CN114378291A - 一种多包层钴包碳纳米管复合粉末及制备方法 - Google Patents

一种多包层钴包碳纳米管复合粉末及制备方法 Download PDF

Info

Publication number
CN114378291A
CN114378291A CN202210028288.8A CN202210028288A CN114378291A CN 114378291 A CN114378291 A CN 114378291A CN 202210028288 A CN202210028288 A CN 202210028288A CN 114378291 A CN114378291 A CN 114378291A
Authority
CN
China
Prior art keywords
cobalt
carbon nanotube
composite powder
coated carbon
nanotube composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210028288.8A
Other languages
English (en)
Inventor
陈源
宋奕玄
陈施怡
袁泉
杨晓红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinhua Polytechnic
Original Assignee
Jinhua Polytechnic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinhua Polytechnic filed Critical Jinhua Polytechnic
Priority to CN202210028288.8A priority Critical patent/CN114378291A/zh
Publication of CN114378291A publication Critical patent/CN114378291A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents

Abstract

本发明公开了一种多包层钴包碳纳米管复合粉末及制备方法,粉末主要面向增材制造技术领域。多包层钴包碳纳米管复合粉末以多壁碳纳米管为复合性承载材料,在其表面进行化学镀钴处理,获得钴/碳纳米管壁多包层钴包碳复合粉末。通过将多壁碳纳米管进行刻蚀、纯化、敏化、活化处理后,加入到含钴离子的化学镀液中进行单次或多次化学镀钴处理,再经烘干、研磨、筛选,获得多包层钴包碳纳米管复合粉末。本发明可以通过调整化学镀液的钴离子浓度、pH值、施镀温度、施镀时间、施镀次数等参数,控制碳纳米管表面沉积的钴粒子的均匀性、厚度等微观形貌特征。

Description

一种多包层钴包碳纳米管复合粉末及制备方法
技术领域
本发明涉及金属粉体材料制备领域,特别涉及一种多包层钴包碳纳米管复合粉末及制备方法,产品主要面向粉末冶金、颜料、激光增材制造等技术领域。
背景技术
碳纳米管—一种由纯碳原子经sp2杂化键两两相连形成的一种中空管状结构,一般其管径为几纳米至几十纳米,长度可达几十微米甚至几米。研究表明,该材料与其姊妹材料——石墨烯一样,是当前人类发现的质量最轻、强度最高的材料:其弹性模量可达1TPa,抗拉强度达100-250GPa,且由于研究较早,制备工艺较为成熟,制造成本远低石墨烯,因而被视为一种极为理想的纳米增强材料,在材料强化领域应用潜力巨大。
高于制备合成的温度相对较低,碳纳米管增强的高分子材料的制造及应力已比较成熟。但是,不同于高分子,合金的熔化及制备温度较高,且碳纳米管由于质量较轻,在熔融合金液体中容易上浮团聚,进而失去其该有的增强效果。因此,当前制备碳纳米管增强的合金一般通过粉末冶金、放电等离子烧结等粉末烧结的方法进行制造。但是,由于粉末烧结过程中合金没有熔化,因而合金强度相对较低,碳纳米管增强效果亦欠佳。
激光增材制造是采用高能激光束作为热源,辐照至同步送入的合金粉末上并将其熔化,形成熔池,而当激光束移开后,熔池迅速凝固,形成增材制造合金层。由于激光形成的合金熔池停留时间极短,碳纳米管来不及上浮合金便已凝固;同时熔池本身存在流动,可以进一步分散碳纳米壁,避免其上浮团聚。因此,激光增材制造有望成为熔化结合的碳纳米管增强合金的一种有效技术。但是,当前依然存在两大难点:1)激光的能量较高,其对碳纳米管直接辐照容易破坏其结构完整性;2)碳纳米管由于表面能较高,导致其与金属熔液间的润湿性较差,使两者的最终界面结合不良。
研究表明,通过在碳纳米管表面进行化学镀,包覆一层金属层,一方面可以避免激光增材制造过程中激光对碳纳米管的直接辐照,减少其结构破坏;另一方面,可以增加碳纳米管与合金之间的界面结合,最终提高其增强效果。
但是,当前碳纳米管表面化学镀的可见报道中,可镀的金属主要是镍和铜,而其它金属基本未见报道。拓展碳纳米管表面的可镀金属,可以极大地拓宽碳纳米管的合金应用体系;同时可以通过多种金属的多次化学镀,有望通过碳纳米管的表面化学镀,获得碳纳米管复合的合金粉末,从而研发出新型的特种合金。
发明内容
有鉴于现有技术的上述问题,本发明目的拓展碳纳米管表面可镀金属的范围,提供一种多包层钴包碳纳米管复合粉末及制备方法。
为实现上述目的,本发明提供了如下方案:
一种多包层钴包碳纳米管复合粉末,以多壁碳纳米管为符合性沉积基体,在其表面进行化学镀钴处理,获得钴/碳纳米管壁多包层钴包碳复合粉末。
作为优选,碳纳米管为多层碳纳米管,层数为1~3层,初始碳纳米管含有丰富的缺陷,为钴提供很好的镶嵌位点,能够更好地使钴附着在多层碳纳米管上。
作为优选,钴/碳纳米管壁复合粉末为层层交替结构,具有极强的结合效果,在普通砂纸摩擦下不易分离。
本发明还包括一种多包层钴包碳纳米管复合粉末的制备方法,所述方法包括以下步骤:
1.将碳纳米管经过刻蚀、纯化、敏化、活化处理后至于超声机内超声分散,时间为1-2小时;
2.分散后的的碳纳米管加入到镀钴溶液中进行化学镀钴处理,获得多包层钴包碳纳米管复合粉末;
3.化学镀钴粉末经多次清洗后取出在通有高纯氩的管式炉中烘干、再经研磨、筛选,获得粒度均匀的多包层钴包碳纳米管复合粉末。
作为优选,所述步骤1中多壁碳纳米管采用KOH和NaOH混合比为1:1的混合液进行刻蚀,68%硝酸对多壁碳纳米管进行一次纯化、40%的氢氟酸进行二次纯化。
作为优选,所述步骤1中多壁碳纳米管采用浓度为0.1mol/L的SnCl2/HCl混合溶液进行敏化,采用浓度为0.1mol/L的PdCl2/HCl混合溶液进行活化。
作为优选,所述步骤2中钴源为水合硫酸钴、水合硝酸钴、中的一种或多种;螯合剂为钠阳离子型螯合剂中的一种,用量为35-40g/L;水合肼作为还原剂,用量为60-70mL/L。
本发明的有益效果为:
1.一种多包层钴包碳纳米管复合粉末,其优点在于多包层钴包碳纳米管复合粉末具有很强的均匀性,可以应用领域宽,包括激光增材制造的增强体材料、粉末冶金、颜料等其它粉末材料领域使用。
2.一种多包层钴包碳纳米管复合粉末,其优点在于多包层钴包碳纳米管复合粉末通过化学还原剂水合肼将化学镀液中的钴离子还原为金属单质,不含P、B等其它元素,杂质含量低、羟基含量低、附着性好、纯度高。
3.一种多包层钴包碳纳米管复合粉末,其优点在于通过刻蚀,形成具备一定缺陷及官能团的多壁碳纳米管,而这些缺陷及官能团的位置可作为化学镀钴在碳纳米管表面的形核质点。然后配合镀钴溶液进行化学镀钴处理,以形成钴/碳纳米管壁复合粉末为层层交替结构。既能够增强复合粉末的强度、又能够很好的避免碳纳米管的浪费。
4.发明人在先申请的公开号为CN113634745A的中国专利公开了一种化学镀法制备NiCu双层合金粉末的方法。而在基于这种方法的情况下,需要在碳纳米管的表面先镀上一层铜,因为铜是对红外激光反射率最高的元素,因此采用铜来保护碳纳米管在激光加工过程中不受破坏。而后又在铜的外表面再包覆一层对激光吸收率好的镍,以形成可应用于激光增材的熔覆层。
但是,本申请在原先的基础上进行二次改进。不再需要镍包铜双层合金包覆结构,只需采用单过渡金属钴,即可实现对粉末的结构增强,以及在激光增材过程中的熔覆。
首先,本申请通过刻蚀形成多层碳纳米管,而后在配合镀钴溶液进行化学镀钴处理,以形成钴/碳纳米管壁复合粉末为层层交替结构。钴是一种硬质金属。此时位于碳纳米管内的钴可作为核心来支撑碳纳米管,而在碳纳米管表面的钴一方面能避免激光对碳纳米管的直接辐照,减少其结构破坏;另一方面可以增加碳纳米管与合金之间的界面结合,最终提高其增强效果。
5.本申请的制备方法中,对粉末或碳纳米管的烘干是在有氩气环境下进行的,以去除游离的羟基。因为羟基和游离态羟基的存在会产生热的损耗,不利于复合粉末在激光增材中的熔接。
附图说明
图1为本发明实施例得到的钴包碳纳米管粉末微观形貌SEM图;
图2为本发明实施例得到的钴包碳纳米管粉末的EDS能谱图;
图3为本发明实施例得到的钴包碳纳米管粉末的XRD图;
具体实施方式
下面结合具体实施例对本发明进行详细阐述。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,在不脱离本发明构思的前提下,还可以做出若干改进与拓展,这些均应属于本发明的保护范围:
实施例1:
1.称取0.2克多壁碳纳米管(MWCNTs),均分后置于两个塑料离心管中,每个离心管中加入5-10mL的NaOH和KOH(KOH和NaOH混合比为1:1)混合液进行刻蚀,刻蚀15分钟后,后将10-12mL 68%的硝酸将碳纳米管浸没,盖实离心管盖后静置24h后离心,倒出硝酸,置换倒入5-10mL 40%的氢氟酸将碳纳米管再次浸没,静置24h后再次离心,倒出氢氟酸,并多次加去离子水进行清洗。
2.将步骤1纯化处理后的每0.1克多壁碳纳米管分别加入到100-200mL,0.1mol/LSnCl2+0.1mol/L HCl溶液中,超声振动处理0.5-1h,再静置24h,再进行离心,去除多余的溶液并进行多次清洗。
3.将步骤2敏化处理后的每0.1克碳纳米管分别加入到100-200mL,浓度为0.1mol/L的PdCl2/HCl混合溶液中进行活化。超声振动处理0.5-1h,再静置24h,再进行离心,去除多余的溶液并进行多次清洗,清洗后置于超声机内分散,时间为1-2小时。
4.准备好化学镀钴溶液(七水合硫酸钴:20-40g/L,二水合乙二胺四乙酸四钠35-40g/L),将水浴箱加热至60℃后,将配置好的化学镀钴溶液放入水浴箱中预热5-10分钟,并准备一杯100ml的氢氧化钠(10克氢氧化钠溶解至100mL水中),预热结束后将镀液放置搅拌机上,再将配置好的氢氧化钠溶液缓慢滴入,直至出现沉淀的前一刻(约滴入70-80mL),再将经步骤3活化处理后的总共0.2克碳纳米管加入到化学镀钴溶液。将镀液放入水浴箱中等待5-10分钟后再往镀液中滴入40ml水合肼溶液。等镀液中反应变缓后第二次滴加10-20mL水合肼溶液,同上进行多次直至总共滴加60-70mL水合肼溶液后停止,将水浴箱的反应温度设置为60℃,反应时间为12-24h(当镀钴溶液中的紫色慢慢变淡甚至完全褪色时,表明化学镀钴反应已反应完全),反应完全后将化学镀液倒出。
5.将经步骤4化学镀钴处理后的粉末多次加清水清洗后取出,在通有高纯氩的管式炉中烘干,烘干温度为100-200℃,时间12h,再将粉末加入研钵中进行研磨;研磨后的粉末经过100-500目筛子筛选,得到所需粒度的多包层钴包碳纳米管复合粉末。
如图1所示的是本实施获得的钴包碳纳米管粉末的微观形貌,可以看到粉末呈近球形或近椭球形,粉末粒度在5-50μm之间,经测试粉末具有较好的流动性,符合激光增材制造等增材技术的要求。
如图2所示是本实施例所得的钴包碳纳米管粉末的EDS能谱点扫描谱图及元素分析结果。可以看到,粉末所含元素较为纯净,基本为Co元素,不含P、B等其它杂质元素。
如图3所示是本实施例所得的钴包碳纳米管粉末的XRD谱图及其物相分析结果。从XRD的分析结果中也可以看到,粉末中主要含有的是Co相,这也进一步表明了其沉积元素的纯净性。
对比例1:采用发明人在先申请的公开号为CN113634745A的中国专利,所制备的合金粉末。
实验测试:
利用最大功率3kW半导体激光增材制造机进行打印,采用同轴送粉方式,用自带的编程软件设置打印体的形状及打印路径,打印路径为逐层的平行往复扫描。在基板上,制备出沉积态的试样;其中,激光增材制造的工艺参数为:激光功率2300W,扫描速度5mm/s,送粉量4g/min,送粉气流量2.5L/min,搭接率40%,Z轴提升量0.4mm,层间冷却时间0.6min。通过打印出样品,然后对样品做抗拉强度、断后延伸率的测试,结果如下:
抗拉强度 断后延伸率
实施例1 547MPA 7.6%
对比例1 550MPA 7.5%
上述可知,本申请与对比例1所制得的样品而言,其性能差异并不大,均能满足激光增材领域的需求。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (7)

1.一种多包层钴包碳纳米管复合粉末,其特征在于,所述多包层钴包碳纳米管复合粉末以多壁碳纳米管为复合性承载材料,在其表面进行化学镀钴处理,获得钴/碳纳米管壁多包层钴包碳复合粉末。
2.根据权利要求1所述的一种多包层钴包碳纳米管复合粉末,其特征在于,所述碳纳米管为多层碳纳米管,层数为1~3层,初始碳纳米管含有缺陷。
3.根据权利要求1所述的一种多包层钴包碳纳米管复合粉末,其特征在于,所述钴/碳纳米管壁复合粉末为层层交替结构。
4.根据权利要求1-3任一所述的一种多包层钴包碳纳米管复合粉末的制备方法,包括以下步骤:
1)碳纳米管经过刻蚀、纯化、敏化、活化处理后至于超声机内超声分散,时间为1-2小时;
2)分散后的的碳纳米管加入到镀钴溶液中进行化学镀钴处理,获得多包层钴包碳纳米管复合粉末;
3)化学镀钴粉末经多次清洗后取出在通有高纯氩的管式炉中烘干、再经研磨、筛选,获得粒度均匀的多包层钴包碳纳米管复合粉末。
5.根据权利要求4所述一种多包层钴包碳纳米管复合粉末的制备方法,其特征在于,所述步骤1中多壁碳纳米管采用KOH和NaOH混合比为1:1的混合液进行刻蚀,68%硝酸对多壁碳纳米管进行一次纯化、40%的氢氟酸进行二次纯化。
6.根据权利要求4所述一种多包层钴包碳纳米管复合粉末的制备方法,其特征在于,所述步骤1中多壁碳纳米管采用浓度为0.1mol/L的SnCl2/HCl混合溶液进行敏化,采用浓度为0.1mol/L的PdCl2/HCl混合溶液进行活化。
7.根据权利要求4所述一种多包层钴包碳纳米管复合粉末的制备方法,其特征在于,所述步骤2中钴源为水合硫酸钴、水合硝酸钴、中的一种或多种;螯合剂为钠阳离子型螯合剂中的一种,用量为35-40g/L;水合肼作为还原剂,用量为60-70mL/L。
CN202210028288.8A 2022-01-11 2022-01-11 一种多包层钴包碳纳米管复合粉末及制备方法 Pending CN114378291A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210028288.8A CN114378291A (zh) 2022-01-11 2022-01-11 一种多包层钴包碳纳米管复合粉末及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210028288.8A CN114378291A (zh) 2022-01-11 2022-01-11 一种多包层钴包碳纳米管复合粉末及制备方法

Publications (1)

Publication Number Publication Date
CN114378291A true CN114378291A (zh) 2022-04-22

Family

ID=81202091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210028288.8A Pending CN114378291A (zh) 2022-01-11 2022-01-11 一种多包层钴包碳纳米管复合粉末及制备方法

Country Status (1)

Country Link
CN (1) CN114378291A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504292B1 (en) * 1999-07-15 2003-01-07 Agere Systems Inc. Field emitting device comprising metallized nanostructures and method for making the same
US20040018371A1 (en) * 2002-04-12 2004-01-29 Si Diamond Technology, Inc. Metallization of carbon nanotubes for field emission applications
CN1821443A (zh) * 2006-03-23 2006-08-23 北京科技大学 一种制备中空镍、钴、镍钴纤维和空心球的方法及设备
CN102634777A (zh) * 2012-02-23 2012-08-15 北京航空航天大学 一种化学镀钴改性碳纳米管的电磁屏蔽材料及其制备方法
CN102703936A (zh) * 2012-06-28 2012-10-03 华南理工大学 一种碳纳米管/钴复合镀层及其制备方法
CN109020594A (zh) * 2018-09-11 2018-12-18 张家港市六福新材料科技有限公司 一种碳纳米管-氮化铝陶瓷的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504292B1 (en) * 1999-07-15 2003-01-07 Agere Systems Inc. Field emitting device comprising metallized nanostructures and method for making the same
US20040018371A1 (en) * 2002-04-12 2004-01-29 Si Diamond Technology, Inc. Metallization of carbon nanotubes for field emission applications
CN1821443A (zh) * 2006-03-23 2006-08-23 北京科技大学 一种制备中空镍、钴、镍钴纤维和空心球的方法及设备
CN102634777A (zh) * 2012-02-23 2012-08-15 北京航空航天大学 一种化学镀钴改性碳纳米管的电磁屏蔽材料及其制备方法
CN102703936A (zh) * 2012-06-28 2012-10-03 华南理工大学 一种碳纳米管/钴复合镀层及其制备方法
CN109020594A (zh) * 2018-09-11 2018-12-18 张家港市六福新材料科技有限公司 一种碳纳米管-氮化铝陶瓷的制备方法

Similar Documents

Publication Publication Date Title
US11939671B2 (en) Quantum printing nanostructures within carbon nanopores
CN104999076B (zh) 一锅法制备壳层厚度可控的银包铜纳米粉体的方法
Tang et al. Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres
CN109778249B (zh) 一种制备金属核壳纳米线的制备方法
Hu et al. Preparation of large micron-sized monodisperse polystyrene/silver core–shell microspheres with compact shell structure and their electrical conductive and catalytic properties
CN106011809A (zh) 一种通过邻苯二酚-多胺制备表面包覆银的复合材料的方法
CN109500385A (zh) 一种激光快速成型用镍/石墨烯复合粉末的制备方法
CN106413951B (zh) 金属纳米颗粒及其制备方法
CN111041459A (zh) 具有纳米梯度结构的空心管微点阵材料及其制备方法
CN113560567B (zh) 一种采用红外激光制造Cu基合金熔覆层的方法
Muench et al. Expanding the boundaries of metal deposition: High aspect ratio silver nanoplatelets created by merging nanobelts
Wang et al. Functional metal powders: Design, properties, applications, and prospects
CN114378291A (zh) 一种多包层钴包碳纳米管复合粉末及制备方法
CN101552064B (zh) 一种磁性空心球或磁性管制备方法
Zhao et al. Improvement on wettability between carbon nanotubes and Sn
CN113634745A (zh) 一种化学镀法制备NiCu双层合金粉末的方法及其应用
CN108356264A (zh) 一种银包覆铜粉的制备方法
KR20160002912A (ko) 탄소 나노재료의 코팅방법
JP2004190089A (ja) 無機ナノ粒子融合又は融着構造体の製造方法及びその融合又は融着構造体
US11268194B2 (en) Metal-plated carbon material and manufacturing method thereof
CN111168058B (zh) janus金纳米棒@硫化铜纳米材料、核壳金纳米棒@硫化铜纳米材料及制备方法和应用
CN113889294A (zh) 一种Cu-CNTs复合纳米导线及其制备方法和应用
CN111074249A (zh) 一种化学镀制备折叠超材料的制备方法
CN109207779A (zh) 一种纳米氧化铝增强a356铝合金的制备方法
CN114734036B (zh) 包覆核壳结构镀银活化基底银层的粉体、制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination