CN114389494B - 一种行车状态下取力发电机组的稳压输出控制方法 - Google Patents

一种行车状态下取力发电机组的稳压输出控制方法 Download PDF

Info

Publication number
CN114389494B
CN114389494B CN202111560225.9A CN202111560225A CN114389494B CN 114389494 B CN114389494 B CN 114389494B CN 202111560225 A CN202111560225 A CN 202111560225A CN 114389494 B CN114389494 B CN 114389494B
Authority
CN
China
Prior art keywords
circuit
voltage
boost
buffer circuit
topology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111560225.9A
Other languages
English (en)
Other versions
CN114389494A (zh
Inventor
赵春雨
崔再铎
张一朦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Aerospace Xinguang Group Co Ltd
Original Assignee
Shenyang Aerospace Xinguang Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Aerospace Xinguang Group Co Ltd filed Critical Shenyang Aerospace Xinguang Group Co Ltd
Priority to CN202111560225.9A priority Critical patent/CN114389494B/zh
Publication of CN114389494A publication Critical patent/CN114389494A/zh
Application granted granted Critical
Publication of CN114389494B publication Critical patent/CN114389494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • H02M7/1623Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit
    • H02M7/1626Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/45Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种行车状态下取力发电机组的稳压输出控制方法,采用整流+零电压升压转换+逆变拓扑结构,结合改进型BP神经网络PID的升压拓扑控制策略,实现了行车状态下时输出的电压为供负载直接使用的三相交流电。同时详细分析稳压输出控制系统的拓扑结构及运行模式,给出升压拓扑控制策略的算法。基于MATLAB平台进行行车发电硬件在线试验,在油门开度突变及负载突变两种条件下,验证了该系统的良好性能,拓展了特种车辆的应用场合,提高了车辆的生存能力。

