Rm为控制输入,ω(k)为外部扰动;A,B,D为合适维度的已知常数矩阵;Rn为n维向量空间,Rm为m维向量空间,n和m属于自然数集N;
所述参考模型如下:
xr(k+1)=Arxr(k)+Brr(k)
其中,xr(k)∈Rp是参考模型的状态向量,r(k)∈Rq是参考输入上界,Ar和Br为常数矩阵;Rp为p维向量空间,Rq为q维向量空间,p和q属于自然数集N;
步骤2、引入动态事件触发机制,来解决资源约束问题;
不满足如下条件的数据包被认为是不必要的数据将被触发机制丢弃;当满足如下条件时,采样数据被释放到网络当中且被传输到跟踪控制器:
其中e(k)是跟踪误差,e(kt)是最近传输时刻的采样数据,eT(k),是相应的转置矩阵;k是当前采样时刻,kt是最近传输时刻,kt+1为下一传输时刻;θ和σ为已知正标量;N为自然数集;ε(k)为正时变阈值函数;min为最小值;
在动态事件触发机制下,跟踪控制器的输入被描述为:
u(k)=Ke(kt);
其中K为待设计的跟踪控制器增益;
步骤3、考虑拒绝服务攻击和欺骗攻击对网络传输数据造成的影响,建立综合网络攻击模型;
步骤4、基于多网络攻击和动态事件触发机制,设计网络控制系统跟踪控制器和跟踪误差模型;
步骤5、基于李雅普诺夫稳定性理论,得到确保误差系统渐进稳定的充分性条件;
步骤6、求解线性矩阵不等式,获取跟踪控制器增益。
2.根据权利要求1所述的多网络攻击下基于动态事件触发机制的安全跟踪控制方法,其特征在于,所述步骤2中正时变阈值函数ε(k)定义如下:
其中λ∈(0,1)为给定常数,ε(k+1)为k+1时刻阈值;正时变阈值函数ε(k)根据跟踪误差动态调整,当跟踪误差e(k)趋于稳定时,采样条件kt+1被满足的次数下降,变化很小的数据将不会被传输。
3.根据权利要求2所述的多网络攻击下基于动态事件触发机制的安全跟踪控制方法,其特征在于,步骤3具体包括以下步骤:
步骤3.1、考虑网络通道中欺骗攻击的影响,跟踪控制器的实际输入变为:
其中βk为伯努利分布变量;βk=0表示欺骗攻击活跃,实际控制器输入被欺骗攻击替换为h(e(kt));βk=1表示欺骗攻击休眠,实际控制器输入为真实值/>h(e(kt))为欺骗攻击的信号满足:
hT(e(kt))h(e(kt))≤eT(kt)GTGe(kt)
G为已知常数矩阵;
步骤3.2、考虑拒绝服务攻击的影响时,
此公式提供了随机出现的多重攻击的综合公式,其中,为双重攻击下的控制器输入,αk为伯努利分布变量;αk=0时表示拒绝服务攻击活跃,通信信道被拒绝服务攻击阻断,此时控制器输入为0;αk=1表示拒绝服务攻击休眠,实际控制器输入为真实值/>
随机变量αk和βk为相互独立的伯努利随机变量取{0,1}上的值,并满足如下概率分布
为拒绝服务攻击休眠的概率,/>为欺骗攻击休眠的概率,其中/>
若αkβk=0,表示系统受到攻击,其中αk=0是只发生拒绝服务攻击的情况,βk=0是只发生欺骗攻击的情况,实际控制器输入分别是h(e(kt))和0;当αkβk=1时,网络不受攻击影响。
4.根据权利要求3所述的多网络攻击下基于动态事件触发机制的安全跟踪控制方法,其特征在于,所述步骤4具体包括以下步骤:
在经过动态事件触发机制、欺骗攻击和拒绝服务攻击之后,控制器输入的真实值变化为因此将u(k)表示为如下形式:
同时系统模型x(k)表示为:
定义跟踪误差为则跟踪误差系统模型如下:
其中Ve(k)=(A-Ar)xr(k)+Dω(k)-Brr(k)。
5.根据权利要求4所述的多网络攻击下基于动态事件触发机制的安全跟踪控制方法,其特征在于,所述步骤5具体包括以下步骤:
设定标量λ∈(0,1),θ∈(0,+∞),γ∈(0,+∞),δ∈(0,+∞),矩阵K,误差系统在跟踪性能的条件下是渐近稳定的,存在正定矩阵P,使得下列不等式成立:
其中
Ξ51=[G -G 0 0]
且I为合适维度的单位矩阵,*为对称矩阵Ω的对称项。
6.根据权利要求5所述的多网络攻击下基于动态事件触发机制的安全跟踪控制方法,其特征在于,所述步骤6具体包括以下步骤:
设定标量λ∈(0,1),θ∈(0,+∞),δ∈(0,+∞),H∞跟踪性能指标参数γ∈(0,+∞),误差系统在跟踪性能的条件下是渐近稳定的,存在正定矩阵P,使得下列不等式成立:
其中:
且
令X=P-1,Y=KX,则控制器的预期增益为:K=YX-1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210019326.3A CN114415633B (zh) | 2022-01-10 | 2022-01-10 | 多网络攻击下基于动态事件触发机制的安全跟踪控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210019326.3A CN114415633B (zh) | 2022-01-10 | 2022-01-10 | 多网络攻击下基于动态事件触发机制的安全跟踪控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114415633A CN114415633A (zh) | 2022-04-29 |
CN114415633B true CN114415633B (zh) | 2024-02-02 |
Family
ID=81270587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210019326.3A Active CN114415633B (zh) | 2022-01-10 | 2022-01-10 | 多网络攻击下基于动态事件触发机制的安全跟踪控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114415633B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115616901B (zh) * | 2022-08-28 | 2024-04-19 | 西北工业大学 | 一种拒绝服务攻击下电力系统事件触发固定时分布式频率控制方法 |
CN115981268B (zh) * | 2022-11-29 | 2023-09-22 | 重庆邮电大学 | 一种拒绝服务攻击下不确定非线性系统的自适应事件触发控制器的设计方法 |
CN116614299B (zh) * | 2023-06-15 | 2024-04-05 | 哈尔滨理工大学 | 一种受混合攻击的复杂网络动态事件触发牵引控制方法 |
CN118138367B (zh) * | 2024-04-16 | 2024-09-20 | 兰州理工大学 | 面向混合网络攻击的信息物理系统安全预测控制方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109375514A (zh) * | 2018-11-30 | 2019-02-22 | 沈阳航空航天大学 | 一种存在假数据注入攻击时的最优跟踪控制器设计方法 |
CN110213115A (zh) * | 2019-06-25 | 2019-09-06 | 南京财经大学 | 一种多网络攻击下事件驱动网络控制系统的安全控制方法 |
CN112289020A (zh) * | 2020-09-20 | 2021-01-29 | 国网江苏省电力有限公司信息通信分公司 | 混合网络攻击下基于自适应触发机制的车辆路径跟踪安全控制方法 |
CN113625684A (zh) * | 2021-07-26 | 2021-11-09 | 云境商务智能研究院南京有限公司 | 混合网络攻击下基于事件触发机制的跟踪控制器及方法 |
WO2022000945A1 (zh) * | 2020-07-01 | 2022-01-06 | 武汉理工大学 | DoS攻击下基于切换T-S模糊系统的无人船艇控制方法 |
-
2022
- 2022-01-10 CN CN202210019326.3A patent/CN114415633B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109375514A (zh) * | 2018-11-30 | 2019-02-22 | 沈阳航空航天大学 | 一种存在假数据注入攻击时的最优跟踪控制器设计方法 |
CN110213115A (zh) * | 2019-06-25 | 2019-09-06 | 南京财经大学 | 一种多网络攻击下事件驱动网络控制系统的安全控制方法 |
WO2022000945A1 (zh) * | 2020-07-01 | 2022-01-06 | 武汉理工大学 | DoS攻击下基于切换T-S模糊系统的无人船艇控制方法 |
CN112289020A (zh) * | 2020-09-20 | 2021-01-29 | 国网江苏省电力有限公司信息通信分公司 | 混合网络攻击下基于自适应触发机制的车辆路径跟踪安全控制方法 |
CN113625684A (zh) * | 2021-07-26 | 2021-11-09 | 云境商务智能研究院南京有限公司 | 混合网络攻击下基于事件触发机制的跟踪控制器及方法 |
Non-Patent Citations (1)
Title |
---|
自适应触发下一类神经网络的安全同步控制;刘延;刘清怡;;宜宾学院学报(第06期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114415633A (zh) | 2022-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114415633B (zh) | 多网络攻击下基于动态事件触发机制的安全跟踪控制方法 | |
Cao et al. | Hybrid-triggered-based security controller design for networked control system under multiple cyber attacks | |
CN110213115B (zh) | 一种多网络攻击下事件驱动网络控制系统的安全控制方法 | |
CN113009825B (zh) | 一种受欺骗攻击的非线性网络化系统状态估计方法 | |
Zha et al. | Resilient event-triggered consensus control for nonlinear muti-agent systems with DoS attacks | |
CN111679572B (zh) | 多网络攻击下基于混合触发的网络控制系统安全控制方法 | |
CN113625684B (zh) | 一种混合网络攻击下基于事件触发机制的跟踪控制器的设计方法 | |
CN112286051A (zh) | 复杂网络攻击下基于自适应事件触发机制的神经网络量化控制方法 | |
CN113721467B (zh) | 欺骗攻击和DoS攻击下基于自适应事件触发的H∞滤波器设计方法 | |
CN113741309A (zh) | 一种基于观测器的双动态事件触发控制器模型设计方法 | |
CN112865752A (zh) | 一种混合网络攻击下基于自适应事件触发机制的滤波器设计方法 | |
CN114442592A (zh) | 重放攻击和欺骗攻击下的网络化互联系统的自适应事件触发控制器设计方法 | |
Zhao et al. | Active control strategy for switched systems against asynchronous DoS attacks | |
CN113741198A (zh) | 随机网络攻击下的t-s模糊系统自适应事件触发状态估计方法 | |
Belamfedel Alaoui et al. | New design of anti-windup and dynamic output feedback control for TCP/AQM system with asymmetrical input constraints | |
Liu et al. | Event-triggering-based H∞ load frequency control for multi-area cyber–physical power system under DoS attacks | |
Du et al. | Fully distributed event‐triggered consensus control for linear multiagent systems under DoS attacks | |
Xu et al. | Event-triggered stabilization for networked control systems under random occurring deception attacks | |
Zhang et al. | Co-design of output-based security control and dynamic event-triggered mechanism for NCSs under hybrid cyber attacks | |
CN116382073A (zh) | 一种基于观测器的双动态事件触发控制器模型设计方法 | |
CN113625647A (zh) | 非线性系统事件驱动器与doffss控制器联合设计法 | |
CN115562241A (zh) | 网络化控制系统中的事件触发预测控制方法 | |
Huang et al. | Stabilization of uncertain networked control systems with actuator saturation and probabilistic cyberattacks | |
CN114070582B (zh) | 一种事件触发控制方法及系统 | |
CN113625558A (zh) | 基于区间二型t-s模糊的欺骗攻击下的网络控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |