CN114392765B - 一种氮掺杂PHCS-Zn2In2S5复合光催化剂、其制备方法及应用 - Google Patents

一种氮掺杂PHCS-Zn2In2S5复合光催化剂、其制备方法及应用 Download PDF

Info

Publication number
CN114392765B
CN114392765B CN202111610212.8A CN202111610212A CN114392765B CN 114392765 B CN114392765 B CN 114392765B CN 202111610212 A CN202111610212 A CN 202111610212A CN 114392765 B CN114392765 B CN 114392765B
Authority
CN
China
Prior art keywords
phcs
composite photocatalyst
nitrogen
doped
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111610212.8A
Other languages
English (en)
Other versions
CN114392765A (zh
Inventor
孙剑辉
杜翠伟
冯薇薇
聂士雨
张晶
王宗舞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN202111610212.8A priority Critical patent/CN114392765B/zh
Publication of CN114392765A publication Critical patent/CN114392765A/zh
Application granted granted Critical
Publication of CN114392765B publication Critical patent/CN114392765B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0205Oxygen-containing compounds comprising carbonyl groups or oxygen-containing derivatives, e.g. acetals, ketals, cyclic peroxides
    • B01J31/0207Aldehydes or acetals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明属于半导体光催化材料技术领域,具体涉及一种氮掺杂PHCS‑Zn2In2S5复合光催化剂、其制备方法及应用。本发明通过对可见光响应三元硫化物ZnmIn2Sm+3催化剂的合成方法进行改进,提供了一种一步水热合成法,通过将Zn2In2S5在含氮元素的中空葡萄糖微球上自生长,实现对三元硫化物Zn2In2S5的修饰,制备得到一种氮掺杂PHCS‑Zn2In2S5纳米复合材料,并作为复合光催化剂,用于高效降解苯酚废水和双酚A废水并原位产生H2O2。本发明所制备的复合光催化剂PHCS‑Zn2In2S5性能稳定、成本低廉,具有良好的市场应用前景。本发明的复合光催化剂PHCS‑Zn2In2S5在环境改善领域的应用奠定了基础。

Description

一种氮掺杂PHCS-Zn2In2S5复合光催化剂、其制备方法及应用
技术领域
本发明属于半导体光催化材料技术领域,通过氮掺杂中空葡萄糖微球(PHCS)修饰三元硫化物Zn2In2S5利用水热法一步合成PHCS-Zn2In2S5纳米复合材料,并作为半导体光催化剂,用于高效降解苯酚废水并原位产生H2O2,具体涉及一种氮掺杂PHCS-Zn2In2S5复合光催化剂、其制备方法及应用。
背景技术
酚及其化合物作为有机物的合成中的基本原料,在石化、炼油、农药、树脂、塑料、医药、皮革、纺织和造纸等行业中有着广泛的应用。酚类废水进入水体或土壤后会影响生物的生长繁殖和人类的饮用水安全,美国环保局将酚类化合物作为优先控制污染物,并将其归为致突变、致畸、致癌化合物。当水体中苯酚浓度大于1 mg/L时,将对鱼类产生不利的影响,而且重复接触低浓度的酚类化合物将损害肝功能、腹泻、口腔溃疡、尿色深和溶血性贫血等。
高级氧化技术通常被认为是一种基于自由基为中间体反应的氧化过程,具有高效、彻底、适用范围广、无二次污染等优点,因而在处理高浓度、难降解、有毒有害废水方面具有较大的优势。研究发现,一些光催化剂如RGO、g-C3N4、ZnO、BiOX等对苯酚具有较强的降解性。在所有的可见光响应催化剂中三元硫化物 ZnmIn2Sm+3(ZIS,m(整数)= 1~5)具有环境友好、强稳定性、较强的可见光吸收效率且具有合适的能带结构,因而引起了人们的极大研究兴趣。现有技术中,通常采用水热法合成ZnmIn2Sm+3,但产物结晶度和活性均较低,因此研究者们在合成过程中采用增加表面活性剂、修饰剂或有机溶剂的方式对其活性进行改善。
公开号为CN109464986A的中国专利公开了一种基于卟啉金属有机框架与三元硫化物的纳米复合材料,通过将活化的PCN-224分散到N,N-二甲基甲酰胺-甘油混合溶液中,并加入ZnCl2、InCl3和TAA最终制得纳米复合材料,通过溶剂热法将ZnIn2S4负载到卟啉金属有机框架PCN-224上,一方面可以实现对有机污染物的吸附,另一方面提高光催化产氢活性。但是,此专利中所制备的纳米复合材料并不能对酚及其化合物进行有效的吸收。
基于此,本发明通过使用氮掺杂中空葡萄糖微球(PHCS) 作为修饰剂,对三元硫化物Zn2In2S5进行修饰,并利用水热法一步合成PHCS-Zn2In2S5纳米复合材料,将合成的纳米复合材料作为半导体光催化剂,用于高效降解苯酚废水并原位产生H2O2,以期对废水中酚及其化合物进行吸附,从而解决现有技术中的问题。
发明内容
本发明基于现有技术中存在的问题,通过对可见光响应三元硫化物 ZnmIn2Sm+3催化剂的合成方法进行改进,提供了一种一步水热合成法,通过将Zn2In2S5在含氮元素的中空葡萄糖微球上自生长,实现对三元硫化物Zn2In2S5的修饰,制备得到一种氮掺杂PHCS-Zn2In2S5纳米复合材料,并作为复合光催化剂,用于高效降解苯酚废水并原位产生H2O2
本发明还提供了一种氮掺杂PHCS-Zn2In2S5复合光催化剂的制备方法。
本发明进一步还提供了一种氮掺杂PHCS-Zn2In2S5复合光催化剂的应用。
为了实现上述技术目的,本发明采用以下技术方案:
一种氮掺杂PHCS-Zn2In2S5复合光催化剂的制备方法,采用水热法制备PHCS-Zn2In2S5复合光催化剂,包括以下步骤:
(1)将七水合硫酸锌、六水合氯化铟溶解于混合溶剂中,搅拌至溶液澄清,得到溶液A;
(2)称取十二烷基硫酸钠、葡萄糖、三聚氰胺,并依次溶解于去离子水中,得到溶液B;
(3)将溶液B加入到溶液A中,再加入硫代乙酰胺(TAA),持续搅拌1-2 h后转移至聚四氟乙烯高压反应釜中,于120-160℃温度条件下水热反应12-24 h,反应后自然冷却至室温,离心,得到黄色沉淀,黄色沉淀依次用蒸馏水和乙醇离心洗涤2-3次,于50-60 ℃条件下真空干燥3-6 h,得到产物PHCS-Zn2In2S5
具体的,步骤(1)中七水合硫酸锌的用量为1-5 mmol,六水合氯化铟的用量为1-5mmol。
具体的,步骤(1)中混合溶剂为体积比是(1:1~3:2)的去离子水和丙三醇的混合溶剂。
具体的,步骤(2)中十二烷基硫酸钠、葡萄糖、三聚氰胺的质量比为1:(40-50):(1-2)。
具体的,步骤(2)中去离子水的用量是10-50 mL。
具体的,步骤(3)中溶液B和溶液A的体积比为1:(1-5),加入的硫代乙酰胺(TAA)用量是10-100 mmol。
具体的,步骤(3)中真空干燥的真空度是0.1-0.5MPa。
上述方法通过将Zn2In2S5在含氮元素的中空葡萄糖微球上自生长,实现对三元硫化物Zn2In2S5的修饰,制备得到一种氮掺杂PHCS-Zn2In2S5纳米复合材料,并作为复合光催化剂。
进一步的,本发明还提供了所述氮掺杂PHCS-Zn2In2S5复合光催化剂在催化降解废水中有机化合物的应用。