Description

一种行车状态下取力发电机组的稳压输出控制方法
技术领域
本发明涉及车载取力发电技术领域,具体涉及一种行车状态下取力发电机组的稳压输出控制方法。
背景技术
目前,伴随社会用电量的大幅提高,我国大大加快了建设电网的速度。然而,对于某些特殊的用电环境,例如军队野外作战车辆或特种车辆通过接入电网进行稳定供电是不符合实际的。传统的车载发电机组通常选择柴油机组向外部供电。但是,机组噪声大、体积大,极大影响了的使用条件。
为了保证车辆的用电需求,同时尽可能减轻车辆供电装置的体积重量,因此,出现一种新型车辆供电模式即车载取力发电,即利用车辆发动机的动力,在底盘变速箱取力口连接发电机组,产生三相交流电源为车辆各个用电系统供电,减少移动发电机的使用,大大提高了车辆机动性能和设备保障能力。车辆分为驻车状态和行车状态,两种状态下车辆发动机转速不同:驻车状态下,控制发动机转速恒定,发电机组产生稳定的三相交流电供负载直接使用;
而行车状态下,发动机的转速根据实际路况不断改变,从而导致发电机产生电压是波动的,无法直接使用。而大多数车载用电设备都要求有稳定的电源供电,因此必须研究一种方法能够快速、精确的实现三相交流电的稳压输出,即变速恒频稳压发电。
发明内容
本发明提供一种基于PWM脉宽调制及软开关技术设计的行车状态下取力发电机组的稳压输出控制系统。采用整流+零电压升压转换+逆变拓扑结构,结合改进型BP神经网络PID的升压拓扑控制策略,实现了行车状态下输出的电压为供负载直接使用的三相交流电。
本发明所采用的技术方案一种行车状态下取力发电机组的稳压输出控制方法,包括整流+改进型ZVT-Boost+逆变的控制系统拓扑结构,取力发电机组输出变化的交流电经三相桥式全控整流及改进型ZVT-Boost转换为直流电,后经过逆变电路转换为交流电,并对高频电压进行滤波,输出三相工频电压,所述的改进型ZVT-Boost拓扑是在Boost拓扑的基础增设辅助开关Qh、谐振电感Lr、谐振电容Cr及二级管VD0、VD1组成ZVT拓扑网络,构成Qm的软开关电路,在ZVT-Boost拓扑的基础上设计增加VDh和C3、C4构成减损电路,启动阶段辅助开关Qh比主开关Qm先导通,Lr、Cr构成谐振回路,主开关Qm能零电压导通,其中,L为升压电感,C5、C6为串联滤波电容,N点连接发电机中性点,当输入电压变化时,通过改变主开关Qm和辅助开关Qh的PWM占空比,控制升压电路实现稳压输出,所述的逆变拓扑中,设计增加R1、C5、VD2组成Q1的缓冲电路,设计增加放电开关Qr和电阻R组成PWM放电拓扑。
优选的,所述的控制系统拓扑结构采用闭环+扰动+改进型PID的复合控制策略。
优选的,所述的控制系统拓扑结构的三相桥式全控整流的触发角α≤60°。
本发明的有益效果是:为解决车载取力发电机组在行车状态下发电无法直接使用、严重影响其运行效率及使用场合等问题,设计了一种行车状态下取力发电机组的稳压输出控制系统。实现机组在发电机转速时刻变化的条件下稳压输出。行车状态下的取力发电机组要能够在发电机转速时刻变化的条件下快速响应。与驻车状态下取力发电机组相比,行车状态下机组的调压系统在转速变化条件下快速精确响应;系统在负载变化条件下快速稳定运行;具有良好的动态性能;鲁棒性较强。
附图说明
图1为整流拓扑控制策略图。
图2为ZVT-Boost拓扑控制策略图。
图3为BP-PID神经网络结构图。
图4为基于改进型BP神经网络的PID控制系统结构图。
图5为逆变拓扑控制策略图。
图6为稳压输出控制系统主拓扑结构图。
图7为改进型ZVT-Boost电路理想工作波形图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件能够以各种不同的配置来布置和设计。
本发明行车稳压输出控制系统的控制策略,行车状态下的取力发电机组要能够在发电机转速时刻变化的条件下快速响应。与驻车状态下取力发电机组相比,行车状态下机组的调压系统控制问题极为复杂。其必须满足以下条件:(1)系统在转速变化条件下快速精确响应;(2)系统在负载变化条件下快速稳定运行;(3)具有良好的动态性能;(4)具有较好的鲁棒性。
一、如图1所示,整流拓扑控制策略,采用三相全控整流根据需求直流电压指令将交流电变换为直流电。调整触发角控制输出电压值,为保持高功率因数,控制触发角α≤60°。整流后输出电压若满足直流母线电压需求,则无需升压处理,直接进行逆变,减轻ZVT-Boost电路负担,提高系统效率。
二、基于改进型BP神经网络PID的ZVT-Boost拓扑控制策略,其控制策略如图2所示,将BP神经网络与PID控制相结合构造基于BP神经网络的PID控制。在汽车发动机转速或负载变化时,系统根据实时电压反馈控制改变PWM的占空比,从而调节升压值;通过神经网络对系统转速、负载等参数变化的自学习,找到控制最优解,从而提高控制系统的调压速度和精度。
三、改进型BP神经网络PID控制器算法,改进型BP神经网络PID结构如图3所示。该控制结构选取误差信号e1、e2、e3为输入层节点,输出层节点为PID控制器的三个参数KP、KI、KD。用Wji、Wil分别表示输入层与隐含层、隐含层与输出层的连接权值。
选择双曲正切函数作为隐含层的激活函数:
因为输出层节点KP、KI、KD均不能是小于零的数,因此选择非负型双曲正切函数作为输出层的激活函数:
采集某时刻t,神经网络的网络输入层输入为:
网络隐含层输入、输出为:
网络输出层输入、输出为:
其中,KP、KI、KD的数值分别对应定义该神经网络目标函数为E(t)为:
为复杂。其必须满足以下条件:(1)系统在转速变化条件下快速精确响应;(2)系统在负载变化条件下快速稳
经化简得到网络输出层的连接权值变化量为:
同理得到网络隐含层的连接权值变化量为:
通过以上公式可得输出层的连接权值变化量的增量公式为:
Wil(t+1)=Wil(t)+ΔWil(t+1)
当t时刻连接权值变化量的增量较大时,t+1时刻的增量会继续增长,具有了增长的惯性,因此网络收敛速度加快。
改进型BP神经网络PID控制器,图4为基于BP神经网络PID控制系统结构,r为升压拓扑期望直流母线电压值即540V;y为升压拓扑实际输出电压值;e为系统误差即y与r的差值;u为经调节输出的占空比信号。
四、逆变拓扑控制策略,逆变电路也采用扰动补偿+闭环的复合控制策略,通过SPWM调制及PI控制,从而调节输出电压,同时进行负载扰动、母线电压扰动补偿控制,从而提高变换器控制的快速性能,使变换器输出稳定的工频交流电。其控制策略如图5所示。
步骤1:行车稳压输出控制系统的主拓扑结构
本文中,行车稳压输出控制系统具有电压输入范围广、电压输出稳定以及工作效率佳的优点,其控制系统主拓扑结构如图6所示。行车时,由于发动机转速时刻变化,取力发电机组输出变化的交流电经三相桥式全控整流及改进型ZVT-Boost(超压放电)转换为恒定的直流电,后经过逆变电路转换为交流电,并对高频电压进行滤波,输出稳定的三相工频电压。
其中改进型ZVT-Boost(超压放电)拓扑区别于传统的Boost电路,在Boost拓扑的基础增设辅助开关Qh、谐振电感Lr、谐振电容Cr及二级管VD0、VD1组成ZVT拓扑网络,构成Qm的软开关电路,使其开通前以及关断前两端电流均为零,极大的降低开关损耗且不会产生噪声[3-4];同时为了减少辅助开关Qh的关断损耗,在ZVT-Boost拓扑的基础上设计增加VDh和C3、C4构成减损电路,提高功率因数的同时降低了线路损耗。启动阶段辅助开关Qh比主开关Qm先导通,Lr、Cr构成谐振回路,保证主开关Qm能零电压导通。其中,L为升压电感,C5、C6为串联滤波电容,N点连接发电机中性点,当输入电压变化时,可以通过改变主开关Qm和辅助开关Qh的PWM占空比,控制升压电路实现稳压输出。逆变拓扑中,为了防止开关在导通关断的瞬间产生电压尖峰及反偏置电压产生的的二次击穿,同时降低开关损耗,设计增加R1、C5、VD2组成Q1的缓冲电路,其余开关同理。
同时为了防止汽车行驶突然加速时,发动机转速骤增,导致电压骤增,发生危险,设计增加放电开关Qr和电阻R组成PWM放电拓扑,使系统始终实现稳压输出。为使输出的线电压有效值达到380V,应在发电机的输出端经整流、升压拓扑处理后,得到540V的直流电压。因此拓扑中开关承受的电压为直流540V左右,因此整流拓扑中VT1-VT6均采用全控器件GTO,升压拓扑辅助开关Qh和主开关Qm及逆变拓扑开关Q1-Q6均采用高耐压的IGBT。
步骤2:行车稳压输出控制系统的拓扑运行模式分析
行车稳压输出控制系统主拓扑包含整流、ZVT-Boost、逆变三部分。由于整流及逆变部分是基础的电力电子电路,因此本文仅对改进型ZVT-Boost(超压放电)拓扑运行模式进行详细分析。
拓扑7个工作模式,其波形图如图7所示,现分析如下:
(1)工作模式[t0~t1]:在t0时刻之前,主开关Qm和辅助开关Qh关闭,二极管VD0呈导通状态。在t0时刻,辅助开关Qh导通,由于此时二极管VD0仍为通态,因此电感Lr两侧电压是U0,电感电流iLr从零开始线性增大,增长变化率为二极管VD0中的电流以同样的变化率下降。在t1时刻,IL=iLr,二极管VD0中的电流下降到零而实现了二极管的软关断。
(2)工作模式[t1~t2]:此模式下,Lr与Cr组成谐振电路,在谐振过程中,L的电流保持不变,不影响谐振发生。随着谐振进行,iLr不断变大,uCr不断变小。iLr和uCr分别为:
uCr(t)=U0 cosω(t-
其中,
在t2时刻,uCr逐渐减小至零,此时,主开关Qm的反并联二极管VDm导通,使uCr钳于零位,iLr保持不变,其值为:
iLr(t)=IL+
此时,Lr电流流经二极管VDm续流,防止感应电压过高,主开关Qm具备零电压导通条件。
(3)工作模式[t2~t3]:此模式下,uCr钳于零位,iLr仍保持不变,至t3时刻,主开关Qm导通,辅助开关Qh关断。(4)工作模式[t3~t4]:在t3时刻,主开关Qm零电压导通,辅助开关Qh关断。当Qh关断时,由于C3、C4的存在,其两侧电压缓慢升至U0,使其关断过程出现缓冲。同时,Lr储存能量为电容C3、C4谐振充电,不断变大,当/>时,VD1导通,Lr中的能量向负载侧传输,iLr不断变小,而主开关Qm的电流不断增大,直至t4时刻,VDh、VD0、VD1因电流过零关断,iLr减小至零,主开关Qm的电流增大至IL
(5)工作模式[t4~t5]:在t5时刻,主开关Qm关断,电容Cr限制Qm关断时电压突增,起到缓冲作用。Qm在降低关断损耗的同时实现了零电压关断。此时,L为Cr充电,UCr逐渐线性增大至U0;由于,/>无损回零,实现了无损吸收,由此看出C3对主开关Qm也有关断缓冲的效果[6]。
(6)工作模式[t5~t6]:在t6时刻,,此时VD0导通。开通辅助开关Qh,拓扑开始新一轮调压。
(7)超压放电模式:当汽车行驶至下坡或突然加速时,发动机转速骤增,导致电压骤增。当检测到系统直流母线电压高于需求电压时,放电开关Qr优先导通,通过电阻R进行放电后进行逆变。步骤3:ZVT-Boost拓扑参数设计方法
设计正确的ZVT-Boost拓扑元件参数是保证系统性能的重要前提。基于拓扑设计指标及运行模式分析,给出其参数设计方法。
系统设计指标:Pout=15Kw,Uout=380V,fs=50KHz Uin=150V~450V,直流母线电压540V,电压电流波动率<5%。
(1)升压电感L的参数选择
为了留出一定的余量,所以选取450μH的电感。式中:Uin为输入电压峰值,ΔIPK为电感最大电流波动。
(2)输出滤波电容C5、C6的参数选择
输出电容由容许输出的最大纹波电压决定。考虑到提高吸收能量效率、寄生参数对电路的影响,选取1700μF/450V DC的电容。
(3)谐振、辅助回路的参数选择
谐振电感Lr需根据三个因素进行选定:1、针对辅助开关管,能够限制电流上升率,并降低其开关损耗;2、针对升压二极管,能够减少反向恢复时间,降低反向恢复电流引起的损耗;3、针对辅助谐振回路,能够减少工作时间和导通损耗。综上,文中选取10μF的电感。
谐振电容Cr需根据两个因素进行选定:针对主开关,1、能够降低其关断损耗;2、抑制谐振峰值电流。综上,文中选取1nF的电容。
C3、C4的选取需注意两方面因素:1、避免由于C3、C4过大使电感能量过低,无法回零,削弱了其缓冲作用;2、针对主开关和辅助开关,能够减小它们的关断损耗;综上,文中选取1nF的电容。
(4)放电电阻R的参数选择
考虑系统极限超压或出现电压尖峰时,为快速降压,同时防止烧坏电路,应选择较大阻值电阻,文中选取1KΩ/500W的电阻。

Claims (3)

1.一种行车状态下取力发电机组的稳压输出控制方法,其特征在于:包括整流+改进型ZVT-Boost+逆变的控制系统拓扑结构,取力发电机组输出变化的交流电经三相桥式全控整流及改进型ZVT-Boost转换为直流电,后经过逆变电路转换为交流电,并对高频电压进行滤波,输出三相工频电压,所述的改进型ZVT-Boost拓扑电路包括软开关电路,所述的软开关电路包括主开关Qm、辅助开关Qh、谐振电感Lr、谐振电容Cr及二级管VD0、VD1,辅助开关Qh、谐振电感Lr串联,再与谐振电容Cr并联,增加VDh和C3、C4构成减损电路,C3、C4串联,VDh正极接在辅助开关Qh、谐振电感Lr之间,负极接在C3、C4之间,启动阶段辅助开关Qh比主开关Qm先导通,Lr、Cr构成谐振回路,主开关Qm能零电压导通,其中,L为升压电感,C5、C6为串联滤波电容,N点连接发电机中性点,L升压电感连接在整流电路与改进型ZVT-Boost电路之间,是将整压电路中整流的直流低电压升压到指定的高压直流电压,C5、C6、N串联,并联在改进型ZVT-Boost电路与逆变电路之间,当输入电压变化时,通过改变主开关Qm和辅助开关Qh的PWM占空比,控制升压电路实现稳压输出,所述的逆变拓扑包括由IGBT开关Q1-Q6构成的逆变桥,所述的逆变拓扑中,增加R1,C7,VD2与Q1并联,组成Q1的缓冲电路,增加R6,C12,VD7与Q2并联,组成Q2的缓冲电路,增加R3,C9,VD4与Q3并联,组成Q3的缓冲电路,增加R2,C8,VD3与Q4并联,组成Q4的缓冲电路,增加R5,C11,VD6与Q5并联,组成Q5的缓冲电路,增加R4,C10,VD5与Q6并联,组成Q6的缓冲电路,Q1的缓冲电路与Q4的缓冲电路串联后接在主电路上,Q3的缓冲电路与Q6的缓冲电路串联后接在主电路上,Q5的缓冲电路与Q2的缓冲电路串联后接在主电路上,增加放电开关Qr和电阻R组成PWM放电拓扑,放电开关Qr和电阻R串联后接在主电路上。
2.根据权利要求1所述的一种行车状态下取力发电机组的稳压输出控制方法,其特征在于:所述的控制系统拓扑结构采用闭环+扰动补偿+基于BP神经网络的PID的复合控制策略。
3.根据权利要求1所述的一种行车状态下取力发电机组的稳压输出控制方法,其特征在于:所述的控制系统拓扑结构的三相桥式全控整流的触发角a£60°。
CN202111560225.9A 2021-12-20 2021-12-20 一种行车状态下取力发电机组的稳压输出控制方法 Active CN114389494B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111560225.9A CN114389494B (zh) 2021-12-20 2021-12-20 一种行车状态下取力发电机组的稳压输出控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111560225.9A CN114389494B (zh) 2021-12-20 2021-12-20 一种行车状态下取力发电机组的稳压输出控制方法

Publications (2)

Publication Number Publication Date
CN114389494A CN114389494A (zh) 2022-04-22
CN114389494B true CN114389494B (zh) 2024-05-31

Family

ID=81198235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111560225.9A Active CN114389494B (zh) 2021-12-20 2021-12-20 一种行车状态下取力发电机组的稳压输出控制方法

Country Status (1)

Country Link
CN (1) CN114389494B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996008072A1 (en) * 1994-09-09 1996-03-14 The Center For Innovative Technology Improved zero-voltage-transition (zvt) 3-phase pwm voltage link converters
WO2011011475A1 (en) * 2009-07-21 2011-01-27 Danfoss Turbocor Compressors Bv A zero-voltage-transition soft switching converter
JP2012055112A (ja) * 2010-09-02 2012-03-15 Denso Corp 電力変換装置、及び、これを用いた電動パワーステアリング装置
CN103929076A (zh) * 2013-01-16 2014-07-16 盈威力新能源科技(上海)有限公司 一种新型光伏逆变器拓扑
CN110768549A (zh) * 2019-09-14 2020-02-07 浙江大学 一种单相零电压软开关充电器拓扑及其调制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9118259B2 (en) * 2007-12-03 2015-08-25 Texas Instruments Incorporated Phase-shifted dual-bridge DC/DC converter with wide-range ZVS and zero circulating current

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996008072A1 (en) * 1994-09-09 1996-03-14 The Center For Innovative Technology Improved zero-voltage-transition (zvt) 3-phase pwm voltage link converters
WO2011011475A1 (en) * 2009-07-21 2011-01-27 Danfoss Turbocor Compressors Bv A zero-voltage-transition soft switching converter
JP2012055112A (ja) * 2010-09-02 2012-03-15 Denso Corp 電力変換装置、及び、これを用いた電動パワーステアリング装置
CN103929076A (zh) * 2013-01-16 2014-07-16 盈威力新能源科技(上海)有限公司 一种新型光伏逆变器拓扑
CN110768549A (zh) * 2019-09-14 2020-02-07 浙江大学 一种单相零电压软开关充电器拓扑及其调制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOOST ZVT-PWM变换器在行波管高压电源中的应用;王斌;;舰船电子对抗(03);全文 *
ZCT-PWM Boost变换器的潜电路分析及其应用;屈莉莉;张波;;高电压技术(12);全文 *
输入串联输出串联型软开关BOOST级联拓扑及其控制策略;朱淇凉;陈艺峰;张洪浩;;控制与信息技术(04);全文 *

Also Published As

Publication number Publication date
CN114389494A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
US6370050B1 (en) Isolated and soft-switched power converter
CN111064359A (zh) 宽范围双向变换电路及控制方法
CN111953218B (zh) 级联h桥整流器有源功率解耦控制方法、控制器及整流器
CN113691140A (zh) 一种llc变换器双向同步整流控制装置和方法
CN110920422B (zh) 一种基于电流源的大功率电动汽车充电装置及控制方法
CN113659914B (zh) 一种用于高速开关磁阻电机的驱动电路及其控制方法
CN107968471A (zh) Lclc谐振电路、宽范围恒功率输出直流充电机及控制方法
CN113135109B (zh) 一种电动汽车大功率充电装置拓扑结构
Koushki et al. A bi-directional AC-DC converter for electric vehicle with no electrolytic capacitor
CN112311222A (zh) 一种基于复合预测电流控制的改进型无桥dbpfc变换器及控制方法
CN113119804A (zh) 能量转换装置、控制方法、车辆及可读存储介质
Praneeth et al. A zero-voltage, zero-current transition boost cascaded-by-buck PFC converter for universal E-transportation charging applications
CN114389494B (zh) 一种行车状态下取力发电机组的稳压输出控制方法
CN111525828A (zh) 基于虚拟同步电机的双向隔离型谐振功率变换器控制方法
CN108566091B (zh) Dc/dc变换器及其控制方法
CN114204596B (zh) 一种有源功率解耦电路及控制方法
CN115001284A (zh) 一种隔离单级双向多用途拓扑电路及其控制策略
Jain et al. A V2G-enabled seven-level buck PFC rectifier for EV charging application
Liu et al. A New Three-Phase L-Type Double Active Bridge Buck-Boost Converter
CN111510006B (zh) 电流纹波法下基于svpwm调制策略的三电平设计方法
CN112531864B (zh) 混合能量存储系统及发电机逆变器系统
Zhou et al. Research on two-stage isolated on-board charger and control technology
CN217935171U (zh) 一种提高充电机效率的混合控制系统
Iturriaga et al. A Control Strategy for a Power Factor Compensator Based on Double-Inductor Boost Converter
CN118249653A (zh) 一种三开关llc谐振变换器拓扑结构及其控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant