CN114381625A - 一种高效的钒氮合金生产系统 - Google Patents

一种高效的钒氮合金生产系统 Download PDF

Info

Publication number
CN114381625A
CN114381625A CN202210076166.6A CN202210076166A CN114381625A CN 114381625 A CN114381625 A CN 114381625A CN 202210076166 A CN202210076166 A CN 202210076166A CN 114381625 A CN114381625 A CN 114381625A
Authority
CN
China
Prior art keywords
vanadium
boiling
nitrogen
atomizer
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210076166.6A
Other languages
English (en)
Inventor
王兆兵
王国宁
杨家冬
高峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202210076166.6A priority Critical patent/CN114381625A/zh
Publication of CN114381625A publication Critical patent/CN114381625A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C35/00Master alloys for iron or steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种高效的钒氮合金生产系统,主要包括增压风机7,气力输送器8,雾化器10,雾化反应室11,沸腾氮化炉5,旋风分离器3,袋式除尘器2,排风机1,冷却器15,粉体输送器16,混料机18,压球机19,氮气罐12,气氛烧结炉20;该系统将熔融成液态的V2O5,经过雾化还原碳化和沸腾氮化得到钒氮合金粉,冷却后添加铁粉混合,压制成型,再次氮化烧结得到钒氮合金成品。本发明产品质量好,钒、氮含量高且稳定,生产效率高,设备占地小,易损耗材少。

Description

一种高效的钒氮合金生产系统
技术领域
本发明涉及钢铁冶金中添加剂生产领域,具体涉及到钒氮合金的生产技术。
背景技术
现有钒氮合金的工业化大生产中,主要生产国标VN16牌号,以钒的氧化物为原料,主要采用V2O5作为原料,采用碳热还原氮化得到,钒氮合金生产的主流工艺见附图2。
在立窑或推板窑里发生碳热还原反应和氮化反应,其碳热还原反应式为:
V2O5 ( s) + 6C( s) = 2VC( s) + CO2( g) ↑+ 3CO( g) ↑
氮化反应式为:
2VC( s) + N2( g) = 2VN( s) + 2C
生成钒氮合金的总反应式为:
V2O5 ( s) + 4C( s) + N2( g) = 2VN( s) + CO2( g) ↑+ 3CO( g) ↑
根据对产品的物相分析,实际钒氮合金产品的分子式为VNxCy(x取值0.6~0.8;y取值0.1~0.3),以x取值0.75,y取值0.15为例,
实际生产中的反应式为。
V2O5 ( s) + 4.3C( s) + 0.75N2( g) = 2VN0.75C0.15( s) + CO2( g)↑+ 3CO( g)↑
通过计算可得每吨V2O5原料(含V2O5为98%)耗碳278Kg,加上混料、压球、烘干等工序损耗取1.05系数,合计耗量292Kg,同实际耗碳量290~300Kg相符合。
钒氧化物的碳热还原氮化过程属于典型的气固反应,包括碳、氮向基体相内间隙的内扩散,以及氧由基体相向外的外扩散。
从反应动力学可知,碳热还原是一个体积变大的增压过程,所以减压有利于反应;而氮化是一个体积缩小的减压过程,那么加压就有利于反应,现有的生产设备——立窑或推板窑是没办法做到增压和减压同时进行。
从上可知反应速率较慢,生产周期长,从压制的生球进炉到生成钒氮合金球出炉,一般需要45小时~50小时,球料经过先膨胀后收缩过程,加上成品球的表观密度3g/cm³以上(国标VN16牌号要求),还需高温下保持很长的停留时间,才能让球料软化塌陷收缩,生产实践中经常出现,为了提高产量,加快进出料速度,往往造成钒氮合金球各成分含量达国标VN16而表观密度达不到的现象。
中频感应加热的立窑作为钒氮合金生产装置,受设备工作原理的限制,单套装置产量不高、自动化程度差、生产效率低,能耗高,规模化生产中没有竞争力。现有生产装置主要是推板窑,其产能占据现有产能的80%以上,单套装置的产量每天可达6吨,产品质量较稳定,自动化程度相对较高。存在的主要问题有。
( 1) 能耗物耗高,窑长≥40m,窑内高温段1200~1550℃占长度的三分之二,窑体体积大,散热面积大,热量损失大;反应慢,烧结时间长,生产效率低;产品电耗4000kWh以上;对碳质还原剂单耗高,在碳热还原过程中生成CO量大,没得到利用,每吨V2O5原料耗石墨粉290Kg~300Kg,对反应活性较快的无定性石墨粉只能少量掺合使用,不然会引起产品炸裂不成型。对于相同批次的V2O5原料,生产车间里的不同窑炉配碳量也有较大差异,相差可达20Kg~30Kg,甚至同一窑炉大修后在同样生产控制条件下配碳量也有变化。
( 2) 开停炉耗时长,设备器件容易受损。开炉烘炉调试需15天,关炉降温需7天,开停炉不方便。保温维修炉体,砌炉、烘炉的时间至少也要30天,每年维修费高,拱板造成的停炉现象时有发生。在高温下进行反应,石墨料罐在窑体内滑动磨损严重; 加热器件硅钼棒、硅碳棒长时间处于高温环境下,使用寿命短。
(3)产品质量有待继续改善,一般只能生产国标VN16及以下牌号,主含量钒、氮控制不精准,波动较大,对有的客户来说,产品即便高于国标下限较多,也没有超出多就相应多折算金额的合同条款,对于钒超国标下限较多,非常不划算,有的生产厂家就把含钒量高的产品和含钒量不达标的批次产品相互掺合打包,折算起来能达标,实际上也是一种不合格的产品,交货取样时,也会发生检测不合格造成扣款或退货的风险。其次碳、氧含量较高,碳含量一般在3.5%以上,氧含量达1.5%以上;使得主含量钒、氮的调整范围较少,不能多加铁粉增加密度,一般每吨钒原料只能加4Kg~8Kg铁粉。
发明内容
本发明针对上述技术存在的不足,提供了一种高效的钒氮合金生产系统,该系统将熔融成液态的V2O5,经过雾化还原碳化和沸腾氮化得到钒氮合金粉,冷却后添加铁粉混合,压制成型,再次氮化烧结得到钒氮合金成品。
本发明的具体技术方案如下:一种高效的钒氮合金生产系统,主要包括增压风机,气力输送器,雾化器,雾化反应室,沸腾氮化炉,旋风分离器,袋式除尘器,排风机,冷却器,粉体输送器,混料机,压球机,氮气罐,气氛烧结炉。
所述增压风机,气力输送器,雾化器,雾化反应室,沸腾氮化炉,旋风分离器,袋式除尘器,排风机,通过管道依次相连。
所述沸腾氮化炉出口管有支管及电动阀连接碳剂粉体贮仓的出料口,所述旋风分离器下部出料口通过管道及电动阀分别连接到碳剂粉体计量仓入口和气力输送器,所述碳剂粉体计量仓的出口通过管道及电动调节阀连接到气力输送器。
所述雾化器和V2O5熔融液贮桶相连,并设有计量调节器调节进雾化器的流量。
所述氮气罐通过管道及电动调节阀分别同沸腾氮化炉底部和气氛烧结炉相连。
所述沸腾氮化炉底部出料口同冷却器相连,所述冷却器出料口连接粉体输送器,所述粉体输送器出口连接到贮存计量仓,所述贮存计量仓出口连接到混料机,所述混料机连接到压球机,所述压球机排出料供给到气氛烧结炉。
进一步,所述沸腾氮化炉中部及下部设有取样器,所述沸腾氮化炉的下部料层周围设有加热器,所述加热器是石墨电磁感应或热电阻,所述沸腾氮化炉上部设有水冷夹套和冷却盘管,所述沸腾氮化炉的高度10m~20m,下部直径0.2m~1.2m,上部直径为下部的1.5~3倍。
进一步,所述沸腾炉底部布气器的下方有预热加热器,所述预热加热器是电阻加热器或等离子体加热器,用于预热氮气。
进一步,所述袋式除尘器的下部出料口通过管道及电动阀连接到气力输送器。
进一步,所述排风机出口管设有CO2 和CO在线检测仪,所述检测仪连接到PLC控制系统,通过控制系统调节V2O5和碳剂粉体的量及氮气进入雾化器的量。
进一步,所述雾化器是铝液雾化用气体喷嘴雾化器或文丘里雾化器。
本发明的有益效果是:
1、产品质量好,钒、氮含量高且稳定,可以生产《钒氮合金》(GB/T20567-2020)里的所有牌号产品,根据产品需要,每吨钒氮合金粉添加铁粉量10 Kg~30Kg,碳含量控制在3%以下,而现有产品通常为3.5%~5%;氧含量控制在0.8%以下,而现有产品氧含量1.5%以上。
2、生产效率高。沸腾反应,加快的传质传热速率,相层界面吸附和脱离加快,有利于固、固相反应及气、固相反应。虽然工艺流程相对长,但一批产品的生产总耗时可以控制在24小时之内,且易实现单套装置生产规模放大;对比现有工艺的物料制粉混合后再压球的固定床反应,根据测算,效能提升5倍以上。
3、生产成本低,能耗物耗少,经过雾化器混合初反应到雾化室停留反应再到沸腾氮化炉再次反应,三段反应,每吨V2O5耗碳220Kg~250Kg,综合电耗可控制在每吨产品3000度以下。
4、设备占地小,加热器件不易损坏,无需石墨料罐一类的价高量多的易损耗材,设备使用寿命长。
附图说明
图1是本发明的生产系统连接图;
图2是现有的钒氮合金生产主流工艺。
具体实施方式
下面结合图1,对本发明进行实例说明:一种高效的钒氮合金生产系统,主要包括增压风机7,气力输送器8,雾化器10,雾化反应室11,沸腾氮化炉5,旋风分离器3,袋式除尘器2,排风机1,冷却器15,粉体输送器16,混料机18,压球机19,氮气罐12,气氛烧结炉20。
所述增压风机7,气力输送器8,雾化器10,雾化反应室11,沸腾氮化炉5,旋风分离器3,袋式除尘器2,排风机1,通过管道依次相连。
所述沸腾氮化炉5出口管有支管及电动阀连接碳剂粉体贮仓4的出料口,所述旋风分离器3下部出料口通过管道及电动阀分别连接到碳剂粉体计量仓6入口和气力输送器8,所述碳剂粉体计量仓6的出口通过管道及电动调节阀连接到气力输送器8。
所述雾化器8和V2O5熔融液贮桶9相连,并设有计量调节器调节进雾化器10的流量。
所述氮气罐12通过管道及电动调节阀分别同沸腾氮化炉5底部和气氛烧结炉20相连。
所述沸腾氮化炉5底部出料口同冷却器15相连,所述冷却器15出料口连接粉体输送器16,所述粉体输送器16出口连接到贮存计量仓17,所述贮存计量仓17出口连接到混料机18,所述混料机18连接到压球机19,所述压球机19排出料供给到气氛烧结炉20。
进一步,所述沸腾氮化炉5中部及下部设有取样器14,所述沸腾氮化炉5的下部料层周围设有加热器,所述加热器是石墨电磁感应或热电阻,所述沸腾氮化炉5上部设有水冷夹套和冷却盘管,所述沸腾氮化炉5的高度10m~20m,下部直径0.2m~1.2m,上部直径为下部的1.5~3倍。
进一步,所述沸腾炉5底部布气器的下方有预热加热器,所述预热加热器是电阻加热器或等离子体加热器,用于预热氮气。
进一步,所述袋式除尘器2的下部出料口通过管道及电动阀连接到气力输送器8。
进一步,所述排风机1出口管设有CO2 和CO在线检测仪13,所述检测仪13连接到PLC自控系统,通过自制系统调节V2O5和碳剂粉体的量及氮气进入雾化器的量。
进一步,所述雾化器(10)是铝液雾化用气体喷嘴雾化器或文丘里雾化器。
本发明的具体工作过程如下:
一、钒氧化物熔化:将V2O5粉料投入熔化炉加热到温度690℃~750℃,得到熔融态V2O5液。
二、雾化反应:用氮气将在线计量的碳剂粉体气力输送到雾化器,把在线计量的熔融态V2O5液吸入雾化器,在雾化室内雾化成细小的液固混合体,并迅速发生碳热还原反应和部分氮化反应生成粉体,控制粉体粒度100um~200um,反应粉体和气体一起进入沸腾氮化炉;气体作为二次气源参与沸腾床反应,控制雾化室温度800℃~1000℃,控制雾化器压力0.5MPa~2MPa;进入雾化器的V2O5和碳剂粉体的质量比为1:0.25,保持熔融态V2O5液位一定的高度,防止吸空进入空气,沸腾氮化炉上部出口的气体将碳剂粉体贮仓的碳剂粉体一同带入旋风分离器,使碳剂通过出口气置换到不带有氧气进入计量仓。
三、沸腾碳化及氮化:从雾化室进入沸腾氮化炉的反应物料在炉内形成料层,将料层状态控制在固定床到流化床之间进行转换,从沸腾氮化炉底部风帽处通入氮气,逐渐增大氮气量,当料层起始流化时,立即减少氮气量直至最小气速量,然后缓慢增加氮气量直至料层又起始流化,在周期性的流化控制料层时,固、固;气、固各相得到充分接触,使未完成碳化反应和氮化反应进一步加快;控制沸腾氮化炉下段温度1000℃~1200℃;沸腾床料层高度2 m~2.5m时,停止碳剂和V2O5液进入雾化室,减少氮气气量,控制沸腾氮化炉气速0.2m~5m/s;少量过细粉体从沸腾氮化炉上段出口进入旋风分离器回收,并经雾化器重新雾化;用水冷夹套调节沸腾氮化炉上段温度500℃~600℃。
四、检测、出料;沸氮化炉料层反应1小时,在沸腾氮化炉下段及中段各处取样口取样,分析粉体成分含量不合格时,调整进入沸腾氮化炉的各种原料的量和料层停留时间,当产物达到质量要求后,进入冷却器,冷却到200℃以下排出钒氮合金粉。
五、混料压制成型:分析钒氮合金粉成分,确定加入铁粉和粘结剂的量,控制钒氮合金粉和铁粉的质量比1:0.02~0.04,混合均匀后再加入粘结剂,再混合搅拌均匀,混合料经锻压机或辊压机压制成球状,压制每个成品粒度30mm~40mm。
六、烧结,在氮气氛中对钒氮合金球加热,温度1200℃~1400℃,进一步氮化烧结,反应1小时后经冷却200℃以下得到钒氮合金成品。
由此发明装置生产出的钒氮合金成品质量数据与现有产品对照表:
V N C O Fe+余量 密度
现有产品含量(%) 77.32 15.24 3.55 1..62 0.8+1.47 3.2g/cm³
本发明产品含量(%) 77.20 15.97 2.75 0.71 1.86+1.51 3.7g/cm³
以上显示和描述了本发明的基本原理和主要特征。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

1.一种高效的钒氮合金生产系统,其特征在于,主要包括增压风机(7),气力输送器(8),雾化器(10),雾化反应室(11),沸腾氮化炉(5),旋风分离器(3),袋式除尘器(2),排风机(1),冷却器(15),粉体输送器(16),混料机(18),压球机(19),氮气罐(12),气氛烧结炉(20);
所述增压风机(7),气力输送器(8),雾化器(10),雾化反应室(11),沸腾氮化炉(5),旋风分离器(3),袋式除尘器(2),排风机(1),通过管道依次相连;
所述沸腾氮化炉(5)出口管有支管及电动阀连接碳剂粉体贮仓(4)的出料口,所述旋风分离器(3)下部出料口通过管道及电动阀分别连接到碳剂粉体计量仓(6)入口和气力输送器(8),所述碳剂粉体计量仓(6)的出口通过管道及电动调节阀连接到气力输送器(8);
所述雾化器(8)和V2O5熔融液贮桶(9)相连,并设有计量调节器调节进雾化器(10)的流量;
所述氮气罐(12)通过管道及电动调节阀分别同沸腾氮化炉(5)底部和气氛烧结炉(20)相连;
所述沸腾氮化炉(5)底部出料口同冷却器(15)相连,所述冷却器(15)出料口连接粉体输送器(16),所述粉体输送器(16)出口连接到贮存计量仓(17),所述贮存计量仓(17)出口连接到混料机(18),所述混料机(18)连接到压球机(19),所述压球机(19)排出料供给到气氛烧结炉(20)。
2.根据权利要求1所述的一种高效的钒氮合金生产系统,其特征在于,所述沸腾氮化炉(5)中部及下部设有取样器(14),所述沸腾氮化炉(5)的下部料层周围设有加热器,所述加热器是石墨电磁感应或热电阻,所述沸腾氮化炉(5)上部设有水冷夹套和冷却盘管,所述沸腾氮化炉(5)的高度10m~20m,下部直径0.2m~1.2m,上部直径为下部的1.5~3倍。
3.根据权利要求1或2所述的一种高效的钒氮合金生产系统,其特征在于,所述沸腾炉(5)底部布气器的下方有预热加热器,所述预热加热器是电阻加热器或等离子体加热器,用于预热氮气。
4.根据权利要求1所述的一种高效的钒氮合金生产系统,其特征在于,所述袋式除尘器(2)的下部出料口通过管道及电动阀连接到气力输送器(8)。
5.根据权利要求1所述的一种高效的钒氮合金生产系统,其特征在于,所述排风机(1)出口管设有CO2 和CO在线检测仪(13),所述检测仪(13)连接到PLC自控系统,通过自制系统调节V2O5和碳剂粉体的量及氮气进入雾化器的量。
6.根据权利要求1所述的一种高效的钒氮合金生产系统,其特征在于,所述雾化器(10)是铝液雾化用气体喷嘴雾化器或文丘里雾化器。
CN202210076166.6A 2022-01-24 2022-01-24 一种高效的钒氮合金生产系统 Withdrawn CN114381625A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210076166.6A CN114381625A (zh) 2022-01-24 2022-01-24 一种高效的钒氮合金生产系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210076166.6A CN114381625A (zh) 2022-01-24 2022-01-24 一种高效的钒氮合金生产系统

Publications (1)

Publication Number Publication Date
CN114381625A true CN114381625A (zh) 2022-04-22

Family

ID=81203882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210076166.6A Withdrawn CN114381625A (zh) 2022-01-24 2022-01-24 一种高效的钒氮合金生产系统

Country Status (1)

Country Link
CN (1) CN114381625A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679176A (zh) * 2022-10-21 2023-02-03 武汉科技大学 一种基于五氧化二钒的钒氮合金及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679176A (zh) * 2022-10-21 2023-02-03 武汉科技大学 一种基于五氧化二钒的钒氮合金及其制备方法
CN115679176B (zh) * 2022-10-21 2023-09-22 武汉科技大学 一种基于五氧化二钒的钒氮合金及其制备方法

Similar Documents

Publication Publication Date Title
CN100519768C (zh) 一种铬铁冶炼竖炉及冶炼方法
EP2132344B1 (en) Method and apparatus for the supply of hot direct reduced iron for multiple uses
CN204981930U (zh) 全煤基自供热直接还原竖炉
CN114381626A (zh) 一种高效的钒氮合金生产工艺
CN110106303A (zh) 一种适合气基和煤基的竖炉直接还原铁装置
CN114381625A (zh) 一种高效的钒氮合金生产系统
CN114107585A (zh) 一种高炉富氧量与风口进风面积的量化方法
CN100564551C (zh) 热回收型氧化锰矿石微波还原焙烧工艺及设备
CN114381624A (zh) 一种高效的钒氮合金生产装置
CN105039628A (zh) 全煤基自供热直接还原工艺及全煤基自供热直接还原竖炉
CN102758046B (zh) 一种短流程煤基直接还原铁的生产设备和方法
CN102409126A (zh) 一体式还原炼铁炉及一体式还原炼铁工艺
CN104651562A (zh) 一种qdf熔融炼铁工艺
CN209588733U (zh) 用于直流矿热炉热装料的炉料多级分离加热装置
CN111517678A (zh) 一种利用水泥窑尾高温气烘干和选粉电石渣的装置及工艺
CN110066916B (zh) 一种利用焦化厂方型炭化室还原氧化物矿物的方法
CN1017628B (zh) 用煤粉和铁矿粉直接冶炼铁水的方法及装置
CN107337208A (zh) 一种利用生物质热解生产电石的系统和方法
CN207192806U (zh) 一种利用生物质热解生产电石的系统
CN207192808U (zh) 一种制备电石的系统
CN104804767B (zh) 富氧造气炉掺烧10‑25mm小粒度焦炭的方法及装置
CN2900494Y (zh) 一种节能型的草酸钴连续生产四氧化三钴的装置
CN217781244U (zh) 铬铁矿球团生产装置
CN2937115Y (zh) 一种固体燃料熔制玻璃的燃料供给装置
CN220951872U (zh) 一种基于直接还原及熔分双联法的冶金固废处理系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20220422