具体为,所述氮掺杂PHCS-Zn2In2S5复合光催化剂在催化降解废水中酚类化合物的应用。
具体的,所述酚类化合物为苯酚或双酚A。
具体的,所述氮掺杂PHCS-Zn2In2S5复合光催化剂在催化降解含酚类化合物废水后,得到含H2O2废水溶液,并具有良好的抑菌性能,能够抑菌、除菌。
具体的,所述菌为大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌等。
进一步的,本发明还提供了所述氮掺杂PHCS-Zn2In2S5复合光催化剂在光催化制备H2O2中的应用,具体应用为氮掺杂PHCS-Zn2In2S5复合光催化剂在催化降解酚类废水时原位生产H2O2
与现有技术相比,本发明的优势在于:
本发明通过将Zn2In2S5在含氮元素的中空葡萄糖微球(PHCS)上自生长,实现对三元硫化物Zn2In2S5的修饰,制备得到一种氮掺杂PHCS-Zn2In2S5纳米复合材料,并作为复合光催化剂,用于高效降解苯酚废水并原位产生H2O2
本发明的方法操作简单、成本低廉,通过一步水热法将氮掺杂中空葡萄糖微球(PHCS)修饰三元硫化物Zn2In2S5,实现对Zn2In2S5的改进,在高效降解含苯酚废水的同时,得到的含H2O2废水溶液具有良好的抑菌性能,实现变废为宝。
本发明所制备的复合光催化剂PHCS-Zn2In2S5性能稳定、成本低廉,具有良好的市场应用前景。本发明的复合光催化剂PHCS-Zn2In2S5在环境改善领域的应用奠定了基础。
附图说明
图1是本发明所述光催化剂降解苯酚的曲线图;
图2是本发明所述光催化剂降解苯酚同步产H2O2的曲线图;
图3是本发明实施例1的光催化剂产H2O2后的抑菌实验;
图4是本发明所述光催化剂的XRD图谱;
图5是本发明实施例1的光催化剂的SEM图和TEM图。
具体实施方式
以下实例将结合附图对本发明作进一步说明。本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和过程,但本发明的保护范围不限于下述的实施例。下列实施例中未注明具体条件的实验方法,通常按照常规条件,所使用的原料、试剂没有特殊说明均为常规市售产品。
实施例1
一种氮掺杂PHCS-Zn2In2S5复合光催化剂的制备方法,具体步骤如下:
(1)将2 mmol七水合硫酸锌、2 mmol六水合氯化铟溶解于50mL的混合溶剂中,搅拌至溶液澄清,得到溶液A,所述混合溶剂为30 mL去离子水和20 mL丙三醇的混合溶剂;
(2)称取十二烷基硫酸钠(0.006 g)、葡萄糖(0.288 g)、三聚氰胺(0.009 g),并依次溶解于10 mL去离子水中,充分搅拌至均匀,得到溶液B;
(3)将步骤(2)的溶液B加入到步骤(1)的溶液A中,再加入10 mmol硫代乙酰胺(TAA),持续搅拌2 h后转移至100 mL的聚四氟乙烯高压反应釜中,于160℃温度条件下水热反应12 h,反应后自然冷却至室温,离心,得到黄色沉淀,黄色沉淀依次用蒸馏水和乙醇离心洗涤3次,于60 ℃条件下真空干燥6 h(真空度是0.1 MPa),得到产物PHCS-Zn2In2S5,记为CZS-5。
实施例2
实施例2中氮掺杂PHCS-Zn2In2S5复合光催化剂的制备方法与实施例1的不同之处在于,通过改变步骤(2)中葡萄糖的用量,从而实现改变中空葡萄糖微球PHCS与三元硫化物Zn2In2S5的质量比,葡萄糖的投加量为0.0576 g,得到的产物记为CZS-1。
步骤(3)中水热反应温度为150℃水热反应,反应时间为18h。
实施例3
实施例3中氮掺杂PHCS-Zn2In2S5复合光催化剂的制备方法与实施例1的不同之处在于,步骤(2)中葡萄糖的投加量为0.576 g,得到的产物记为CZS-10。
实施例4
实施例4中氮掺杂PHCS-Zn2In2S5复合光催化剂的制备方法与实施例1的不同之处在于,步骤(2)中葡萄糖的投加量为0.691 g,得到的产物记为CZS-15。
试验例1所述氮掺杂PHCS-Zn2In2S5复合光催化剂的光催化性能试验
采用实施例1、2、3、4中的氮掺杂PHCS-Zn2In2S5复合光催化剂对含苯酚废水进行降解,具体为光催化反应,试验方法可参考文献(Nguyen V H, Delbari S A, Mousavi M, etal. g-C3N4-nanosheet/ZnCr2O4 S-scheme heterojunctionphotocatalyst withenhanced visible-light photocatalytic activity for degradation of phenol andtetracycline[J]. Separation and Purification Technology, 2021: 118511.)中的方法步骤。
含苯酚废水的初始浓度为20 mg/L,溶液体积为50 mL,催化剂用量为50 mg。
在光催化反应前,将所述氮掺杂PHCS-Zn2In2S5复合光催化剂置于废水中,得到悬浮液,并超声分散5 min,光照前进行暗吸附40 min 达到物理吸附和脱附平衡,然后打开光源,采用3 W的LED灯作为可见光源,进行光催化吸附降解反应,每30 min取一次样,所取样品体积约为3 mL;
将所取的样品溶液于10000 r/min离心分离10 min,取其上清液,用高效液相测上清液中苯酚浓度,通过C/C0来判断苯酚的降解效果,其中,C0为吸附平衡后苯酚的浓度,C为反应时间为t时苯酚的浓度。同时做单独使用中空葡萄糖微球(PHCS)和ZIS(三元硫化物Zn2In2S5)的对照组,对照组中中空葡萄糖微球(PHCS)的制备方法同实施例1步骤(2),ZIS(三元硫化物Zn2In2S5)的制备方法同实施例1步骤(1)。
同时,采用钛盐分光光度法分析测试H2O2的浓度。具体的浓度测定方法参考公开号为CN111151274A中国专利(催化材料及其制备方法、光催化剂、过氧化氢的生产方法)中的测定方法。
试验例中同时做了实施例1、2、3、4中的氮掺杂PHCS-Zn2In2S5复合光催化剂对含双酚A废水的降解实验,具体的试验方法同对含苯酚废水的降解试验,含双酚A废水的初始浓度、溶液体积、催化剂用量同对含苯酚废水的降解试验。
试验结果
图1a是模拟太阳光照射下不同质量比光催化剂对苯酚的降解效率对比图。由图可以看出,在单独使用PHCS以及ZIS(三元硫化物Zn2In2S5)光催化剂存在下,光照180 min后苯酚的降解率分别达到42.5%和82.1%。对于PHCS-Zn2In2S5(分别记为CZS-1、CZS-5、CZS-10、CZS-15)的复合物来说,光催化效果与纯的PHCS和ZIS相比均有所提高,且CZS-1、CZS-5、CZS-10、CZS-15分别对应的是PHCS和Zn2In2S5的质量比是1%,5%,10%,15%的复合光催化材料,其中,复合光催化材料CZS-5的效果最好,在光照180 min后对苯酚的降解率达到将近100%。
同时,同步测试降解过程中H2O2的产量,由图1b可知,在180 min的苯酚降解实验中,按H2O2的标线计算可得,纯PHCS和ZIS产H2O2量分别为0.66 mmol/L和0.76 mmol/L,CZS-5光催化剂产H2O2量最高,约为1.31 mmol/L,是纯ZIS产量的1.98倍。
图2是光催化剂对双酚A的降解效率对比图。从图2a可以看出,CZS-5光照180 min后双酚A的降解率可达到79.7 %,同步测定的溶液中H2O2量约为2.31 mmol/L。在双酚A溶液的H2O2产率高于苯酚溶液,可能由于双酚A的联苯环结构与材料结合较强导致电子离域作用加强,利于光生电子和空穴的分离。
图3为模拟大肠杆菌DH5a进行的抑菌试验,抑菌试验利用实施例1所述氮掺杂PHCS-Zn2In2S5复合光催化剂催化降解含酚类化合物废水后得到的H2O2(抑菌试验的具体方法步骤参考文献Du C, Nie S, Feng W, et al. Hydroxyl regulating effect onsurface structure of BiOBrphotocatalyst toward high-efficiency degradationperformance[J]. Chemosphere,2022, 287: 132246.),评价了原位产的H2O2的抑菌消毒作用。很显然,原位产的H2O2量越多,对DH5a的生长抑制性越强。且CZS-5光催化降解可有效地抑制大肠杆菌的活性,抑菌率达到98.5%,实现废水的再利用。
图4是制备的PHCS、ZIS和不同比例CZS的XRD图。PHCS的XRD图中在26.1°出现碳基的特征峰。ZIS的峰形和峰位与文献中报道的六方晶型Zn2In2S5完全一致,且与不同质量PHCS复合后所有样品的谱图呈现相似的轮廓。随着PHCS质量比的增加,复合物中衍射峰在26.1处检测出PHCS的存在。
图5是制备的纯ZIS和CZS-5的SEM和TEM图。从图(a)可以看出纯ZIS呈现纳米片聚合的金盏花结构,大致直径在1.5 ~ 2 μm 范围。从图(b-c)可以看出CZS-5复合物呈现在空心微球上无序生长纳米片的结构,也就是说,该异质结构应该为核壳结构,PHCS作为体系的内核,ZIS作为体系外部的壳层。从图(d)的TEM图中得到0.32 nm和0.42 nm两种不同的晶格条纹,分别对应ZIS的(104)面和(006)的晶格间距。
最后应该说明的是:以上实施例仅用于说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本权利要求范围当中。

Claims (6)

1.一种氮掺杂PHCS-Zn2In2S5复合光催化剂的制备方法,其特征在于,包括如下步骤:
(1)将七水合硫酸锌、六水合氯化铟溶解于混合溶剂中,搅拌至溶液澄清,得到溶液A;
(2)称取十二烷基硫酸钠、葡萄糖、三聚氰胺,并依次溶解于去离子水中,得到溶液B;
(3)将溶液B加入到溶液A中,再加入硫代乙酰胺,于120-160℃温度条件下水热反应12-24 h,反应后冷却至室温,离心,得到固体沉淀,洗涤,干燥,得到产物PHCS-Zn2In2S5
步骤(1)中七水合硫酸锌的用量为1-5 mmol,六水合氯化铟的用量为1-5 mmol;
步骤(1)中混合溶剂为体积比是1:1~3:2的去离子水和丙三醇的混合溶剂;
步骤(2)中十二烷基硫酸钠、葡萄糖、三聚氰胺的质量比为1:(40-50):(1-2);
步骤(3)中溶液B和溶液A的体积比为1:(1-5),硫代乙酰胺用量是10-100 mmol。
2.如权利要求1所述的制备方法,其特征在于,步骤(3)中的干燥工序为在50-60 ℃条件下真空干燥3-6 h,真空度是0.1-0.5Mpa。
3.采用权利要求1或2所述方法制备得到的氮掺杂PHCS-Zn2In2S5复合光催化剂。
4.权利要求3所述氮掺杂PHCS-Zn2In2S5复合光催化剂在催化降解废水中有机化合物的应用。
5.如权利要求4所述的应用,其特征在于,所述氮掺杂PHCS-Zn2In2S5复合光催化剂在催化降解废水中酚类化合物的应用,所述酚类化合物包括苯酚和双酚A。
6.权利要求3所述氮掺杂PHCS-Zn2In2S5复合光催化剂在酚类废水中原位生产H2O2的应用。
CN202111610212.8A 2021-12-27 2021-12-27 一种氮掺杂PHCS-Zn2In2S5复合光催化剂、其制备方法及应用 Active CN114392765B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111610212.8A CN114392765B (zh) 2021-12-27 2021-12-27 一种氮掺杂PHCS-Zn2In2S5复合光催化剂、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111610212.8A CN114392765B (zh) 2021-12-27 2021-12-27 一种氮掺杂PHCS-Zn2In2S5复合光催化剂、其制备方法及应用

Publications (2)

Publication Number Publication Date
CN114392765A CN114392765A (zh) 2022-04-26
CN114392765B true CN114392765B (zh) 2024-02-02

Family

ID=81227686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111610212.8A Active CN114392765B (zh) 2021-12-27 2021-12-27 一种氮掺杂PHCS-Zn2In2S5复合光催化剂、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN114392765B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116060078B (zh) * 2023-04-07 2023-06-20 广东省科学院生态环境与土壤研究所 一种光自芬顿催化剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130206A (zh) * 2013-03-05 2013-06-05 东北林业大学 氮掺杂碳材料及其制备方法
WO2017219793A1 (zh) * 2016-06-20 2017-12-28 广东工业大学 一种短孔道有序介孔碳负载硫铟钴和硫铟镍三元复合光催化剂及其制备方法和应用
CN108717979A (zh) * 2018-04-25 2018-10-30 许昌学院 一种氮掺杂微纳米碳球的制备方法
CN108970623A (zh) * 2018-08-03 2018-12-11 南昌航空大学 一种可调控带隙的可见光催化剂的合成方法
CN110639591A (zh) * 2019-10-12 2020-01-03 苏州大学 负载在氮掺杂碳空心球上的硫化铟锌及其制备方法与在废水处理中的应用
CN111974414A (zh) * 2020-08-18 2020-11-24 河南师范大学 一种复合催化材料及其制备方法、光催化剂、应用
CN113171791A (zh) * 2021-05-21 2021-07-27 河南师范大学 一种可高效生产过氧化氢的复合催化剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130206A (zh) * 2013-03-05 2013-06-05 东北林业大学 氮掺杂碳材料及其制备方法
WO2017219793A1 (zh) * 2016-06-20 2017-12-28 广东工业大学 一种短孔道有序介孔碳负载硫铟钴和硫铟镍三元复合光催化剂及其制备方法和应用
CN108717979A (zh) * 2018-04-25 2018-10-30 许昌学院 一种氮掺杂微纳米碳球的制备方法
CN108970623A (zh) * 2018-08-03 2018-12-11 南昌航空大学 一种可调控带隙的可见光催化剂的合成方法
CN110639591A (zh) * 2019-10-12 2020-01-03 苏州大学 负载在氮掺杂碳空心球上的硫化铟锌及其制备方法与在废水处理中的应用
CN111974414A (zh) * 2020-08-18 2020-11-24 河南师范大学 一种复合催化材料及其制备方法、光催化剂、应用
CN113171791A (zh) * 2021-05-21 2021-07-27 河南师范大学 一种可高效生产过氧化氢的复合催化剂及其制备方法

Also Published As

Publication number Publication date
CN114392765A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
Moradi et al. CuO and ZnO co-anchored on g-C3N4 nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin
Pan et al. Construction of nanodiamonds/UiO-66-NH2 heterojunction for boosted visible-light photocatalytic degradation of antibiotics
Qamar et al. Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiations
Yu et al. Synergistic adsorption-photocatalytic degradation of different antibiotics in seawater by a porous g-C3N4/calcined-LDH and its application in synthetic mariculture wastewater
Zheng et al. Cu2O/TiO2 decorated on cellulose nanofiber/reduced graphene hydrogel for enhanced photocatalytic activity and its antibacterial applications
Zhang et al. PVP surfactant-modified flower-like BiOBr with tunable bandgap structure for efficient photocatalytic decontamination of pollutants
Yang et al. Insights into the mechanism of enhanced photocatalytic dye degradation and antibacterial activity over ternary ZnO/ZnSe/MoSe2 photocatalysts under visible light irradiation
Zhang et al. Simultaneous enhancements of light-harvesting and charge transfer in UiO-67/CdS/rGO composites toward ofloxacin photo-degradation
Zuo et al. A facile and novel construction of attapulgite/Cu2O/Cu/g-C3N4 with enhanced photocatalytic activity for antibiotic degradation
Ma et al. Design of Z-scheme g-C3N4/BC/Bi25FeO40 photocatalyst with unique electron transfer channels for efficient degradation of tetracycline hydrochloride waste
Zhu et al. Facile fabrication of BiOIO3/MIL-88B heterostructured photocatalysts for removal of pollutants under visible light irradiation
Chen et al. In-situ synthesis of biochar modified PbMoO4: An efficient visible light-driven photocatalyst for tetracycline removal
Yang et al. Construction of Bi2MoO6/CoWO4 Z-scheme heterojunction for high-efficiency photocatalytic degradation of norfloxacin under visible light: Performance and mechanism insights
Widiyandari et al. Nitrogen-doped carbon quantum dots supported zinc oxide (ZnO/N-CQD) nanoflower photocatalyst for methylene blue photodegradation
CN114392765B (zh) 一种氮掺杂PHCS-Zn2In2S5复合光催化剂、其制备方法及应用
CN114849748B (zh) 一种CoS/Ti3C2MXene复合材料的制备及其应用
Yu et al. Microwave solvothermal-assisted calcined synthesis of Bi2WxMo1− XO6 solid solution photocatalysts for degradation and detoxification of bisphenol A under simulated sunlight irradiation
Zhu et al. Fabrication of CdS/ZnCr-LDH heterojunctions with enhanced of tetracycline hydrochloride photocatalytic degradation under visible light
Thambiliyagodage et al. Fabrication of dual Z-scheme g-C3N4/Fe2TiO5/Fe2O3 ternary nanocomposite using natural ilmenite for efficient photocatalysis and photosterilization under visible light
Chen et al. Construction of dual Z-scheme g-C3N4/BiVO4 (0 4 0)/In2S3 photocatalyst for efficient photocatalytic degradation and sterilization under solar light irradiation
Li et al. Synergetic effect of photocatalysis and peroxymonosulfate activation by MIL-53Fe@ TiO 2 on efficient degradation of tetracycline hydrochloride under visible light irradiation
Zou et al. Oxalic acid modified hexagonal ZnIn2S4 combined with bismuth oxychloride to fabricate a hierarchical dual Z-scheme heterojunction: Accelerating charge transfer to improve photocatalytic activity
Zhang et al. Pd nanoparticle-modified TiO2-x composites as efficient visible-light active photocatalysts for tetracycline degradation and microbial disinfection
Daimalah et al. CuCr2O4-polystyrene immobilized photocatalyst: Facile fabrication, characterization and enhanced photodegradation of cefixime under visible light
Thinley et al. LaNiO3-rGO perovskite interface for sustainable decontaminants of emerging concerns under visible light photocatalysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant