CN114410819A - Functional marker group for identifying multiple rice blast resistance alleles of rice Pik locus, primer combination and application of functional marker group - Google Patents

Functional marker group for identifying multiple rice blast resistance alleles of rice Pik locus, primer combination and application of functional marker group Download PDF

Info

Publication number
CN114410819A
CN114410819A CN202210069256.2A CN202210069256A CN114410819A CN 114410819 A CN114410819 A CN 114410819A CN 202210069256 A CN202210069256 A CN 202210069256A CN 114410819 A CN114410819 A CN 114410819A
Authority
CN
China
Prior art keywords
sequence
primer
pik
rice
stranded dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210069256.2A
Other languages
Chinese (zh)
Inventor
杨秀荣
闫双勇
李月娇
孙淑琴
李广胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Academy of Agricultural Sciences
Original Assignee
Tianjin Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Academy of Agricultural Sciences filed Critical Tianjin Academy of Agricultural Sciences
Priority to CN202210069256.2A priority Critical patent/CN114410819A/en
Publication of CN114410819A publication Critical patent/CN114410819A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a functional marker group for identifying a plurality of rice blast resistance alleles at the Pik locus of rice, wherein the functional marker group is a KASP functional marker group and comprises functional markers MPik1, MPik2, MPik3, MPik4 and MPik5, and the rice blast resistance alleles comprise Pi1, Pikm _ TS, PiKs, PiKa, Pik, PiKp and Pi 7. Also discloses a complete set of KASP primer group for detecting the functional marker group and a detection method. By carrying out multi-sequence comparison among different disease-resistant alleles and disease-sensitive genes, SNP loci which can be used for distinguishing different alleles of a Pik locus are screened out, and on the basis, a functional marker group which can be used for distinguishing the Pik locus disease-resistant genes and distinguishing different disease-resistant alleles is successfully developed; the functional marker groups can be used for accurately distinguishing different resistance alleles, and have important breeding application value.

Description

Functional marker group for identifying multiple rice blast resistance alleles of rice Pik locus, primer combination and application of functional marker group
Technical Field
The invention relates to the technical field of molecular biology, in particular to a functional marker group for identifying multiple rice blast resistance alleles of a rice Pik locus, a primer combination and application thereof.
Background
Rice is one of the most important food crops in the world. The rice blast caused by Pyricularia oryzae (Pyricularia oryzae Cav) is the most damaging rice disease in the world so far, and the yield of rice is reduced by about 10% -30% per year due to the rice blast in the world, and is 40% -50% in severe cases, and even no grain is harvested. So far, the disease cannot be properly controlled in production, the global climate begins to become warm along with the aggravation of greenhouse effect, and the outbreak of rice blast disease of rice develops towards the trend of being unobtainable; therefore, screening of good varieties of rice blast resistance is very important for controlling the occurrence of the rice blast from the source. The screening of the rice blast resistant varieties mainly comprises artificial inoculation identification or natural induction identification, the method is original, the mechanism is not clear, the artificial inoculation method is used for the rice blast resistance identification, the identification period is long, the physiological races of pathogenic bacteria are lagged, and the natural induction identification method has the problems of uneven distribution of the pathogenic bacteria, large annual resistance difference and the like. Therefore, the method for improving the rice blast resistance of the variety by using the molecular marker-assisted selection has important application value.
Several rice blast resistance genes have been cloned at present, such as Pizt, Pi9, Pigm, Pi2, Pik, Pi21, Pi54, etc. The cloning of the rice blast resistance gene provides an important basis for molecular marker-assisted breeding of rice blast, and promotes the transition of the cultivation of rice blast resistance varieties from the traditional breeding method based on artificial inoculation identification to the molecular breeding method based on molecular marker-assisted selection.
The resistance gene of the Pik locus is a resistance gene locus with better application effect in breeding at present. The locus contained 7 resistance alleles, i.e., Pi1, Pikm _ TS, PiKs, PiKa, Pik, PiKp, Pi 7. These resistance genes have different resistance effects, and some resistance alleles have lost the value of breeding applications. Therefore, the accurate identification of different resistance alleles has important breeding application value.
Molecular marker identification methods of Pik locus resistance genes have been reported in patent documents and articles, but most of the molecular markers only consider sequence differences between Pik genes of disease-resistant varieties and susceptible varieties, but cannot distinguish differences between different resistance alleles.
Disclosure of Invention
The invention carries out multi-sequence comparison among different rice blast disease-resistant alleles and disease-sensitive genes, screens SNP/Indel sites which can be used for distinguishing different alleles of Pik loci, develops functional marker groups which can be used for distinguishing the Pik locus resistance genes and different resistance alleles on the basis, and can accurately distinguish different resistance alleles by using the functional marker groups, thereby having important breeding application value. Based on this, the invention claims the following technical scheme:
in a first aspect of the invention, there is provided a set of functional markers for identifying a plurality of rice blast resistance alleles at the Pik locus of rice, the set of functional markers being a KASP functional marker set comprising the functional markers MPik1, MPik2, MPik3, MPik4, MPik5, the rice blast resistance alleles comprising Pi1, Pikm _ TS, Piks, Pika, Pik, PiKp and Pi7, the markers MPik1, MPik2, MPik3, MPik4, and MPik5, the correspondence between the genotype and the allele of the SNP/Indel locus is as shown in the following table:
MPik1 MPik2 MPik3 MPik4 MPik5
Pi1 T AA T T T
Pikm_TS T AA T A T
PiKs T AA T A C
PiKa C AA G A T
Pik T AA T A T
PiKp C GC G A C
Pi7 C AA G A C
the specific positions of the SNP/Indel sites are shown in the following table:
mark number Type of molecular marker Physical location Differential bases
MPik_1 SNP 2040 th of the sequence of the Pi1 gene [T/C]
MPik_2 SNP Position 8824 of the Pi1 gene sequence [AA/GC]
MPik_3 Indel 489 th position of the sequence of the Pi1 gene [GC/T]
MPik_4 Indel 11284 th position of Pi1 gene sequence [T/AA]
MPik_5 SNP 5419 th position of Pi1 gene sequence [T/C]
Note: the nucleotide sequence of the Pi1 gene in the table is shown in SEQ ID NO. 16.
In the second aspect of the present invention, the set of KASP primer sets for detecting the above-described functional marker set is protected and composed of the following (1) to (5):
(1) KASP primer set for detection of MPik 1: the primer 1 is a single-stranded DNA with a tag sequence A and 22 th to 44 th sites of a sequence 1 in a sequence table from a 5 'end to a 3' end, the primer 2 is a single-stranded DNA with a tag sequence B and 22 th to 44 th sites of a sequence 2 in the sequence table from a 5 'end to a 3' end, and the primer 3 is a single-stranded DNA with a nucleotide sequence shown as a sequence 3 in the sequence table;
(2) KASP primer set for detection of MPik 2: the primer 4 is a single-stranded DNA with a tag sequence A and 22 th to 44 th sites of a sequence 4 in a sequence table from a 5 'end to a 3' end, the primer 5 is a single-stranded DNA with a tag sequence B and 22 th to 41 th sites of a sequence 5 in the sequence table from a 5 'end to a 3' end, and the primer 6 is a single-stranded DNA with a nucleotide sequence shown as a sequence 6 in the sequence table;
(3) KASP primer set for detection of MPik 3: the primer 7 is single-stranded DNA of a tag sequence A and 22 th to 42 th positions of a sequence 7 in a sequence table from a 5 'end to a 3' end, the primer 8 is single-stranded DNA of a tag sequence B and 22 th to 41 th positions of a sequence 8 in the sequence table from the 5 'end to the 3' end, and the primer 9 is single-stranded DNA of which the nucleotide sequence is shown as a sequence 9 in the sequence table;
(4) KASP primer set for detection of MPik 4: the primer 10 is a single-stranded DNA which is sequentially provided with a tag sequence A and 22 th to 46 th sites of a sequence 10 in a sequence table from a 5 'end to a 3' end, the primer 11 is a single-stranded DNA which is sequentially provided with a tag sequence B and 22 th to 46 th sites of a sequence 11 in the sequence table from the 5 'end to the 3' end, and the primer 12 is a single-stranded DNA with a nucleotide sequence shown as a sequence 12 in the sequence table;
(5) KASP primer set for detection of MPik 5: the primer 13 is single-stranded DNA of the tag sequence A and the 22 th to 42 th positions of the sequence 13 in the sequence table from the 5 'end to the 3' end, the primer 14 is single-stranded DNA of the tag sequence B and the 22 th to 40 th positions of the sequence 14 in the sequence table from the 5 'end to the 3' end, and the primer 15 is single-stranded DNA of which the nucleotide sequence is shown as the sequence 15 in the sequence table.
Preferably, the tag sequence A is a FAM fluorescent tag sequence, and the tag sequence B is a HEX fluorescent tag sequence.
Preferably, the sequences of the primers 1-15 are sequentially shown as SEQ ID NO. 1-15 in the sequence table.
In the third aspect of the invention, the functional marker group is protected from being applied to identification or auxiliary identification of rice blast resistance allele types of rice Pik loci or rice molecular marker-assisted breeding.
In the fourth aspect of the invention, the KASP primer group is protected to be applied to identification or auxiliary identification of rice blast resistance allele types of rice Pik loci or rice molecular marker-assisted breeding.
In a fifth aspect of the present invention, there is provided a method for identifying multiple rice blast resistance alleles at the Pik locus of rice, comprising the steps of:
1) extracting the genome DNA of a rice sample to be detected;
2) PCR amplification of the extracted genomic DNA using the primer set according to claim 3, detection of SNP/Indel differential sites in the KASP functional marker group in the amplification product, each marker being amplified individually, and determination of whether the Pik locus blast resistance allele of the sample to be tested is any of Pi1, Pikm _ TS, Piks, PiKa, Pik, PiKp, Pi7, based on the correspondence between the genotype and allele of the SNP/Indel site in the functional markers MPik1, MPik2, MPik3, MPik4, MPik5 in the table of claim 1.
In the method, the primer combination is adopted for PCR amplification, a fluorescence detector is adopted for detecting an amplification product, and the genotype of the different loci in the functional markers MPik1, MPik2, MPik3, MPik4 and MPik5 is judged according to a fluorescence signal, wherein the corresponding relationship is shown as the following table:
Figure BDA0003479494210000041
the PCR reaction system is a 10ul system: contains 1.0ul 10 XPARMS Buffer, 1.0ul dNTP, 1.0ul of each of 3 primers of each group of KASP primers, the concentration of each primer is 4 mol.L-10.2ul PARMS PCR enzyme, 30-50 ng/ul template DNA1.0ul, 3.8ul ddH2O。
The PCR reaction program is: 5min at 94 ℃; 30s at 94 ℃, 30s at 58 ℃, 45s at 72 ℃ and 35 cycles; finally, extension is carried out for 10min at 72 ℃.
The invention has the beneficial effects that:
by carrying out multi-sequence comparison among different disease-resistant alleles and disease-sensitive genes, SNP loci which can be used for distinguishing different alleles of Pik loci are screened out, and on the basis, functional marker groups which can be used for distinguishing the Pik loci resistant genes and distinguishing different resistant alleles are successfully developed. The functional marker groups can be used for accurately distinguishing different resistance alleles, and have important breeding application value.
The functional marker group-based identification method established by the invention can realize accurate identification of different resistance alleles. On the basis, different resistance alleles can be systematically evaluated, and the resistance alleles with stronger effect and playing an important role in breeding are screened out; the functional marker group developed by the invention can also directly utilize a molecular marker-assisted selection method to rapidly introduce resistance alleles into excellent breeding materials; the functional marker group and the identification method can greatly accelerate the identification of resistance allele and the breeding process.
Drawings
FIG. 1 is the results of an alignment of the sequences of 7 different resistance alleles.
FIG. 2 is a graph showing the results of KASP marker detection of 13 rice breeding materials.
FIG. 3 is a graph showing the results of KASP marker detection of 208 rice germplasm resources.
Detailed Description
The invention is further illustrated by the following examples, which are not intended to be limiting.
The experimental procedures in the following examples are conventional unless otherwise specified.
Example 1
(1) Sequence alignment between different alleles and acquisition of characteristic SNP/Indel
Sequence alignments were performed using genomic sequences of different resistance alleles. The different disease-resistant alleles and their GenBank accession numbers are Pi1(HQ606329), Pikm _ TS (AB462256), PiKs (HQ662329), PiKa (AB616659), Pik (HM048900), PiKp (HM035360), Pi7(HQ 660231). The allele of the corresponding rice variety Nipponbare served as a control for the susceptibility allele. The results of the alignment of the sequences of the 7 different resistance alleles are shown in FIG. 1.
The resistance allele of the Pik locus consists of two genes in tandem, Pik-1 and Pik-2, respectively. Wherein Pik-1 has 3 exons and Pik-2 has 2 exons. In order to reflect more functional information about the variant site, the exon sequences of different alleles are further used for sequence alignment.
After sequence comparison, the characteristic variant sequences that can identify different alleles were selected based on the results of gene sequence and exon sequence comparison (table 1) for further molecular marker development.
TABLE 1 characteristic variant sequences that can distinguish between different resistance alleles
Figure BDA0003479494210000051
Figure BDA0003479494210000061
Note: in Table 1, 1) hold is the alignment of different allele sequences of Pik, 1_ cds2 and 1_ cds3 are the alignment of multiple exons 2 and 3 of Pik-1; 2_ cds2: PiK-2 exon 2 multiple sequence alignment;
2) var _ s, var _ e: the sequence comparison file comprises variation starting and stopping positions;
3) r200, L200: the upstream and downstream 200bp positions of the variant sequence are used for extracting partial sequences for marking and developing.
Based on the above analysis, the SNP/Indel sites in the alignment numbers from 10 to 13 in table 1 were further selected for KASP marker development, where the target sequences of both molecular markers are derived from sequence variations of exons.
(2) Development of KASP functional marker for characteristic SNP/Indel
On the basis of obtaining the characteristic variant sequence, further carrying out sequence comparison among different resistance alleles, and screening SNP/Indel sites for identifying the different resistance alleles according to the sequence comparison result. Taking the 200bp flanking sequence of the SNP/Indel site to carry out KASP marked primer design. The set of functional markers finally obtained is shown in table 2.
TABLE 2 functional marker set for differential allelic discrimination of the Pik locus
Comparison document1) Pi1 Pikm_TS PiKs PiKa Pik PiKp Pi7 S2) KASP tag
Piflag17_260 T T T C T C C no_hit MPik1
Piflag14_217 AA AA AA AA AA GC AA no_hit MPik2
Piflag16_197 T T T G T G G no_hit MPik3
Piflag15_201 T A A A A A A no_hit MPik4
Piflag16_215 T T C T T C C no_hit MPik5
Note: 1) piflag 17-260, which represents SNP/Indel at the 260 th position in the multi-sequence alignment file Piflag17, and the meanings of the rest alignment files are analogized;
2) no hit-no homologous sequences in the Nipponbare genome.
Designing KASP special labeling primers for SNP/InDel sites in the table 2, wherein each group of KASP primers comprises 2 site specific primers and 1 common primer, the 5 'end of one specific primer is added with a FAM fluorescent label sequence, the 5' end of the other specific primer is added with a HEX fluorescent label sequence, and the primer sequences are shown in the table 3 (the sequences of the primers 1-15 are respectively shown as SEQ ID NO. 1-15 in the sequence table):
TABLE 3 primers specific for KASP markers
Figure BDA0003479494210000062
Figure BDA0003479494210000071
Note: the underlined sections in the table are the fluorescent tag sequences.
(3) Functional marker set-based resistance allele identification
Rice leaves are taken to extract DNA by a CTAB method or other DNA extraction methods to obtain template DNA for PCR amplification.
PCR amplification and PCR product detection: synthesizing primers in the functional marker group, and carrying out PCR amplification on the obtained template DNA under the following amplification conditions: 10ul of reaction system: 3 primers containing 1.0ul 10 XPAMS Buffer, 1.0ul dNTP, per group of KASP primers (concentration of each primer is 4 mol. L)-1) 1.0ul, 0.2ul GTtaq (PARMS PCR enzyme, Wuhan City peptide Biotechnology Co., Ltd., Cat. No. NO53278), 1.0ul template DNA (50ng/ul), 3.8ul ddH each2And O. The PCR reaction program is: 5min at 94 ℃; 30s at 94 ℃, 30s at 58 ℃, 45s at 72 ℃ and 35 cycles; finally, extension is carried out for 10min at 72 ℃. By using FAM and HEX as reporter fluorescence and ROX as reference fluorescence, the amplification product can be rapidly detected in a microplate reader and a quantitative PCR (polymerase chain reaction) instrument with the 3 fluorescence detection channels.
And (3) genotype identification: the detected fluorescence signals were converted into the nucleotides at the SNP/Indel sites in the functional marker set in Table 2, the correspondence between the fluorescence signals and the genotypes of the SNP/Indel sites is shown in Table 4, and the correspondence between the genotypes of the functional marker sites and the alleles of the Pik locus is shown in Table 5. Determining which allele of the rice blast resistance gene of the sample is Pi1, Pikm _ TS, PiKs, PiKa, Pik, PiKp and Pi7 according to the genotype identification result of the functional marker group of the 5 markers obtained by detection, and converting a fluorescence signal generated in KASP marker analysis into the nucleotide information of the SNP/InDel locus according to the table 4 when the genomic DNA of the sample to be detected is respectively marked and detected by MPik1, MPik2, MPik3, MPik4 and MPik 5; and (4) integrating the detection results of the 5 molecular markers, and judging the corresponding allelic gene types according to the table 5. Specific positions of SNP/Indel sites are shown in Table 6.
TABLE 4 fluorescent signal and SNP/Indel site genotype data conversion Table
Figure BDA0003479494210000081
TABLE 5 functional marker locus genotype and Pik locus allele mapping table
Genotype(s) MPik1 MPik2 MPik3 MPik4 MPik5
Pi1 T AA T T T
Pikm_TS T AA T A T
PiKs T AA T A C
PiKa C AA G A T
Pik T AA T A T
PiKp C GC G A C
Pi7 C AA G A C
S - - - - -
TABLE 6 differential site positions
Mark number Type of molecular marker Physical location1) Differential bases
MPik_1 SNP 2040 th of the sequence of the Pi1 gene [T/C]
MPik_2 SNP Position 8824 of the Pi1 gene sequence [AA/GC]
MPik_3 Indel 489 th position of the sequence of the Pi1 gene [GC/T]
MPik_4 Indel 11284 th position of Pi1 gene sequence [T/AA]
MPik_5 SNP 5419 th position of Pi1 gene sequence [T/C]
Note: 1) the coding sequence of the Pi1 gene is HQ606329:2660-14748, and the specific nucleotide sequence is shown in SEQ ID NO. 16.
The Pik functional marker groups of 13 important breeding materials of rice were identified according to the above method, and the KASP marker detection results are shown in FIG. 2 and the Pik locus allele detection results are shown in Table 7.
Table 7.13 Rice breeding Material Pik locus allele detection results
Name of Rice Material MPik-1 MPik-2 MPik-3 MPik-4 MPik-5 Alleles
Middle flower 11 C AA G A C Pi7
Azucena - - - - - S
IRGC127742 - - - - - S
IRGC127652 C AA G A C Pi7
26R - - - - - S
Air culture 131 C AA T A T Pika
Wanghui No.1 C AA G A C Pi7
Chinese character' hui 927 C AA G A C Pi7
R498 C AA G A C Pi7
R280 C AA G A C Pi7
IR64 C AA G A C Pi7
N22 C AA G A - Pi7
Rice flower fragrance No. 2 T AA G A C PiKs
Note: the result S in the column "allele" in the table indicates that the rice variety is a rice blast-susceptible variety.
The detection results in table 7 are consistent with the known allele types corresponding to various rice varieties, and the accuracy and reliability of Pik locus rice blast resistance genotyping of rice by using the KASP functional marker group of the invention are verified.
Example 2, Pik functional marker panel identification of 208 rice resources
A Pik function marker group of 208 rice resources was identified by the method of example 1, the KASP marker test results are shown in FIG. 3, the Pik locus allele test results are shown in Table 8, where S represents susceptible disease and R represents resistant disease; part of the genomic DNA of the rice material was detected as a susceptible allele of the Pik locus using the 5 markers of the present invention, but the phenotype was resistance, probably because these materials contained a rice blast resistance gene other than the Pik locus.
TABLE 8.208 Rice breeding materials Pik locus allele test results
Figure BDA0003479494210000091
Figure BDA0003479494210000101
Figure BDA0003479494210000111
Figure BDA0003479494210000121
Figure BDA0003479494210000131
Figure BDA0003479494210000141
Figure BDA0003479494210000151
Sequence listing
<110> Tianjin City academy of agricultural sciences
<120> functional marker group, primer combination and application thereof for identifying multiple rice blast resistance alleles at rice Pik locus
<160> 16
<170> PatentIn version 3.5
<210> 1
<211> 44
<212> DNA
<213> Artificial sequence
<220>
<223> primer MPik-1Ft
<400> 1
gaaggtgacc aagttcatgc tgatcggaac tggagaggat aatt 44
<210> 2
<211> 44
<212> DNA
<213> Artificial sequence
<220>
<223> primer MPik-1Fc
<400> 2
gaaggtcgga gtcaacggat tgatcggaac tggagaggat aatc 44
<210> 3
<211> 24
<212> DNA
<213> Artificial sequence
<220>
<223> primer MPik-1R
<400> 3
aggcatacca taacacatgt tcac 24
<210> 4
<211> 44
<212> DNA
<213> Artificial sequence
<220>
<223> primer MPik-2Rt
<400> 4
gaaggtgacc aagttcatgc ttctcactgc aactttcagc tgtt 44
<210> 5
<211> 41
<212> DNA
<213> Artificial sequence
<220>
<223> primer MPik-2Rc
<400> 5
gaaggtcgga gtcaacggat tcactgcaac tttcagctgg c 41
<210> 6
<211> 18
<212> DNA
<213> Artificial sequence
<220>
<223> primer MPik-2F
<400> 6
gcaggttcgc gcttgatc 18
<210> 7
<211> 42
<212> DNA
<213> Artificial sequence
<220>
<223> primer MPik-3Rc
<400> 7
gaaggtgacc aagttcatgc tatggaaggc tatccttggc ac 42
<210> 8
<211> 41
<212> DNA
<213> Artificial sequence
<220>
<223> primer MPik-3Ra
<400> 8
gaaggtcgga gtcaacggat ttggaaggct atccttggca a 41
<210> 9
<211> 19
<212> DNA
<213> Artificial sequence
<220>
<223> primer MPik-3F
<400> 9
cggcacaggc ttccagatg 19
<210> 10
<211> 46
<212> DNA
<213> Artificial sequence
<220>
<223> primer MPik-4Ft
<400> 10
gaaggtgacc aagttcatgc tcaaagaaag gattcttatc ccaagt 46
<210> 11
<211> 46
<212> DNA
<213> Artificial sequence
<220>
<223> primer MPik-4Fa
<400> 11
gaaggtcgga gtcaacggat tcaaagaaag gattcttatc ccaaga 46
<210> 12
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> primer MPik-4R
<400> 12
agccctgtca actgatgaag g 21
<210> 13
<211> 42
<212> DNA
<213> Artificial sequence
<220>
<223> primer MPik-5Ft
<400> 13
gaaggtgacc aagttcatgc tgtttctgga ggtcagccaa gt 42
<210> 14
<211> 40
<212> DNA
<213> Artificial sequence
<220>
<223> primer MPik-5Fc
<400> 14
gaaggtcgga gtcaacggat tttctggagg tcagccaagc 40
<210> 15
<211> 24
<212> DNA
<213> Artificial sequence
<220>
<223> primer MPik-5R
<400> 15
tgaaattcac atatggattt cacc 24
<210> 16
<211> 12089
<212> DNA
<213> Artificial sequence
<220>
<223> coding sequence of Pi1 gene
<400> 16
ctagctagta gtttctgttt gaatttcaat atctgctact cgatcttggg tttcctcttc 60
aattttagtc gctcggccgc aggtaggaca cctgccatca agaagaatcc cttttccctt 120
gtagtcatct cgaacagcag ggagattatc atgctgtgcc tgtgcaggct cagtatcgat 180
cccactgctg cccgcaatgt tttcactgct cccgtgtgac tcagttgata tctccttata 240
cccagcattg atgaggaggg tgatcggccg gttgggatgc tcctcggctt ctttcttcac 300
gacgtcaatg gtggcgctga tgccaggggc gtcgctcttg taccatggcg agcaccgaaa 360
gaccaccttt tggaggctct tcaggttggt gatgccgatg gcatcgttgc ttgctgggcc 420
ggcgtagaac ttgaactcga gaagcttgag gttgggcatg gcgtcttcat ggaaggctat 480
ccttggcacc cggctgtcga cacggaagct ctccagcatc tggaagcctg tgccgttgat 540
ggttatgggt tgtcttggta gggcctcgaa cctcagcacg agcgtctgca ggttgggcat 600
ctcggcgagg aacttttggt catcatcctc aagcttgtgg cagagcctga tgtctaggca 660
agaaagaacg cggaagtggt ctttgatcat cttcgggata cgcatatgac tgccgggaac 720
tttgaatatc ccaacaaggg gaggtccgaa acgatcgatg atcgcgatgg acagaacctc 780
cctgcatttt gcacgcgtag cccctggaat accgttgatc agagcttcgc agacgccttc 840
gggcaaccgc acgccatcgc cactgtcacc ggcaagcacg cgcaacgatt gggagatctg 900
gccagcttgc catggcagct ctctcaccct cgtgtttctc acgtccagag tctgtagatg 960
attcagctcc ccaatctcct ttgggagctc cctaacccca gtgctcctca cgcacataat 1020
cttgagattc tgcagcttgc caacctgcgg cgggagctca ctgattggag tgttcctcac 1080
gtccagagtg tgcagatgct gcagctcccg tatctgcagt gggagctcag tgatgtccgt 1140
gtttctcacg tccagaatcc gcagatgctt cagctctcca atctcttgcg gaagttcact 1200
gatccgagtg ctccccacat acaaaatctc caaatgcttc agcttcctca tctcctgagg 1260
gagctttcgg atccgcgttc ccttgagacc aaggtacctc actctgaggc ttaactgttc 1320
acatatgccc tgcagatgag aatcctgtat atccttatta tcttcaaggt ccaacactcg 1380
caagcgctta aacatataga aggggattcc cttgggtcgc gccacgtcac caaggacgac 1440
aaggctgcaa gtgtgtgaca catccatact catgcttgac aagcagtcca ctggataccc 1500
cccctgaaga gacagccggc gaatcaacct tggggaggat gcactagtac tagtatcaga 1560
tcccagaccc aagcatgtta aaaaattgta ctccttggac ttgcatctca ggaaggccag 1620
catcacgggg tggatctcat agtaattata actgttgttg tctccgtgct gcgtaatcca 1680
tcctctgtta ataagctcgc caaagtaacc ttctgcttct ttctcttccg acacaaatcc 1740
ttccgcaatc cacctcctga ccagacgacc cctttcgatt ctgttagacc aatggtatgc 1800
actacagtac aacaacaaag tcctcagata aagaggaaga tggttataac caaggcataa 1860
actctccgcc aatggttgta aggatgggat gtccaaaata ccatcctcta tgtgtctcaa 1920
atccctacat tttttcactt cagcaccacc taattcttct atctctccaa ccaatgctga 1980
cgacagccaa ataagtgcta aaggcatacc ataacacatg ttcacaatat catagcatga 2040
attatcctct ccagttccga tcctgttgcc tgccccagac tttgttgcta tcccccaaga 2100
caacgaccaa gcatcattat tatctagatc cccaacttcg tagacaaaaa catcattgtc 2160
atcagtgtgg cacttctcag ctattgaatt aagacgagta gtcatgatta ttctaccacc 2220
cagatcattc ttgggaatgg actttctgat gacttcccat tcttcccaat gccaaatgtc 2280
atcgattaca atgagatacc tataaaagtc gagaagagta ataagcctca atagcatatt 2340
agtattacat tagcatatat gcatagagct aacaatttca cagatgtgag tccactttga 2400
gatgaacagt cagctgatat atattagttt cgtcatctgg ttgtattttg cttttgttga 2460
aatttaactt gcagttccta ggagtcgtgt tctgaatctt gagtatttcc ggtctgacgg 2520
cattgttttc atgacctgat cctagagctt ttatggtcag tagagaagaa atggggcagc 2580
taacatttgt ttgcgatctc cataacaagt tctttttttt cgccatgcag gctgaagtaa 2640
ccctggccag aatttattaa gcacaaggag tttacaagtt acatagatcg gcaacgatgt 2700
tgctgaggaa agcactgtgt gtctcagagg gaccggtcaa gaaatcaaat tgatgtttct 2760
tttcattatt tacagaacct gtattgaggg ttggaaatgt atatagcatt atatttccta 2820
cacttaagtg cactgtacgg tgtgaaataa ttgtgtatat gatttaattc gtttctctta 2880
ttggtgaatt tttggagatt gcttgcattt tccagtattt actgtattga atgatgttga 2940
aatagttgaa tcaatataaa tttagtaaaa aattaaatgt gctaataagt tactgcaaca 3000
agtctaaccc gttgcatcag gttatagcta tagaacatgc ttgtcgcact gaattattgc 3060
cacaaaaatg aatgtgtgga aataggctat ttatgaatag gtctgtgttg ggaaatctta 3120
ttgcagcatg gtacaaactg ttgcaataaa tacctatgac atatcaagtt gttgcaatag 3180
caatgcaaaa ccattgtaat agcacctttt tatgcaacca tcggaaaatc attgcaatag 3240
cctattacca cgggatttat tgctacggct cccaatggat tcaattatgt cacaataggt 3300
acatatcaca acgattttca gcttttgcaa tgaaaatttc cgttgcaaga aatatatctc 3360
cttgcagtca gccatggcca cctaggacat agccaatctc caagagattg agatccttta 3420
tgcccagtct ccaccatagt ccaatggcag gcatagcttg tcccaagcca gcaagcaatg 3480
gcttcccgaa tccctaacta gttccagaac ttgttctagt tgtttttttt tcttgtggtt 3540
gttctatgct ttgttgttca taaccttaaa gcatgggtgt ttttactgtc ctcgagagag 3600
gtactggaag gtgcctttac tctctaaaaa aacatttata gtcagaccag cacaccgttg 3660
gctggttcat gtatagactg gtcaaaacct aaaaggagcg aatgtttgtt ttgtagaagt 3720
ttcttatagt gtgtgtatat atggctcaat tggcctaatt aaattatata attttgtcca 3780
attatatgtt caggacttcg agagaacaaa tattgggatt aaatttaatg ccacatgtcc 3840
attgatacga aagttgtctc actactactt tggatgcatg gggcatgggt tacagatatg 3900
cccccaaaag tttttgaaaa aatatcaagt atatacgtca aagaacacac atgtatacag 3960
tgtgcactaa aataaaagcc cagagttcta gtctagtttt tctttacata aatggcaaat 4020
actgattttc ctttaaatgt tttcatattt gtgatactgg ttgttatgaa ggtaaaagaa 4080
catgacatat ttttaatgat cttgagggct atcatatttt tatagtggca aatgctttta 4140
tactgttctt gaagacataa cagtcaggaa gtcttcacag tgctaactca tgatattggc 4200
tctctctctc tctctcgttc ttgttgttgt aaggcaggaa ctctatttca ttaataaaaa 4260
gttgaagtac aatcttttat aagcagtcta caagagaatg gagagattgt tagtagctta 4320
cttaacacat agctgagcag cgacaagtgc tctccagcga caacagcatg gcggcaacag 4380
actcgttatc gctagcgggg cataggttgt ttgggcagca tgaaaccagt gcttggcgac 4440
aacaaagcag cagactagtt ccatcccctc ccttcgctca cggcgaaaca ggggagcttt 4500
tgtggtagtt gcaatggcag tgagagggca tggcagggga agagcgggct agctctgcat 4560
ttccctgttt tctgaagcaa ggaggaaaag cttgaaactt aatcttatcg tcttttcttt 4620
ttggtcgttt gtttttcgtg tttctcagct ttgagatttg gagtgtatgc acttgtgtaa 4680
cctttggctt tctatataga ggccagattt ctattcatta tcttaaaaaa aaaagatgac 4740
cactccctgt ggatttacaa atactgcaag cctttgcaag atcagtacca tcacgagtaa 4800
tagcaagagc ttcagtgata agggagttgt ttccacatca taaaaccatt ggcctgtcac 4860
aaaggagggg cctgccccat ttctgtatct atttactagg tagaataaag taatgctaat 4920
taaaaaaagt ttggcatatc ttgatatata cctcatcgag gacagaaaaa aaaaacccaa 4980
cattatatgg acatatagcc tgttcacttt aatttgggaa gccggattaa ggacaagcta 5040
gataagagat ataagatatt gcttactttt tgttgaggag gaaagctgat atgttgtcga 5100
tgagatgttg ttgaagagct ctcccggtcc cactcccacc atatggtgtg ctaagtgtat 5160
cagttactcc tagttgtgct tgagcgaaaa tgtctgcaag agtctctgtt agattgggac 5220
tggggctgga acttggagag attgatgcga aaacccggca ttggaactgc gttcccaatg 5280
catgatatag tactcgggca atcgttgttt tgcctccccc tggcaatcca aggatgcaaa 5340
ttgttttgac ctcgtgaaat tcacatatgg atttcaccgg cgcaagcatc gccgttatct 5400
ccttcacatc ttcctttact tggctgacct ccagaaacat cgcagggccc accttcttcc 5460
ggagcgcaga gaccagattg atggagtcaa tgccatcacc gaccaccaca acatcgtctc 5520
ttaggtcacc ggcgattgca accgagtgca ctccaaccgt acttgcaacc aatgacattg 5580
cttttgtacg gctcttatcg tccaccatgg gaatcttgaa cacgattttt tgctgcaaca 5640
aaaaatgaag tacttccaag ttgaagaatc aagagaaaaa gtaaacaaat ttattggcag 5700
cgccatccaa ggaagcgaag ctatttgtga ggaatcgaga tccaccggta ccatttcccc 5760
tcccattatc ctgaggggga catgaggttt tcgcttgcgc catcgtgaag catcactgct 5820
cccttgttcc agcaactcga tgagctcttc cttacgtttg tgcatcccca ccagccctgc 5880
atctggtggc ggcaagccag ctcgacggtg taccgacgac ggcggaaggc tcgccgccgg 5940
tagcttccag tcagagaagc gattggagac acgctcctca actcttgcct tgagctcacc 6000
gaaagggctt gcgcttcttc gctgctcgaa attgagctcc aagaagtcgt cgacggcatc 6060
atccaggtcg taggacagct cccggacctc cgcaatcaag ccatccttgc acgccgcatc 6120
gtcatccccc atcctcccca agatatttgg ggtgaggaga gagtgcacgg cctccagctc 6180
ggatctgatg aactctgcgt cgctccggct cccctccaga agattgcact ccccgtcgtc 6240
cagcaaagcg gccagcttca ctagcacggg cgccaaggcc cccgtggctg cggttacggc 6300
catggcagcc gcctccatcc ctactcgcgc ctcgatcggc ggctcggccg atgccctttt 6360
gcgttgagtg ctactctctc acctcctgac tctccgactc cgagtgtaat tagagcaagg 6420
ttaacagtat agccaactag tagcttcaat ttatttatag ccaatctaat agcttattca 6480
tacaagtact atactattaa tacctggtcc cacctgtcat acacacactg cgtcttggag 6540
tctgtgctac agttggctac aaatctatag cccgctaccc ttctctctcc ttatttatct 6600
ccttaaaata tgtttgcagt tggcttatag cctgctattg taactgctct taaagtggtg 6660
gtatttttct cggtcctctc gcaatgggtt agagaactgc tttcacataa ttagttcctt 6720
tgttctctag tataagggat tttaacattt tactttgtac tcccttcatt ctaaattgat 6780
ctatatatag tttttttagg ttattcctaa atgatctata tatttgtgtt catttattaa 6840
gtctattcgt tatttgtgtg cattggagta aatggacatt gatgcatgct tccatgcaca 6900
caagtattta taacccacat gcaatatctt gatttgctat tggctaggaa atattgggga 6960
tgatgcatgc attgagtttg ttgttagagt aaatataata tgaaagagtt attagttttt 7020
cttggtcttg gtgtacctat aaaatacgta gatcaattta gaatggaggg agtacgatcc 7080
ttcgttttat taaaaaaaag tttgaaaatt attatttaat tttcttttac ttattttatt 7140
atctaaaatc ttttaagcac aactttttat ttttattatt tgcataattt ttttaaaata 7200
agataaatgg ttaaatagga ctccctctat tccataatat aaggcacaac cacttttctt 7260
agatgtttca taatataagg catgcatgca tataggcaat taactatgac ctctttttta 7320
ttaaattatt attttttaac atcctctaca ctcatgttct ctgattctat tggatgcatg 7380
cattgtattt attaggatgt tctaaactac aagataataa taattatttt cttggtgttt 7440
gggttagagg tggttatgac ttatatttta taatggaggg agtagtacaa gtataatgtt 7500
aaagaattta atattatatt aaaggacgga ggaaatatta gggagaaacg gcatgaccac 7560
gagtcagtca acgagtctgc gaatgcagtg cagtattatt ggcctccgcc caaaagcctc 7620
acccccaagg ccccaatctt cccaccgcgc cgctgtcccc ccctccgacg gcggccacca 7680
tatcccccaa tcttcctccc gttggtcgct ggctggcctg gccagctctg gtcggaggag 7740
ggttcagttc catgggtgcg tcccctgccc atccctccac ttctactttc gtcttgagat 7800
ctcgccgttt ctgatctcct tgccatggca accagttgat ttggctgcca agatcgtccg 7860
tgctttgcaa aggtgaacaa tctttttctt cttgggcttt cactttgttg tgttaataga 7920
ctcagcgccg tcgcaacttg caaataaaaa ggttcagatc ggaaaatgga aataccgtac 7980
acagtagtct atagagaatc gactagtatt tcctgactgt aagtaaggaa gttgtaggta 8040
ccatgttctg atgattatct ttgaagcttg gagggggaca aaaagttggg agagaaacaa 8100
gaatgtattt gttcacttga ttgggggcag taggtaaaat ctcagcgtta ggaatttgca 8160
cctctttatt aagtttgact aaatttatag aaaaaaatta gcaacactta aaacaccaaa 8220
ttagtttcat tgaatccaac attgaatata ttttgataat atgtttactt tgtgttcaaa 8280
atgttactat atttttctat aaatttgatc aaatttcaat aagtttgact agaaaaaaaa 8340
gtcaaaccga cttataatat gaatataaat ggagggagta gattataaat tatctttatt 8400
ataatacttt gagtgtacaa acgaatgaat aaagtttaca aagttgaaaa gttattttta 8460
aatactattc cgataaacct gtatatagag aacttgtgaa aaaaaacacc gtttgaaatg 8520
tgtctgtgat aatctataag aggaacgggg cctaaatata ttcctttttt cctacgaaaa 8580
tgcaagaagt attgcctaat atattgatag agctgaagtt ttaaagtaaa atgaaacatt 8640
tgcatgaggc agcactggac aaaaagcgct tgtgaaaaaa atatgttcca aatattatta 8700
attcattcat ggtatggtct ttattttcat tttcccccct tatccatggg caggacacgg 8760
aaattctcag caggttcgcg cttgatctga actgtctgtg gctcatactc tcttgtgctt 8820
gcaacagctg aaagttgcag tgagaagtac agagaacaag atggagttgg tggtaggtgc 8880
ttccgaagcc accatgaaat ctctcttggg caagctgggc aatcttctag cccaggagta 8940
tgctctcatc agcggtatcc gtggtgacat ccagtacatc aatgacgagc ttgccagcat 9000
gcaggccttc ctccgtgatc tcagcaacgt gccagagggt cacagtcatg gccaccggat 9060
gaaggactgg atgaagcaga tccgagacat cgcctatgat gttgaggact gtatcgatga 9120
ctttgcccac cgcctccctc aggattccat cagcgatgcc aaatggtcct tcctactcac 9180
aaaaatctat gaactatgga catggtggcc acgtcgtgtg attgcttcca acattgccca 9240
actcaaggta cgggcacaac agatcgcaga tcgacgtagt agatacggag tgaacaaccc 9300
agaacacctt gacagtagca gcagtgccag gacccgtgct gtcaattacg aaattgctga 9360
gtatcaggtc acaagccctc agatcattgg tataaaggag cctgtgggga tgaagacggt 9420
catggaggag cttgaggttt ggttaactaa tcctcaagct gaaaatgggc aagctgttct 9480
gtccatagtc ggttttggag gtgtgggaaa gactaccatt gccacagcat tgtacagaaa 9540
agtcagtgaa aaatttcagt gccgggcatc agtagctgtg tctcagaact atgaccaagg 9600
caaagtcctc aatagtattc tgagtcaagt cagcaatcag gagcagggca gcagcacaac 9660
aattagtgag aaaaagaacc tcacctcagg cgctaagagc atgttgaaga cagccctgtc 9720
actgctcaga ggtaattgta tatgtcagcc agaaaatgat ggaaaccctg ataatacacc 9780
aatcaggctg caggaaacaa cggacgatga tcaaaacccc agaaaactgg aacagctcct 9840
ggccgaaaag aggtaccttt ttttgtaaat aaaattgctt tgcttatctg taaattaact 9900
tactcatccc actctaaatc taatgtttat ttccttctat acacagcaca actccatctt 9960
ttgaatgggt tttatttttc tcacttgtgc tcattttttt ttatcatctc tgcagttata 10020
tcctcttgat tgatgacatt tggtctgccg aaacatggga gagtatcaga tcgattttgc 10080
ctaaaaataa taaaggcggt agaataatag tgactacaag atttcaagct gttggttcaa 10140
catgctcccc tcttgaaact gatcgtttgc atacagttga ttttctcacc gatgacgagt 10200
cccaaaactt attcaataca agtatttgtg aatcaaagat aagaaaagat agcaacaaag 10260
tagacgagca agtccctgag gaaatatgga aaatatgtgg gggattgcct ttggccatag 10320
tcagcatggc tggtcttgtc gcctgcaacc caaggaaagc ctgctgcgat tggagtaaac 10380
tttgcaaatc attatttcca gagcaagaaa ctcctcttac cctcgatggt gttacaagga 10440
tactggattg ttgttacaat gatttgcctg cggatctgaa gacttgctta ttgtacttga 10500
gtatatttcc gaagggttgg aaaattagta ggaaacgttt gtcccggcga tggatagctg 10560
aaggttttgc taatgagaag caagggttaa cccaggaaag agttgcagag gcatacttta 10620
atcaactcac aagaaggaac ttagtacgtc ccatggagca tggcagcaat gggaaggtaa 10680
aaacgtttca agttcatgac atggttcttg aatacatcat gtccaaatca atcgaagaga 10740
attttattac tgtggttggt ggacactggc agatgactgc accaagcaat aaagtccgtc 10800
gactgtcgat gcaaagcagt ggatccaatc gtggaagttc aacaaaaggc ctgaacttgg 10860
ctcaagtgag atcactgacg gtgtttggga acctgaacca tgtgccattc cattcattca 10920
actatgggat aatacaggtg ctggatcttg aggactggaa gggtttgaaa gagagacata 10980
tgacggagat atgtcaaatg cttttactca agtatttgag catccgacga acagaaattt 11040
ccaaaattcc ctccaagatt cagaaacttg agtacttgga aactcttgac ataagggaga 11100
catatgtcag ggacctgcct aagtcaatag tccagctaaa acggatcatt agcatacttg 11160
gagggaataa aaacacacgg aaggggctga ggttgcctca agaaaaaagt aagaagccaa 11220
ttaaaaaccc gtcgcctcaa ggaaaaacaa aggagcccgc aaagaaagga ttcttatccc 11280
aagtaaaagg taaaggcgca atgaaagcac tccgtgtact gtcagggatt gagattgttg 11340
aggaatcatc agaagtagct gcaggccttc atcagttgac agggctaagg aagcttgcca 11400
tatacaagct caatataaca aagggtggtg ataccttcaa acaattacag tcctccattg 11460
agtaccttgg cagctgtggt ctgcagactc tggccatcaa tgatgagaat tctgaattta 11520
tcaactcact gggcgacatg cccgcgcctc caagatatct tgtcgccctt gagctgtctg 11580
gcaagttgga gaagctaccc aagtggatca ccagcatcac tactctcaac aagctaacca 11640
tatctgtaac agttcttagg actgaaactt tggagatcct ccacatttta ccttcattgt 11700
tttccctcac cttcgccttt tcacttagtg cagcgaagca ggatcaggac ataataaagg 11760
acatccttga gaataataaa ttggacagtg atggggaaat cgtcattcca gctgaaggat 11820
tcaagagtct taagctgctt cgcttctttg cacctttagt gccgaagctc agctttttgg 11880
acaagaatgc aatgccagca ctcgaaatca ttgaaatgcg gtttaaagac ttcgaaggtc 11940
tatttggcat cgaaatcctt gaaaatctcc gtgaggtgca tctcaaagtt agtgatgggg 12000
cagaagcaat aaccaagttc cttgtaaatg atttgaaggt taatactgag aaaccaaaag 12060
tatttgttga tggcatcgtc actgcatga 12089

Claims (10)

1. A functional marker panel for identifying multiple rice blast resistance alleles of the rice Pik locus, characterized by: the functional marker set is a KASP functional marker set and comprises functional markers MPik1, MPik2, MPik3, MPik4 and MPik5, the rice blast resistance alleles comprise Pi1, Pikm _ TS, Piks, PiKa, Pik, PiKp and Pi7, and the corresponding relations of the SNP/Indel locus genotypes and the alleles detected by the markers MPik1, MPik2, MPik3, MPik4 and MPik5 are shown in the following table:
MPik1 MPik2 MPik3 MPik4 MPik5 Pi1 T AA T T T Pikm_TS T AA T A T PiKs T AA T A C PiKa C AA G A T Pik T AA T A T PiKp C GC G A C Pi7 C AA G A C
the specific positions of the SNP/Indel sites are shown in the following table:
mark number Type of molecular marker Physical location Differential bases MPik_1 SNP 2040 th of the sequence of the Pi1 gene [T/C] MPik_2 SNP Position 8824 of the Pi1 gene sequence [AA/GC] MPik_3 Indel 489 th position of the sequence of the Pi1 gene [GC/T] MPik_4 Indel 11284 th position of Pi1 gene sequence [T/AA] MPik_5 SNP 5419 th position of Pi1 gene sequence [T/C]
The nucleotide sequence of the Pi1 gene in the table is shown in SEQ ID NO. 16.
2. A set of KASP primer sets for detecting the functional marker set of claim 1, wherein: consists of the following (1) to (5):
(1) KASP primer set for detection of MPik 1: the primer 1 is a single-stranded DNA with a tag sequence A and 22 th to 44 th sites of a sequence 1 in a sequence table from a 5 'end to a 3' end, the primer 2 is a single-stranded DNA with a tag sequence B and 22 th to 44 th sites of a sequence 2 in the sequence table from a 5 'end to a 3' end, and the primer 3 is a single-stranded DNA with a nucleotide sequence shown as a sequence 3 in the sequence table;
(2) KASP primer set for detection of MPik 2: the primer 4 is a single-stranded DNA with a tag sequence A and 22 th to 44 th sites of a sequence 4 in a sequence table from a 5 'end to a 3' end, the primer 5 is a single-stranded DNA with a tag sequence B and 22 th to 41 th sites of a sequence 5 in the sequence table from a 5 'end to a 3' end, and the primer 6 is a single-stranded DNA with a nucleotide sequence shown as a sequence 6 in the sequence table;
(3) KASP primer set for detection of MPik 3: the primer 7 is a single-stranded DNA with a tag sequence A and 22 th to 42 th positions of a sequence 7 in a sequence table from a 5 'end to a 3' end, the primer 8 is a single-stranded DNA with a tag sequence B and 22 th to 41 th positions of a sequence 8 in the sequence table from the 5 'end to the 3' end, and the primer 9 is a single-stranded DNA with a nucleotide sequence shown as a sequence 9 in the sequence table;
(4) KASP primer set for detection of MPik 4: the primer 10 is a single-stranded DNA which is sequentially provided with a tag sequence A and 22 th to 46 th sites of a sequence 10 in a sequence table from a 5 'end to a 3' end, the primer 11 is a single-stranded DNA which is sequentially provided with a tag sequence B and 22 th to 46 th sites of a sequence 11 in the sequence table from the 5 'end to the 3' end, and the primer 12 is a single-stranded DNA with a nucleotide sequence shown as a sequence 12 in the sequence table;
(5) KASP primer set for detection of MPik 5: the primer 13 is single-stranded DNA of the tag sequence A and the 22 th to 42 th positions of the sequence 13 in the sequence table from the 5 'end to the 3' end, the primer 14 is single-stranded DNA of the tag sequence B and the 22 th to 40 th positions of the sequence 14 in the sequence table from the 5 'end to the 3' end, and the primer 15 is single-stranded DNA of which the nucleotide sequence is shown as the sequence 15 in the sequence table.
3. A KASP primer set according to claim 2, wherein: the tag sequence A is a FAM fluorescent tag sequence, and the tag sequence B is a HEX fluorescent tag sequence.
4. A KASP primer set of claim 3, wherein: the sequences of the primers 1-15 are sequentially shown as SEQ ID NO. 1-15 in the sequence table.
5. Use of the functional marker set of claim 1 for identifying or assisting in identifying the type of rice blast resistance alleles at the Pik locus of rice or in molecular marker assisted breeding of rice.
6. Use of the KASP primer set of any one of claims 2 to 4 for identifying or assisting in identifying the rice blast resistance allele type of the rice Pik locus or in rice molecular marker-assisted breeding.
7. A method for identifying multiple rice blast resistance alleles at the Pik locus of rice, comprising the steps of:
1) extracting the genome DNA of a rice sample to be detected;
2) PCR amplification of the extracted genomic DNA using the primer set according to claim 3, detection of SNP/Indel sites in the KASP functional marker set in the amplification product, each marker amplified individually, and determination of which of Pi1, Pikm _ TS, Piks, Pika, Pik, PiKp and Pi7 the Pik locus rice blast resistance allele of the sample to be tested is due to the correspondence between the genotype and the allele of the SNP/Indel site in the functional markers MPik1, MPik2, MPik3, MPik4 and MPik5 in the table of claim 1.
8. The method of claim 7, wherein: the primer combination of claim 4 is used for PCR amplification, a fluorescence detector is used for detecting the amplification product, and the genotype of the differential loci in the functional markers MPik1, MPik2, MPik3, MPik4 and MPik5 is judged according to the fluorescence signal, and the corresponding relationship is shown as the following table:
Figure FDA0003479494200000031
9. the method of claim 8, wherein:
the PCR reaction system is a 10ul system: contains 1.0ul 10 XPARMS Buffer, 1.0ul dNTP, 1.0ul of each of 3 primers of each group of KASP primers, the concentration of each primer is 4 mol.L-10.2ul PARMS PCR enzyme, 30-50 ng/ul template DNA1.0ul, 3.8ul ddH2O。
10. The method of claim 9, wherein: the PCR reaction program is: 5min at 94 ℃; 30s at 94 ℃, 30s at 58 ℃, 45s at 72 ℃ and 35 cycles; finally, extension is carried out for 10min at 72 ℃.
CN202210069256.2A 2022-01-20 2022-01-20 Functional marker group for identifying multiple rice blast resistance alleles of rice Pik locus, primer combination and application of functional marker group Pending CN114410819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210069256.2A CN114410819A (en) 2022-01-20 2022-01-20 Functional marker group for identifying multiple rice blast resistance alleles of rice Pik locus, primer combination and application of functional marker group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210069256.2A CN114410819A (en) 2022-01-20 2022-01-20 Functional marker group for identifying multiple rice blast resistance alleles of rice Pik locus, primer combination and application of functional marker group

Publications (1)

Publication Number Publication Date
CN114410819A true CN114410819A (en) 2022-04-29

Family

ID=81276049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210069256.2A Pending CN114410819A (en) 2022-01-20 2022-01-20 Functional marker group for identifying multiple rice blast resistance alleles of rice Pik locus, primer combination and application of functional marker group

Country Status (1)

Country Link
CN (1) CN114410819A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007061027A (en) * 2005-09-01 2007-03-15 National Agriculture & Food Research Organization Primer for identifying rice variety having resistance to rice blast disease by dna discrimination method and primer set in which plurality of primers are combined
CN102732511A (en) * 2012-03-08 2012-10-17 华南农业大学 Functional specificity molecule marker Pi7FNP of blast-resistance gene Pi7, method and application thereof
CN105950747A (en) * 2016-06-02 2016-09-21 福建省农业科学院生物技术研究所 Rice blast resistance gene Pi1 functional specificity molecular marker and application thereof
CN112695114A (en) * 2020-12-25 2021-04-23 华智生物技术有限公司 SNP molecular marker for detecting rice blast resistance Pik gene and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007061027A (en) * 2005-09-01 2007-03-15 National Agriculture & Food Research Organization Primer for identifying rice variety having resistance to rice blast disease by dna discrimination method and primer set in which plurality of primers are combined
CN102732511A (en) * 2012-03-08 2012-10-17 华南农业大学 Functional specificity molecule marker Pi7FNP of blast-resistance gene Pi7, method and application thereof
CN105950747A (en) * 2016-06-02 2016-09-21 福建省农业科学院生物技术研究所 Rice blast resistance gene Pi1 functional specificity molecular marker and application thereof
CN112695114A (en) * 2020-12-25 2021-04-23 华智生物技术有限公司 SNP molecular marker for detecting rice blast resistance Pik gene and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郑祥正;: "稻瘟病抗性位点Pik-InDel分子标记开发及其在育种上的应用" *

Similar Documents

Publication Publication Date Title
Wanchana et al. A rapid construction of a physical contig across a 4.5 cM region for rice grain aroma facilitates marker enrichment for positional cloning
KR101923647B1 (en) SNP markers for discrimination of Jubilee type or Crimson type watermelon cultivar
Shirasawa et al. Dot-blot-SNP analysis for practical plant breeding and cultivar identification in rice
CN111575400B (en) Wheat stripe rust resistance QTL molecular marker IWB12253 and application thereof
AU2013205609A1 (en) Cotton event pDAB4468.18.07.1 detection method
US20060035227A1 (en) Methods for distinguishing rice varities
Lee et al. Identification and characterization of simple sequence repeat markers for Pythium aphanidermatum, P. cryptoirregulare, and P. irregulare and the potential use in Pythium population genetics
CN116377082B (en) Application of sheep LCORL gene single nucleotide polymorphism marker in growth trait selection
CN114480718B (en) Primer group and detection kit for rice high temperature resistant genotyping based on KASP technology and application of primer group and detection kit
Shiokai et al. Improvement of the dot-blot-SNP technique for efficient and cost-effective genotyping
CN114410819A (en) Functional marker group for identifying multiple rice blast resistance alleles of rice Pik locus, primer combination and application of functional marker group
CN111607664B (en) Application of SNP molecular marker on 1DS chromosome related to wheat stripe rust
KR102458440B1 (en) Primer set for selecting Phytophthora blight resistant pepper and selection method using the same primer set
CN114606335A (en) Development and application of KASP molecular marker of sugarcane mosaic virus disease resistance gene of corn
CN111778346B (en) Molecular marker for detecting stripe rust resistance QTL QYr.hbas-4BL.1 and using method
KR102081973B1 (en) SNP marker for selecting rice cultivars resistant to bakanae disease of rice and use thereof
AU2011311955B2 (en) Endpoint TaqMan methods for determining zygosity of cotton comprising Cry 1F event 281-24-236
CN112048569B (en) Molecular marker coseparated with wheat low polyphenol oxidase activity gene QPpo-5D
KR102625086B1 (en) Biomarkers for determining the maturation date of wheat
KR102081964B1 (en) SNP marker for selecting rice cultivars resistant to bakanae disease of rice and use thereof
CN113699273B (en) SNP locus combination for detecting resistance of tomato root-knot nematode and application thereof
CN117604077A (en) Method for identifying functional marker group of Piz seat series alleles
CN114107549A (en) KASP molecular marker related to rose fragrance of grape fruits and application
CN116445654A (en) SNP molecular marker for identifying rice blast resistance gene Pi64, method and application thereof
KR20240086770A (en) Molecular markers for selecting plants resistant to powdery mildew in Asian pumpkins and their uses

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination